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Abstract—Microgrids are an emerging technology which
promises to achieve many simultaneous goals for power system
stakeholders, from generator to consumer. The microgrid
framework offers a means to capitalize on diverse energy sources
in a decentralized way, while reducing the burden on the utility
grid by generating power close to the consumer. As a critical
component to enabling power system diversity and flexibility,
microgrids encompass distributed generators and load centers
with the capability of operating islanded from or interconnected
to the macrogrid. To make microgrids viable, new and
innovative techniques are required for managing microgrid
operations given its multi-objective, multi-constraint decision
environment. In this article, two example computational
intelligence methods, particle swarm optimization (PSO) and ant
colony optimization (ACO), for application to the microgrid
power management problem are introduced. A mathematical
framework for multi-objective optimization is presented, as well
as a discussion of the advantages of intelligent methods over
traditional computational techniques for optimization. Finally, a
three-generator microgrid with an ACO-based power
management algorithm is demonstrated and results are shown.

Index Terms — Distributed generation, Intelligent control,
Microgrids.

I. INTRODUCTION

Overwhelmingly, nations of the world derive their
electricity from centralized generation. Global electricity
generation is projected to increase 2.4% each year, from
16,424 billion kWh in 2004 to 30,364 billion kWh in 2030
[1,2]. As demand continues to rise, increased pressure will be
placed on existing central power plants, transmission assets,
and distribution systems. This steadily escalating need for
electrical power, progress in power deregulation, tight
construction constraints on new high voltage long distance
power transmission lines, and reliance on central generation
places the nation’s energy future in a difficult predicament.
Recognizing the challenges facing centralized electricity
generation, along with growing global environmental
concerns, interest has increased for alternative energy (AE)
generation. Many AE devices are attractive primarily because
of low or zero emissions, high efficiency, scalable application,
and/or adaptability to remote implementation. It is believed
that these desirable characteristics can be capitalized upon
through hybrid combination of AE sources, networked within
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a microgrid framework to significantly improve their
reliability and better deliver power close to customer loads.
Although inherently adaptable to islanded (separated from the
macrogrid) applications, it is expected that alternative energy
distributed generation (AEDG) microgrids that capitalize on
diverse energy sources, are controlled in a decentralized way,
and reduce the burden on the utility grid will penetrate the
existing infrastructure network in the near future [3].

There is no standardized definition for what comprises a
microgrid. However, general consensus specifies a microgrid
as a small-scale power system that has three primary
characteristics: ~ distributed generators, autonomous load
centers, and the ability to operate connected to or
independently from the utility power system. Interest in the
microgrid concept, at the distribution level, with multiple
AEDG sources has been increasing worldwide [4-7]. The
promise of implementing scalable microgrid generators that
can be coordinated and controlled in a decentralized way is
desirable for many consumers. Ultimately, the primary goal
for microgrid architectures is to significantly improve energy
production and delivery for load customers, while facilitating
a more stable electrical infrastructure with a measurable
reduction in environmental emissions.

The following paper seeks to introduce emerging
computational techniques for intelligent power management of
microgrids for the purpose of making progress towards their
integration and implementation into the power system.
Specifically, two representative emerging intelligent methods,
particle swarm optimization (PSO) and ant colony
optimization (ACO) are presented. The challenges associated
with multi-objective optimization, along with two alternative,
computationally intelligent methods for addressing those
challenges and a simulated implementation are presented in
five sections. A discussion of the computational framework
for optimization is presented in Section II. The two intelligent
methods, PSO and ACO, as well as their advantages over
traditional methods for solving optimizations, are presented in
Section III. An example of a microgrid power management
optimization using an ACO is shown in Section IV. Finally,
conclusions are given in Section V.

II. COMPUTATIONAL CHALLENGES FOR OPTIMIZATION

The practice of decision-making is a very familiar process
for humans. However, attempting to codify the decision-
making process in a meaningful, efficient, and useful way is
often very challenging. Subsequently, implementing effective
autonomous decision-making for automated systems can be



difficult. Additionally, implementation is complicated by the
need to make judgments rapidly and to seek an ideal
conclusion amongst a field of many options and factors. The
microgrid power management system is an example of an
automated  decision-making  framework  that  must
comprehensively consider complex factors that affect a
complex system. This section intends to highlight the unique
challenges faced by the microgrid power management system
and elucidate the structure of the problem it seeks to optimize.

