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 Abstract—Microgrids are an emerging technology which 
promises to achieve many simultaneous goals for power system 
stakeholders, from generator to consumer.  The microgrid 
framework offers a means to capitalize on diverse energy sources 
in a decentralized way, while reducing the burden on the utility 
grid by generating power close to the consumer.   As a critical 
component to enabling power system diversity and flexibility, 
microgrids encompass distributed generators and load centers 
with the capability of operating islanded from or interconnected 
to the macrogrid.  To make microgrids viable, new and 
innovative techniques are required for managing microgrid 
operations given its multi-objective, multi-constraint decision 
environment.  In this article, two example computational 
intelligence methods, particle swarm optimization (PSO) and ant 
colony optimization (ACO), for application to the microgrid 
power management problem are introduced.  A mathematical 
framework for multi-objective optimization is presented, as well 
as a discussion of the advantages of intelligent methods over 
traditional computational techniques for optimization.  Finally, a 
three-generator microgrid with an ACO-based power 
management algorithm is demonstrated and results are shown. 

 
Index Terms – Distributed generation, Intelligent control, 

Microgrids. 
 

I. INTRODUCTION 
verwhelmingly, nations of the world derive their 
electricity from centralized generation. Global electricity 

generation is projected to increase 2.4% each year, from 
16,424 billion kWh in 2004 to 30,364 billion kWh in 2030   
[1, 2].  As demand continues to rise, increased pressure will be 
placed on existing central power plants, transmission assets, 
and distribution systems.  This steadily escalating need for 
electrical power, progress in power deregulation, tight 
construction constraints on new high voltage long distance 
power transmission lines, and reliance on central generation 
places the nation’s energy future in a difficult predicament.  
Recognizing the challenges facing centralized electricity 
generation, along with growing global environmental 
concerns, interest has increased for alternative energy (AE) 
generation.  Many AE devices are attractive primarily because 
of low or zero emissions, high efficiency, scalable application, 
and/or adaptability to remote implementation.  It is believed 
that these desirable characteristics can be capitalized upon 
through hybrid combination of AE sources, networked within 
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a microgrid framework to significantly improve their 
reliability and better deliver power close to customer loads.  
Although inherently adaptable to islanded (separated from the 
macrogrid) applications, it is expected that alternative energy 
distributed generation (AEDG) microgrids that capitalize on 
diverse energy sources, are controlled in a decentralized way, 
and reduce the burden on the utility grid will penetrate the 
existing infrastructure network in the near future [3].    

There is no standardized definition for what comprises a 
microgrid.  However, general consensus specifies a microgrid 
as a small-scale power system that has three primary 
characteristics: distributed generators, autonomous load 
centers, and the ability to operate connected to or 
independently from the utility power system.  Interest in the 
microgrid concept, at the distribution level, with multiple 
AEDG sources has been increasing worldwide [4-7].  The 
promise of implementing scalable microgrid generators that 
can be coordinated and controlled in a decentralized way is 
desirable for many consumers.  Ultimately, the primary goal 
for microgrid architectures is to significantly improve energy 
production and delivery for load customers, while facilitating 
a more stable electrical infrastructure with a measurable 
reduction in environmental emissions. 

The following paper seeks to introduce emerging 
computational techniques for intelligent power management of 
microgrids for the purpose of making progress towards their 
integration and implementation into the power system.  
Specifically, two representative emerging intelligent methods, 
particle swarm optimization (PSO) and ant colony 
optimization (ACO) are presented.  The challenges associated 
with multi-objective optimization, along with two alternative, 
computationally intelligent methods for addressing those 
challenges and a simulated implementation are presented in 
five sections.  A discussion of the computational framework 
for optimization is presented in Section II.  The two intelligent 
methods, PSO and ACO, as well as their advantages over 
traditional methods for solving optimizations, are presented in 
Section III.  An example of a microgrid power management 
optimization using an ACO is shown in Section IV.  Finally, 
conclusions are given in Section V. 

II. COMPUTATIONAL CHALLENGES FOR OPTIMIZATION 
The practice of decision-making is a very familiar process 

for humans.  However, attempting to codify the decision-
making process in a meaningful, efficient, and useful way is 
often very challenging.  Subsequently, implementing effective 
autonomous decision-making for automated systems can be 
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difficult.  Additionally, implementation is complicated by the 
need to make judgments rapidly and to seek an ideal 
conclusion amongst a field of many options and factors.  The 
microgrid power management system is an example of an 
automated decision-making framework that must 
comprehensively consider complex factors that affect a 
complex system.  This section intends to highlight the unique 
challenges faced by the microgrid power management system 
and elucidate the structure of the problem it seeks to optimize. 

Typically, when attempting to decide between simple 
options, say whether to purchase a bus ticket or walk to a 
destination, there is often more than a single factor that 
influences the decision.  In this way, the travel choice via bus 
or on foot can be considered the “variable” which has two 
possibilities, or a “domain” of two.  However, many related 
“constraints” may exist, such as: available change to pay the 
cost of the bus ticket, time allowed to reach the destination, 
etc.  Assuming that decisions are made towards a certain goal 
or collection of goals, this interrelated combination of 
variables, their domains, and constraints are compiled 
according to the decision-making framework towards the 
development of a solution.  In this broad context, the process 
of evaluating decision components and seeking the best 
solution available is incorporated within the extensive field of 
optimization analysis.  In optimization, when objectives are 
described as mathematical formulations, a single or multiple 
objective functions may result.  Although many possible 
solutions exist within the space of possibilities, the ultimate 
prize is the single solution that either “maximizes” or 
“minimizes” the objective function across all possible 
solutions.  In other words, when an objective function is 
maximized or minimized, it has achieved the largest possible 
“satisfaction” for the decision-maker.  In a local solution 
space, the solution that is the best of all local possibilities is 
considered the “local” best; the solution that is the very best of 
all possible solutions across the entire solution space is 
considered the “global” best. 

Often, decision-making situations arise that require analysis 
of numerous competing objectives, simultaneously.  The 
pursuit of an ideal solution given this more complex scenario 
is described as a multi-objective optimization, where the goal 
is to seek an optimal solution amidst many objectives.  In such 
problems, the satisfaction of the objective functions becomes a 
combination of vector “maximizations” or “minimizations”.  
However, in most cases, a global best of any particular 
individual objective function may not be a satisfactory 
solution for the remaining objectives [8].  Because of this, we 
need to alter our concept of optimality for such problems.  In a 
similar manner as with economic systems, a Pareto optimum 
can be reached where the solution represents a state of 
satisfaction for one objective that cannot be raised further 
without lowering another objective’s satisfaction.  In other 
words, many “optimal” solutions exist when considering 
multiple objectives.  The mathematical expression for this 
problem takes the form of:  
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where, F is the vector of objective functions containing m 
objective functions (f1 to fm), xr  is the n-length vector of 
variables to be optimized known as the decision variables, G 
represents the p-length vector of inequality constraints, and H 
represents the q-length vector of equality constraints.  The 
relationship between two decision variables, three constraints, 
and two objective functions are shown in Fig. 1.  A particular 
solution of decision variables maps to the graph of the 
objective functions.  The Pareto frontier, or front, represents 
the combinational minimization of the two objective 
functions, and is shown by the dark line in Fig. 1.   

 

 
Fig. 1. Representation of a multi-objective, multi-constraint optimization 
problem and resulting Pareto frontier. 

 
As is described above, there are no direct methods for 

developing the solution set that lies along the Pareto front.  
However, two primary formal mathematical techniques exist 
to derive Pareto solutions.  The first technique involves 
aggregating the various objective functions into a single 
objective function expression [9].  In effect, by combining 
objective functions, the issues of simultaneously handling 
multiple objective functions is side-stepped.  This technique is 
relatively simple and based on traditional gradient-based 
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methods, but requires the decision-maker to assign the relative 
weights of the constituent objective functions within the 
aggregation.  The second broad category for addressing 
multiple objectives involves the class of intelligent methods.  
The intelligent methods category incorporates a diverse range 
of techniques including: evolutionary, heuristic, and non-
classical algorithms.  The primary advantage of these 
intelligent methods is that they can address many objective 
functions simultaneously while requiring less computational 
resources to derive solutions in less time [10].   