Typically, when attempting to decide between simple
options, say whether to purchase a bus ticket or walk to a
destination, there is often more than a single factor that
influences the decision. In this way, the travel choice via bus
or on foot can be considered the “variable” which has two
possibilities, or a “domain” of two. However, many related
“constraints” may exist, such as: available change to pay the
cost of the bus ticket, time allowed to reach the destination,
etc. Assuming that decisions are made towards a certain goal
or collection of goals, this interrelated combination of
variables, their domains, and constraints are compiled
according to the decision-making framework towards the
development of a solution. In this broad context, the process
of evaluating decision components and seeking the best
solution available is incorporated within the extensive field of
optimization analysis. In optimization, when objectives are
described as mathematical formulations, a single or multiple
objective functions may result. ~Although many possible
solutions exist within the space of possibilities, the ultimate
prize is the single solution that either “maximizes” or
“minimizes” the objective function across all possible
solutions. In other words, when an objective function is
maximized or minimized, it has achieved the largest possible
“satisfaction” for the decision-maker. In a local solution
space, the solution that is the best of all local possibilities is
considered the “local” best; the solution that is the very best of
all possible solutions across the entire solution space is
considered the “global” best.

Often, decision-making situations arise that require analysis
of numerous competing objectives, simultaneously. The
pursuit of an ideal solution given this more complex scenario
is described as a multi-objective optimization, where the goal
is to seek an optimal solution amidst many objectives. In such
problems, the satisfaction of the objective functions becomes a
combination of vector “maximizations” or “minimizations”.
However, in most cases, a global best of any particular
individual objective function may not be a satisfactory
solution for the remaining objectives [8]. Because of this, we
need to alter our concept of optimality for such problems. In a
similar manner as with economic systems, a Pareto optimum
can be reached where the solution represents a state of
satisfaction for one objective that cannot be raised further
without lowering another objective’s satisfaction. In other
words, many “optimal” solutions exist when considering
multiple objectives. The mathematical expression for this
problem takes the form of:
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where, F' is the vector of objective functions containing m
objective functions (f; to f,,), X is the n-length vector of
variables to be optimized known as the decision variables, G
represents the p-length vector of inequality constraints, and H
represents the g-length vector of equality constraints. The
relationship between two decision variables, three constraints,
and two objective functions are shown in Fig. 1. A particular
solution of decision variables maps to the graph of the
objective functions. The Pareto frontier, or front, represents
the combinational minimization of the two objective
functions, and is shown by the dark line in Fig. 1.
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Fig. 1. Representation of a multi-objective, multi-constraint optimization
problem and resulting Pareto frontier.

As is described above, there are no direct methods for
developing the solution set that lies along the Pareto front.
However, two primary formal mathematical techniques exist
to derive Pareto solutions. The first technique involves
aggregating the various objective functions into a single
objective function expression [9]. In effect, by combining
objective functions, the issues of simultaneously handling
multiple objective functions is side-stepped. This technique is
relatively simple and based on traditional gradient-based



methods, but requires the decision-maker to assign the relative
weights of the constituent objective functions within the
aggregation. The second broad category for addressing
multiple objectives involves the class of intelligent methods.
The intelligent methods category incorporates a diverse range
of techniques including: evolutionary, heuristic, and non-
classical algorithms.  The primary advantage of these
intelligent methods is that they can address many objective
functions simultaneously while requiring less computational
resources to derive solutions in less time [10].

For more than a decade, intelligent methods have proven
themselves for a variety of computational challenges. Power
management of microgrid operations clearly fits into the broad
field of multi-objective optimization problems of interest
today. The mathematical class of multi-objective optimization
problems has not been proven to be solvable in strongly
polynomial-time, or in other words, present verifiably global
solutions rapidly. Because of the slower nature of traditional
iterative techniques, alternative intelligent methods have
shown promise. Ultimately, the interest in computational
alternatives to traditional iterative techniques is manifested by
the desire to derive near-optimum results in short periods of
time [11]. Therefore, their application to microgrids for real-
time power management is a ready area of challenge.