For more than a decade, intelligent methods have proven 
themselves for a variety of computational challenges.   Power 
management of microgrid operations clearly fits into the broad 
field of multi-objective optimization problems of interest 
today.  The mathematical class of multi-objective optimization 
problems has not been proven to be solvable in strongly 
polynomial-time, or in other words, present verifiably global 
solutions rapidly.  Because of the slower nature of traditional 
iterative techniques, alternative intelligent methods have 
shown promise.  Ultimately, the interest in computational 
alternatives to traditional iterative techniques is manifested by 
the desire to derive near-optimum results in short periods of 
time [11].  Therefore, their application to microgrids for real-
time power management is a ready area of challenge. 

The formulation of the multi-objective, multi-constraint 
microgrid power management problem begins by identifying 
the desired attributes of the microgrid.  These factors 
encompass many of the objectives currently sought by the 
power system, but go beyond conventional operations in many 
key ways.  Inherently, these objectives are entirely dependent 
upon the relative importance to the consumer, but the 
following objectives are split into major and minor categories 
for the purpose of further discussion: 

 
Major objectives: 
- Maximize the customer’s power availability (e.g. meet 

consumer’s instantaneous load demand) 
- Minimize economic factors (i.e. fuel costs, operation and 

maintenance, start-up/shut-down costs, etc.) 
- Minimize environmental impact from operating microgrid 

generators (e.g. emissions, noise, hazardous waste, etc.) 
- Maximize the dispatch of shedable loads (e.g. loads 

capable of reacting to demand response signals) 
- Maximize revenue derived from service delivery to the 

utility grid (including ancillary services, reserves, etc.) 
- Minimize energy purchased from outside microgrid 
- Maximize the total efficiency of the microgrid (e.g. 

kWhrs generated versus kJ fuel consumed) 
- Maximize capitalized energy sources (e.g. operational 

efficiency of kWhrs available versus kWhrs generated) 
- Minimize the number of power reversals across the grid 

interconnection 
- Minimize transient periods during stabilization in the 

event of a casualty or interruption 
 
Minor objectives: 
- Maximize load factor (e.g. smooth out the peaks and 

valleys of load and subsequently required generation) 
- Minimize the need for storage assets 
- Maximize the microgrid capability to reduce strain on 

distribution and transmission assets 
- Maximize VAR support to the greater power system 
- Maximize the reduction in line losses 
- Allow the stable, seamless, and adaptable integration of 

generation and load assets onto the microgrid (also known 
as “plug-and-play”) 

 
In addition to these objectives, the microgrid primary 

constraints are: 
- Availability of renewable resources (i.e., solar insolation, 

wind energy, etc.) 
- Bus voltage, frequency, and stability requirements 
- Physical electrical characteristics of the microgrid 
- Status of interconnection 

 
Clearly, this is a complicated problem.  Often one or more 

of the objectives described are in direct conflict with other 
objectives.  Additionally, it should be noted that both the 
constraint and objective functions for the microgrid power 
management problem have been shown to have non-linear, 
non-homogenous, and time-varying characteristics.  While it 
may be possible to linearize many of these functions, it is not 
desirable to do so.  Based on the complexity of the problem, 
there is a strong need for rapidly converging computational 
techniques capable of determining near optimal solutions 
without the dependence on computationally expensive 
methods [12].   

III. TWO INTELLIGENT METHODS FOR OPTIMIZATION 

A. Predominant Research 
To date, the majority of power system research applications 

utilizing intelligent computational methods have primarily 
investigated off-line problem solving [13-21].  This involves 
the use of computational resources to solve a problem, not in 
real-time, and have those solutions used later.  These previous 
works have demonstrated the effectiveness of computational 
intelligence methods for power system application.  In this 
paper, however, we seek to build upon prior research to 
support the concept that these techniques can be used for both 
off-line and real-time applications.  The ultimate advantage of 
applying intelligent methods to the microgrid power 
management problem is to capitalize on their most powerful 
demonstrated property: rapid convergence.  That 
characteristic, coupled with the capability of computationally 
intelligent methods to handle multiple objectives 
simultaneously makes them of considerable interest for 
microgrid power management. 