The formulation of the multi-objective, multi-constraint
microgrid power management problem begins by identifying
the desired attributes of the microgrid. These factors
encompass many of the objectives currently sought by the
power system, but go beyond conventional operations in many
key ways. Inherently, these objectives are entirely dependent
upon the relative importance to the consumer, but the
following objectives are split into major and minor categories
for the purpose of further discussion:

Major objectives:

- Maximize the customer’s power availability (e.g. meet
consumer’s instantaneous load demand)

- Minimize economic factors (i.e. fuel costs, operation and
maintenance, start-up/shut-down costs, etc.)

- Minimize environmental impact from operating microgrid
generators (e.g. emissions, noise, hazardous waste, etc.)

- Maximize the dispatch of shedable loads (e.g. loads
capable of reacting to demand response signals)

- Maximize revenue derived from service delivery to the
utility grid (including ancillary services, reserves, etc.)

- Minimize energy purchased from outside microgrid

- Maximize the total efficiency of the microgrid (e.g.
kWhrs generated versus kJ fuel consumed)

- Maximize capitalized energy sources (e.g. operational
efficiency of kWhrs available versus kWhrs generated)

- Minimize the number of power reversals across the grid
interconnection

- Minimize transient periods during stabilization in the
event of a casualty or interruption

Minor objectives:
- Maximize load factor (e.g. smooth out the peaks and

valleys of load and subsequently required generation)

- Minimize the need for storage assets

- Maximize the microgrid capability to reduce strain on
distribution and transmission assets

- Maximize VAR support to the greater power system

- Maximize the reduction in line losses

- Allow the stable, seamless, and adaptable integration of
generation and load assets onto the microgrid (also known
as “plug-and-play”)

In addition to these objectives, the microgrid primary
constraints are:
Availability of renewable resources (i.c., solar insolation,
wind energy, etc.)
- Bus voltage, frequency, and stability requirements
- Physical electrical characteristics of the microgrid
Status of interconnection

Clearly, this is a complicated problem. Often one or more
of the objectives described are in direct conflict with other
objectives. Additionally, it should be noted that both the
constraint and objective functions for the microgrid power
management problem have been shown to have non-linear,
non-homogenous, and time-varying characteristics. While it
may be possible to linearize many of these functions, it is not
desirable to do so. Based on the complexity of the problem,
there is a strong need for rapidly converging computational
techniques capable of determining near optimal solutions
without the dependence on computationally expensive
methods [12].

III. TWO INTELLIGENT METHODS FOR OPTIMIZATION

A. Predominant Research

To date, the majority of power system research applications
utilizing intelligent computational methods have primarily
investigated off-line problem solving [13-21]. This involves
the use of computational resources to solve a problem, not in
real-time, and have those solutions used later. These previous
works have demonstrated the effectiveness of computational
intelligence methods for power system application. In this
paper, however, we seek to build upon prior research to
support the concept that these techniques can be used for both
off-line and real-time applications. The ultimate advantage of
applying intelligent methods to the microgrid power
management problem is to capitalize on their most powerful
demonstrated  property: rapid convergence. That
characteristic, coupled with the capability of computationally
intelligent methods to handle multiple objectives
simultaneously makes them of considerable interest for
microgrid power management.

B. Particle Swarm Optimization (PSO)

The PSO computational method was inspired by biological
social swarming behavior such as exhibited by birds flocking
or fish schooling. Since its introduction in 1995, PSO has been
shown as a powerful tool for solving many classes of



problems including nonlinear optimization, control, and
artificial intelligence [12, 22-24]. PSO is amongst the heuristic
class of intelligent methods and it shares many similarities
with evolutionary computation techniques such as genetic
algorithms (GA). However, PSO is easier and faster to
implement PSO than GA in that the former does not have
evolutionary operators such as crossover and mutation.
Similar to other evolutionary algorithms, PSO requires a
fitness evaluation function assesses each solution according to
its value. At each iteration, the solution developed with the
highest fitness value amongst all solutions thus far developed
is retained as the global best. PSO is an iterative method, so
the best retained solution at the end of assigned iterations is
returned as final best solution.

The primary premise of PSO is the use of computational
entities, referred to as agents, which are distributed throughout
the search space. Within the search space, each positional
location represents a solution to the posed problem. Each
agent is initialized with a random position and random
velocity. At each computational increment, the agents travel
through the search space, checking the fitness of each position
they traverse. They retain information about the best location
(Puest) they have visited. Additionally, by communicating
information about their search results to the total swarm of
agents, the collective group can converge upon the globally
best solution within the available possible solutions. At each
increment in computation, each agent within the n-
dimensional search space has their velocity accelerated
towards the swarm’s global best and the local agent’s personal
best position based on the following equation [24]:

vf* = w.vf + ¢;.rand. (Pbest_j - s/-t) + cy.rand. (Gpese — s]-t) 4)

where: vjt is the velocity of agent j at iteration ¢, ¢; and ¢, are

weighting factors which can be fixed or changed during
iterations, rand is a random number between 0 and 1, S]-t is the
current position of agent j at iteration ¢, Ppegy ; is the personal
best value of agent j so far, Gpegsej is the swarm’s best
solution so far, o is the inertial weight of the agent. Upon
each successive iteration, the search position (s;) of each agent
is obtained by the following equation [24]:

sitt =sf +vftt (5)

At the beginning of the search, the inertial weight of each
agent within the swarm is large to cause greater exploration of
the solution space. As the number of iterations increases,
inertial values decrease allowing the agents to better converge
on the “best” solution. The process for steering the agent
particles as they travel through the search space according to
Eq. (4) is illustrated in Fig. 2.

As a computational technique, PSO is well-suited for
handling multi-objective optimization problems. In the
microgrid formulation, solutions that satisfy simultaneous
objectives, and therefore define the Pareto optimal set, must be

found from an expansive set of possibilities. The PSO
algorithm, because of its strong search capabilities and quick
convergence upon best solutions, can be used to rapidly find
the Pareto set. These characteristics make it of keen interest
for addressing the temporal demands imposed by performing
microgrid power management in real-time.
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Fig. 2. How the position of the search agent, represented as a particle, is
modified based on the PSO algorithm.

C. Ant Colony Optimization (ACO)

The ACO algorithm is also a nature-inspired metaheuristic
optimization method, proposed by Dorigo, et al. [11], for
solving NP-hard combinatorial optimization problems such as
the benchmark traveling salesman problem (TSP), scheduling
problems, subset problems, and a host of others. This
intelligent computational technique is of particular interest
because it has been shown to develop Pareto-optimal solutions
with short time complexity [25]. Additionally, the ACO
algorithm has been shown to outperform other general purpose
optimization algorithms including genetic algorithms (GA)
when applied to a number of benchmark combinatorial
optimization problems, although this claim is widely
interpretational [11]. The ACO algorithm has been
investigated for power system-related applications, but
exclusively for off-line computation only [13, 16, 26-30].

Within the ACO algorithm, colonies of artificial ants
cooperate in a similar manner as PSO, to search the space of
possible solutions to find the ones that are optimal. However,
the framework for ACO is very different than PSO, as well as
the use of heuristics to guide searching. The mathematical
formulations for optimization problems are generally
represented within ACO as construction graphs, where each
node in the graph corresponds to a component of the solution.
The goal is to find the solution with the minimum cost or
distance path, which ultimately represents the best solution.
Each ant “walks” on this graph and incrementally builds a
solution. In this way, ACO is different from PSO in that at
each computational increment, the PSO particle calculates the
fitness of an actual problem solution. In ACO, each node
represents an incremental part of the actual problem solution
and it is not until after an ant has completed their “walk™ that
an actual solution is available. Modeled after real ants, the
behavior of the artificial ants is governed by two primary
factors: stigmergic tendency and random exploration.
Stigmergy, or indirect communication facilitated by the
environment, is accomplished in nature through the deposit of
chemical pheromones. The pheromones reinforce good
solutions and guide the search. For the ACO algorithm, a



simulated ant uses artificial pheromones at each step in the
construction graph, along with other problem specific
heuristics, to randomly select the next solution component.