B. Particle Swarm Optimization (PSO) 
The PSO computational method was inspired by biological 

social swarming behavior such as exhibited by birds flocking 
or fish schooling. Since its introduction in 1995, PSO has been 
shown as a powerful tool for solving many classes of 
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problems including nonlinear optimization, control, and 
artificial intelligence [12, 22-24]. PSO is amongst the heuristic 
class of intelligent methods and it shares many similarities 
with evolutionary computation techniques such as genetic 
algorithms (GA). However, PSO is easier and faster to 
implement PSO than GA in that the former does not have 
evolutionary operators such as crossover and mutation. 
Similar to other evolutionary algorithms, PSO requires a 
fitness evaluation function assesses each solution according to 
its value.  At each iteration, the solution developed with the 
highest fitness value amongst all solutions thus far developed 
is retained as the global best.  PSO is an iterative method, so 
the best retained solution at the end of assigned iterations is 
returned as final best solution.  

The primary premise of PSO is the use of computational 
entities, referred to as agents, which are distributed throughout 
the search space.  Within the search space, each positional 
location represents a solution to the posed problem.  Each 
agent is initialized with a random position and random 
velocity.  At each computational increment, the agents travel 
through the search space, checking the fitness of each position 
they traverse.  They retain information about the best location 
(Pbest) they have visited.  Additionally, by communicating 
information about their search results to the total swarm of 
agents, the collective group can converge upon the globally 
best solution within the available possible solutions.  At each 
increment in computation, each agent within the n-
dimensional search space has their velocity accelerated 
towards the swarm’s global best and the local agent’s personal 
best position based on the following equation [24]: 

௝௧ାଵݒ  ൌ ߱. ௝௧ݒ ൅ ܿଵ. .݀݊ܽݎ ൫ ௕ܲ௘௦௧,௝ െ ௝௧൯ݏ ൅ ܿଶ. .݀݊ܽݎ ൫ܩ௕௘௦௧ െ  ௝௧൯     (4)ݏ
 

where: ݒ௝௧ is the velocity of agent j at iteration t, ܿଵ and ܿଶ are 
weighting factors which can be fixed or changed during 
iterations, rand is a random number between 0 and 1, ݏ௝௧ is the 
current position of agent j at iteration t, ௕ܲ௘௦௧,௝  is the personal 
best value of agent j so far,  ܩ௕௘௦௧,௝  is the swarm’s best 
solution so far, ω is the inertial weight of the agent. Upon 
each successive iteration, the search position (ݏ௝) of each agent 
is obtained by the following equation [24]: 

௝௧ାଵݏ  ൌ ௝௧ݏ ൅  ௝௧ାଵ            (5)ݒ
 
At the beginning of the search, the inertial weight of each 

agent within the swarm is large to cause greater exploration of 
the solution space.  As the number of iterations increases, 
inertial values decrease allowing the agents to better converge 
on the “best” solution. The process for steering the agent 
particles as they travel through the search space according to 
Eq. (4) is illustrated in Fig. 2. 

As a computational technique, PSO is well-suited for 
handling multi-objective optimization problems.  In the 
microgrid formulation, solutions that satisfy simultaneous 
objectives, and therefore define the Pareto optimal set, must be 

found from an expansive set of possibilities.  The PSO 
algorithm, because of its strong search capabilities and quick 
convergence upon best solutions, can be used to rapidly find 
the Pareto set.  These characteristics make it of keen interest 
for addressing the temporal demands imposed by performing 
microgrid power management in real-time. 

 

 
Fig. 2. How the position of the search agent, represented as a particle, is 
modified based on the PSO algorithm. 