The algorithmic framework for ACO depends on the
construction graph representation, is typically simplified as:
G = (NJAO). For the graph G, the set of nodes
N = {d,dy, . . . ,d,} represents where path decisions must be
made; the set of arcs A ={ly} link the nodes i to j; and
(optionally) C = {c;} is the set of costs associated with arcs A.
The elements of sets N and A are typically constrained.
Depending on the particular problem formulation, the order of
the solution sequence is not important. Fig. 3 shows an
example of a construction graph that the ACO algorithm
would attempt to solve. Nodes d; through d; are shown in Fig.
1, as well as how additional nodes (d,) would be added to the
construction graph. A complete path on the graph passes
through each node once, contains a set of arcs (represented as
dashed lines in Fig. 4), and is called a solution (s). The
minimum cost path is called the best solution (s*) and is
represented by the darkened arcs in Fig. 4 as the shortest
complete path, and thus the best solution.

Fig. 4. Optimal solution (s*) representation.

The path an ant takes is constructed based on a probabilistic
function. At each construction step, an ant must “choose” the
next node to visit in pursuit of a complete solution. The
probability of choosing node j from node i, is a combination of
pheromone weighting and random exploration, expressed by:
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where: 1; is the pheromone on arc ij, a is the pheromone
weighting factor, n; is the heuristic value on arc ij, B is the
heuristic weighting factor, and N; is the feasible neighborhood
of options for the ant, £, to traverse from node i. In addition
to global heuristics that help improve the simulated ant’s
capabilities, pheromones associated with the construction
graph are “deposited” on the arc chosen and globally
“evaporate” over time. Pheromone decay on the construction
graph arcs are accomplished by:

T[j =1 -p)f; (7

where: 1;;° is the current step pheromone value on arc ij, ’Cijf s
the updated pheromone value on arc ij, and p is the decay
factor.  This combined effect allows for the artificial
stigmergic effect which leads to better solution convergence.

As with PSO, there are numerous modifications to the ACO
algorithm that can be made to allow customization for
particular problems. Specific heuristics and factors such as
the number of particles or ants per iteration, as well as the
influence of inertia, pheromones, and decay affect the speed
and accuracy of the solutions derived. In a similar manner to
PSO, ACO can outperform gradient-based methods when
faced with multi-objective optimization problems. The ants of
ACO can find solutions that satisfy many simultaneous
objectives rapidly and minimizing computational resources.
As with PSO, the computational characteristics that make
ACO attractive for deriving Pareto optimal solutions make it
desirable for addressing the diverse objectives and constraints
inherent to power management for the microgrids.

D. Advantages of Intelligent Methods over Traditional
Computational Techniques for Optimization

The multi-objective optimization problem for microgrid
power management is not expected to be solvable in
polynomial-time. Therefore, as the complexity and size of the
search space broadens, along with the consideration of
multiple objectives, computational techniques such as PSO
and ACO are expected to perform significantly better than
traditional gradient-based optimization methods. This is
primarily because of the computational expense suffered by
traditional means of solving optimization problems. For
gradient-based methods, including Newton’s method, the set
of first-order partial derivatives of the objective function,
called the Jacobian matrix, must be obtained. In some cases,
the set of second-order partial derivatives, called the Hessian
matrix, or an approximation of it, must also be obtained.
Finding the inverse of a matrix of appreciable size requires a
significant amount of computational time and resource. On
the other hand, computationally intelligent methods do not
explicitly derive large matrix inverses because they remain
within the search domain only. The result from attacking the
optimization problem with ACO or PSO is a much more rapid
convergence to a near-optimal solution, especially as the
complexity of the microgrid problem grows.