C. Ant Colony Optimization (ACO) 
The ACO algorithm is also a nature-inspired metaheuristic 

optimization method, proposed by Dorigo, et al. [11], for 
solving NP-hard combinatorial optimization problems such as 
the benchmark traveling salesman problem (TSP), scheduling 
problems, subset problems, and a host of others. This 
intelligent computational technique is of particular interest 
because it has been shown to develop Pareto-optimal solutions 
with short time complexity [25].  Additionally, the ACO 
algorithm has been shown to outperform other general purpose 
optimization algorithms including genetic algorithms (GA) 
when applied to a number of benchmark combinatorial 
optimization problems, although this claim is widely 
interpretational [11].  The ACO algorithm has been 
investigated for power system-related applications, but 
exclusively for off-line computation only [13, 16, 26-30].   

Within the ACO algorithm, colonies of artificial ants 
cooperate in a similar manner as PSO, to search the space of 
possible solutions to find the ones that are optimal.  However, 
the framework for ACO is very different than PSO, as well as 
the use of heuristics to guide searching.  The mathematical 
formulations for optimization problems are generally 
represented within ACO as construction graphs, where each 
node in the graph corresponds to a component of the solution.  
The goal is to find the solution with the minimum cost or 
distance path, which ultimately represents the best solution.  
Each ant “walks” on this graph and incrementally builds a 
solution.  In this way, ACO is different from PSO in that at 
each computational increment, the PSO particle calculates the 
fitness of an actual problem solution.  In ACO, each node 
represents an incremental part of the actual problem solution 
and it is not until after an ant has completed their “walk” that 
an actual solution is available.   Modeled after real ants, the 
behavior of the artificial ants is governed by two primary 
factors: stigmergic tendency and random exploration.  
Stigmergy, or indirect communication facilitated by the 
environment, is accomplished in nature through the deposit of 
chemical pheromones.  The pheromones reinforce good 
solutions and guide the search.  For the ACO algorithm, a 
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simulated ant uses artificial pheromones at each step in the 
construction graph, along with other problem specific 
heuristics, to randomly select the next solution component.  

The algorithmic framework for ACO depends on the 
construction graph representation, is typically simplified as:   
G = (N,A,C).  For the graph G, the set of nodes                       
N = {d1,d2, . . . ,dn} represents where path decisions must be 
made; the set of arcs A ={lij} link the nodes i to j; and 
(optionally) C = {cij} is the set of costs associated with arcs A.  
The elements of sets N and A are typically constrained. 
Depending on the particular problem formulation, the order of 
the solution sequence is not important.  Fig. 3 shows an 
example of a construction graph that the ACO algorithm 
would attempt to solve.  Nodes d1 through d3 are shown in Fig. 
1, as well as how additional nodes (dn) would be added to the 
construction graph.  A complete path on the graph passes 
through each node once, contains a set of arcs (represented as 
dashed lines in Fig. 4), and is called a solution (s).   The 
minimum cost path is called the best solution (s*) and is 
represented by the darkened arcs in Fig. 4 as the shortest 
complete path, and thus the best solution.  

 
d1

Ant 
Start
Node

d2

dn

d3

l12

lS1

lSn

ln2

l1n

l32

lS2

lS2
lS3 l3n

l13

 
Fig. 3.  Typical ACO construction graph framework. 
 

 
Fig. 4.  Optimal solution (s*) representation. 

 
The path an ant takes is constructed based on a probabilistic 

function.  At each construction step, an ant must “choose” the 
next node to visit in pursuit of a complete solution.  The 
probability of choosing node j from node i, is a combination of 
pheromone weighting and random exploration, expressed by: 
௜௝௞݌  ൌ ሾఛ೔ೕሿഀሾ௡೔ೕሿഁ∑ ሾఛ೔೗ሿഀሾ௡೔೗ሿഁ೗ചಿ೔ೖ                          (6) 

where: τij is the pheromone on arc ij, α is the pheromone 
weighting factor, nij is the heuristic value on arc ij, β is the 
heuristic weighting factor, and Ni is the feasible neighborhood 
of options for the ant, k, to traverse from node i.   In addition 
to global heuristics that help improve the simulated ant’s 
capabilities, pheromones associated with the construction 
graph are “deposited” on the arc chosen and globally 
“evaporate” over time.  Pheromone decay on the construction 
graph arcs are accomplished by: 
 ߬௜௝௙ ൌ ሺ1 െ ሻ߬௜௝௢ߩ                      (7) 
 
where: τij

o is the current step pheromone value on arc ij, τij
f is 

the updated pheromone value on arc ij, and ρ is the decay 
factor.  This combined effect allows for the artificial 
stigmergic effect which leads to better solution convergence. 

As with PSO, there are numerous modifications to the ACO 
algorithm that can be made to allow customization for 
particular problems.  Specific heuristics and factors such as 
the number of particles or ants per iteration, as well as the 
influence of inertia, pheromones, and decay affect the speed 
and accuracy of the solutions derived.  In a similar manner to 
PSO, ACO can outperform gradient-based methods when 
faced with multi-objective optimization problems.  The ants of 
ACO can find solutions that satisfy many simultaneous 
objectives rapidly and minimizing computational resources.  
As with PSO, the computational characteristics that make 
ACO attractive for deriving Pareto optimal solutions make it 
desirable for addressing the diverse objectives and constraints 
inherent to power management for the microgrids. 

D. Advantages of Intelligent Methods over Traditional 
Computational Techniques for Optimization 

The multi-objective optimization problem for microgrid 
power management is not expected to be solvable in 
polynomial-time.  Therefore, as the complexity and size of the 
search space broadens, along with the consideration of 
multiple objectives, computational techniques such as PSO 
and ACO are expected to perform significantly better than 
traditional gradient-based optimization methods.  This is 
primarily because of the computational expense suffered by 
traditional means of solving optimization problems.  For 
gradient-based methods, including Newton’s method, the set 
of first-order partial derivatives of the objective function, 
called the Jacobian matrix, must be obtained.  In some cases, 
the set of second-order partial derivatives, called the Hessian 
matrix, or an approximation of it, must also be obtained.  
Finding the inverse of a matrix of appreciable size requires a 
significant amount of computational time and resource.  On 
the other hand, computationally intelligent methods do not 
explicitly derive large matrix inverses because they remain 
within the search domain only.  The result from attacking the 
optimization problem with ACO or PSO is a much more rapid 
convergence to a near-optimal solution, especially as the 
complexity of the microgrid problem grows. 

In addition to computational burdens, when seeking a 
solution, gradient-based methods rely heavily on an initial 
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guess of the solution.  Correspondingly, they suffer from 
pitfalls which may lead them towards local best solutions 
rather than global best solutions.  Alternatively, the general 
performance of the PSO and ACO algorithms is independent 
of the quality of particle or ant initialization.  Inherent to 
intelligent methods are heuristical and stochastic terms that 
minimize the possibility of the search becoming fixed upon a 
solution that is not globally best.   

For any computationally intelligent method, there will 
always be practical and theoretical tradeoffs that are 
incorporated into the algorithmic formulation.  For example, 
the choice of how many ants per colony, or how many 
particles per stage, directly affects solution development.   It is 
difficult to know, except through experience and educated-
guessing how to best formulate the intelligent method for a 
particular problem.  While these are practical considerations 
for the development of computationally intelligent methods, 
they offer the opportunity to tune the algorithms in more 
customizable ways than with traditional methods. 

IV. EXAMPLE OF A MICROGRID POWER MANAGEMENT 
OPTIMIZATION USING AN INTELLIGENT METHOD 

 

 
Fig. 5.  Simulated microgrid and ACO-based power management supervisor. 

 
Using a simple three-generator hybrid microgrid 

framework, shown in Fig. 5, an intelligent power management 
system was developed and evaluated.  By using information 
about generator characteristics, resource availability, and 
power demand, the ACO-based power management algorithm 
sought optimal dispatch solutions given two objectives: 
minimize environmental emissions and minimize the cost of 
generation. The primary constraints were dictated by the 
generator characteristics, power flow characteristics, and a 
0.05 per unit deadband about the microgrid bus voltage, to 
which the customer load is connected.  The customer load was 
modeled as a constant impedance; the changes in power 
consumed by the load were dictated in simulation by changing 
load current.  The electrical configuration for the simple 
microgrid is shown in Fig. 6.   