In addition to computational burdens, when seeking a
solution, gradient-based methods rely heavily on an initial



guess of the solution. Correspondingly, they suffer from
pitfalls which may lead them towards local best solutions
rather than global best solutions. Alternatively, the general
performance of the PSO and ACO algorithms is independent
of the quality of particle or ant initialization. Inherent to
intelligent methods are heuristical and stochastic terms that
minimize the possibility of the search becoming fixed upon a
solution that is not globally best.

For any computationally intelligent method, there will
always be practical and theoretical tradeoffs that are
incorporated into the algorithmic formulation. For example,
the choice of how many ants per colony, or how many
particles per stage, directly affects solution development. It is
difficult to know, except through experience and educated-
guessing how to best formulate the intelligent method for a
particular problem. While these are practical considerations
for the development of computationally intelligent methods,
they offer the opportunity to tune the algorithms in more
customizable ways than with traditional methods.

IV. EXAMPLE OF A MICROGRID POWER MANAGEMENT
OPTIMIZATION USING AN INTELLIGENT METHOD

: Wind Energ
v Conversion System

AC Bus
(microgrid)

Wind Speed

PV Array
>
ACO-based

DCc/dC
DY with MPPT DG/AC
Control
Intelligent
Supervisor
« - - B «: ,

Solar Irradiance

FC Stack Customer
Loads
........ Sl =)
R (T
L 1
<
Information
H; Storage > Communication
S Control
Communication

Fig. 5. Simulated microgrid and ACO-based power management supervisor.

Using a simple three-generator hybrid microgrid
framework, shown in Fig. 5, an intelligent power management
system was developed and evaluated. By using information
about generator characteristics, resource availability, and
power demand, the ACO-based power management algorithm
sought optimal dispatch solutions given two objectives:
minimize environmental emissions and minimize the cost of
generation. The primary constraints were dictated by the
generator characteristics, power flow characteristics, and a
0.05 per unit deadband about the microgrid bus voltage, to
which the customer load is connected. The customer load was
modeled as a constant impedance; the changes in power
consumed by the load were dictated in simulation by changing
load current. The electrical configuration for the simple
microgrid is shown in Fig. 6.
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Fig. 6. Simulated three-generator microgrid electrical configuration.

The power management algorithm looked at the conditions
on the microgrid in 30-second snapshots. At each sampling
instant, the power management algorithm perceived power
demand and the local conditions (e.g. wind speed, solar
insolation) that dictated the ability of the renewable generators
to produce power. Based on this information, the algorithm
(within the sampling interval) developed and searched the
construction graph for optimal dispatch solutions for the three
microgrid generators. The mathematical formulation of the
optimization problem is shown in equations (8)-(14), below:

Minimize:

Z f1m(Om Vi) = Ei {Environmental Objective} (8)

m
Z f z_m(llm: V) = Cpy {Cost Objective} 9)

m
Subject to: VIOW,, < V. =Z.I. < theifgband (10)
Given: [ +L,+I13—1.=0 (11)
Vom = Vo = Zipl;m (12)
Zy =12y =123 =Zs (13)
P = £y (V) (14)

where: m is the generator index, f; and f> are the objective
functions, ¢ is the environmental impact factor, V is the nodal
voltage, u is the cost factor, Z is the component impedance, /
is the branch current, and P is the instantaneous power
generated by the generator, as determined by f,. The voltage
Van refers to the sending voltage of generator m; V. refers to
the receiving bus voltage to which the customer loads are
connected. Both ¢ and x factors are functions of the operating
point of the given generator, e.g. the operating cost of the fuel
cell is based on the fuel it consumes at a given output power.
Established by equations (8)-(14) and the known generator



characteristics, the construction graph was formed, shown in
Fig. 7. During the sampling interval, the ACO-based
algorithm searched the construction graph for the optimal
dispatch solution of each generator. The construction graph
contained a node (X, ,; where, sm is the specific generator and
n is the node index) for every possible variable assignment
(Vysm)- In other words, the construction graph represents the
entire scope of available operating conditions for the
microgrid, during a sampling interval; each node represents an
operating point for an individual generator and its associated
objective function values (f;, and f5,). The graph is fully
connected except for nodes of the same generator (e.g., Xq1.1
cannot be connected to Xy ). This prescribed constraint
enforces the stipulation that only one instantiation for each
variable (variable selection) is allowed in a solution set. For
the microgrid power management formulation, this is
analogous to selecting one operating point for an individual
generator (it is invalid to select two or more operating points
for the same generator). Only one generator operating
characteristic was modeled for this example (e.g., voltage), but
there is no limit to generator properties, such as frequency,
that can be added as domains in this formulation. The ants
walk the graph until a value has been selected for each
variable, resulting in dispatch positions for each generator
attached to the microgrid. Stigmergic information relating to
the best solutions developed by colonies of ants was retained
between sampling instances, although decayed over time, on
the construction graph. This improved the ants’ performance
upon subsequent sampling intervals because lower fitness
solutions were discriminated against. Although the search
space is large, the constraints trim the construction graph
preventing the inclusion of every possible variable
assignment. It should be noted that not all nodal connections
are indicated on the construction graph in Fig. 7 for clarity.
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Fig. 7. Construction graph used by ACO-based power management algorithm.

Using the ACO-based power management algorithm for the
three-generator microgrid, Pareto-optimal dispatch solutions
were developed during each sampling interval. A typical
result based on the resource availability at a sampling instance
is shown in Fig. 8. In Fig. 8, the power characteristic curves
for each microgrid generator are shown, as well as the best
operating power points for each generator selected by the
power management algorithm after searching the construction

graph. Results similar to those shown in Fig. 8 were produced
during each sampling interval facilitating near real-time power
management for the simulated microgrid.
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Fig. 8. Typical results from the power management algorithm for generator
dispatch based on available resources.

One of the primary reasons intelligent methods are of
interest for microgrid multi-objective optimization is the
desire to derive solutions quickly, facilitating real-time power
management. Towards this goal, the ACO-based algorithm
functioned well and after a series of experiments, its
performance was characterized, as shown by Figs. 9 and 10.
Simulation results show that in this case, there was not a direct
correlation between increasing the computational resources
(e.g. the number of ant colonies that search the construction
graph) and the achievement of corresponding gains in finding
better solutions. In other words, as shown by Fig. 10, given a
fixed number of computational iterations, significant
improvement in the satisfaction of the objectives was not
achieved by utilizing more than 5-20 colonies of 50 ants.
Simply put, the considerable additional time spent by more
than 5-20 colonies of ants searching for better solutions does
not show great benefit. This is not a new discovery [11, et.al.]
and supports the concept of tuning the algorithm for the
particular application. Moreover, by using 5-20 colonies of 50
ants per colony, strong solutions for the microgrid power
management problem could be derived within the 30-second
sampling interval. The ability to find near-optimal solutions
quickly represents a significant result towards achieving
solutions truly in real-time.
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Fig. 9. Computational time required by increasing the number of colonies
used by the power management algorithm.
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Fig. 10. Average performance (five runs) of the power management algorithm
towards achieving given objectives based on a fixed number of computational
iterations and varying the colonies parameter.

V. CONCLUSION

The efforts to prepare for the energy future will likely
include measures to modernize the electrical grid, enhance the
quality and reliability of the energy supply, diversify how the
nation sources its immense hunger for electricity, and address
the looming crisis of environmental impact of emissions from
energy consumption. Microgrids are a logical choice for
achieving these goals. However, in order for microgrids to
become widely implemented and meet the comprehensive
challenges set forth, they must have a robust and rapid means
of managing the power generated and consumed within the
microgrid framework. Not only the quality of the solutions,
but the speed at which they are obtained, are critical factors
when selecting the computational method for driving
microgrid power management.

In this paper, a multi-objective, multi-constraint
optimization framework has been discussed. The objectives
and constraints for the microgrid power management problem
have been introduced based on this framework, as well as two
example computationally intelligent methods for seeking
Pareto optimal solutions. Algorithmic details for the two
methods and their advantages over traditional gradient-based
techniques have been shown, as well as the performance of an
simulated microgrid implementation. The microgrid power
management problem is complicated greatly by the demand
for robust and rapid solutions; the case for the use of
computationally intelligent methods to address this challenge
has been presented herein.
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