 
Fig. 6.  Simulated three-generator microgrid electrical configuration. 

 
The power management algorithm looked at the conditions 

on the microgrid in 30-second snapshots.  At each sampling 
instant, the power management algorithm perceived power 
demand and the local conditions (e.g. wind speed, solar 
insolation) that dictated the ability of the renewable generators 
to produce power.  Based on this information, the algorithm 
(within the sampling interval) developed and searched the 
construction graph for optimal dispatch solutions for the three 
microgrid generators.  The mathematical formulation of the 
optimization problem is shown in equations (8)-(14), below: 

 
Minimize: ෍ ݂1,݉ሺ݉ߪ, ܸ݉ሻ௠ ൌ ௠ {Environmental Objective}   (8) ෍ܧ ݂2,݉ሺ݉ߤ, ܸ݉ሻ௠ ൌ  ௠ {Cost Objective}                  (9)ܥ

 
Subject to:  ௗܸ௘௔ௗ௕௔௡ௗ௟௢௪ ൑ ௥ܸ ൌ ܼ௥ܫ௥ ൑ ௗܸ௘௔ௗ௕௔௡ௗ௛௜௚௛     (10) 

 
Given:   ܫଵ ൅ ଶܫ ൅ ଷܫ െ ௥ܫ ൌ 0         (11) 
           ௦ܸ௠ െ ௥ܸ ൌ ܼ௠ܫ௠            (12) 
           ܼଵ ൌ ܼଶ ൌ ܼଷ ൌ ܼ௦            (13) 
           ௠ܲ ൌ ሺ݉,݌݂ ௠ܸሻ             (14) 

 
where: m is the generator index, f1 and f2 are the objective 
functions, σ is the environmental impact factor, V is the nodal 
voltage, μ is the cost factor, Z is the component impedance, I 
is the branch current, and P is the instantaneous power 
generated by the generator, as determined by fp.  The voltage 
Vsm refers to the sending voltage of generator m; Vr refers to 
the receiving bus voltage to which the customer loads are 
connected.  Both σ and μ factors are functions of the operating 
point of the given generator, e.g. the operating cost of the fuel 
cell is based on the fuel it consumes at a given output power. 

Established by equations (8)-(14) and the known generator 
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characteristics, the construction graph was formed, shown in 
Fig. 7.  During the sampling interval, the ACO-based 
algorithm searched the construction graph for the optimal 
dispatch solution of each generator.  The construction graph 
contained a node (xsm,n; where, sm is the specific generator and 
n is the node index) for every possible variable assignment 
(Vn,sm).  In other words, the construction graph represents the 
entire scope of available operating conditions for the 
microgrid, during a sampling interval; each node represents an 
operating point for an individual generator and its associated 
objective function values (f1,sm and f2,sm).  The graph is fully 
connected except for nodes of the same generator (e.g., xs1,1 
cannot be connected to xs1,2).  This prescribed constraint 
enforces the stipulation that only one instantiation for each 
variable (variable selection) is allowed in a solution set.  For 
the microgrid power management formulation, this is 
analogous to selecting one operating point for an individual 
generator (it is invalid to select two or more operating points 
for the same generator).  Only one generator operating 
characteristic was modeled for this example (e.g., voltage), but 
there is no limit to generator properties, such as frequency, 
that can be added as domains in this formulation.  The ants 
walk the graph until a value has been selected for each 
variable, resulting in dispatch positions for each generator 
attached to the microgrid.  Stigmergic information relating to 
the best solutions developed by colonies of ants was retained 
between sampling instances, although decayed over time, on 
the construction graph.  This improved the ants’ performance 
upon subsequent sampling intervals because lower fitness 
solutions were discriminated against.  Although the search 
space is large, the constraints trim the construction graph 
preventing the inclusion of every possible variable 
assignment.  It should be noted that not all nodal connections 
are indicated on the construction graph in Fig. 7 for clarity. 

 

 
Fig. 7. Construction graph used by ACO-based power management algorithm. 

 
Using the ACO-based power management algorithm for the 

three-generator microgrid, Pareto-optimal dispatch solutions 
were developed during each sampling interval.  A typical 
result based on the resource availability at a sampling instance 
is shown in Fig. 8.  In Fig. 8, the power characteristic curves 
for each microgrid generator are shown, as well as the best 
operating power points for each generator selected by the 
power management algorithm after searching the construction 

graph.  Results similar to those shown in Fig. 8 were produced 
during each sampling interval facilitating near real-time power 
management for the simulated microgrid.   

 

 
Fig. 8. Typical results from the power management algorithm for generator 
dispatch based on available resources. 

 
One of the primary reasons intelligent methods are of 

interest for microgrid multi-objective optimization is the 
desire to derive solutions quickly, facilitating real-time power 
management.  Towards this goal, the ACO-based algorithm 
functioned well and after a series of experiments, its 
performance was characterized, as shown by Figs. 9 and 10.  
Simulation results show that in this case, there was not a direct 
correlation between increasing the computational resources 
(e.g. the number of ant colonies that search the construction 
graph) and the achievement of corresponding gains in finding 
better solutions.  In other words, as shown by Fig. 10, given a 
fixed number of computational iterations, significant 
improvement in the satisfaction of the objectives was not 
achieved by utilizing more than 5-20 colonies of 50 ants.  
Simply put, the considerable additional time spent by more 
than 5-20 colonies of ants searching for better solutions does 
not show great benefit.  This is not a new discovery [11, et.al.] 
and supports the concept of tuning the algorithm for the 
particular application.  Moreover, by using 5-20 colonies of 50 
ants per colony, strong solutions for the microgrid power 
management problem could be derived within the 30-second 
sampling interval.  The ability to find near-optimal solutions 
quickly represents a significant result towards achieving 
solutions truly in real-time. 

 

 
Fig. 9. Computational time required by increasing the number of colonies 
used by the power management algorithm.  
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Fig. 10. Average performance (five runs) of the power management algorithm 
towards achieving given objectives based on a fixed number of computational 
iterations and varying the colonies parameter. 

V. CONCLUSION 
The efforts to prepare for the energy future will likely 

include measures to modernize the electrical grid, enhance the 
quality and reliability of the energy supply, diversify how the 
nation sources its immense hunger for electricity, and address 
the looming crisis of environmental impact of emissions from 
energy consumption.  Microgrids are a logical choice for 
achieving these goals.  However, in order for microgrids to 
become widely implemented and meet the comprehensive 
challenges set forth, they must have a robust and rapid means 
of managing the power generated and consumed within the 
microgrid framework.  Not only the quality of the solutions, 
but the speed at which they are obtained, are critical factors 
when selecting the computational method for driving 
microgrid power management. 

In this paper, a multi-objective, multi-constraint 
optimization framework has been discussed.  The objectives 
and constraints for the microgrid power management problem 
have been introduced based on this framework, as well as two 
example computationally intelligent methods for seeking 
Pareto optimal solutions.  Algorithmic details for the two 
methods and their advantages over traditional gradient-based 
techniques have been shown, as well as the performance of an 
simulated microgrid implementation.  The microgrid power 
management problem is complicated greatly by the demand 
for robust and rapid solutions; the case for the use of 
computationally intelligent methods to address this challenge 
has been presented herein. 

REFERENCES 
[1]  Energy Information Administration - Office of Integrated Analysis and 

Forecasting, “Annual Energy Outlook 2006”, DOE/EIA-0383, 2006, 
available at: http://www.eia.doe.gov/oiaf/ieo/index.html. 

[2]  United States Energy Information - Office of Integrated Analysis and 
Forecasting, “International Energy Outlook 2007”,  DOE/EIA-0484, 
2007, available at: http://www.eia.doe.gov/oiaf/ieo/index.html. 

[3]  N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, “Microgrids,” 
IEEE Power & Energy Magazine, Vol. 5, Issue 4, July/August 2007. 

[4] R. Lasseter, A. Abbas, C. Marnay, J. Stevens, J. Dagle, R. Guttromson, 
A. Sakis Meliopoulos, R. Yinger, and J. Eto, “Integration of distributed 
energy resources: The CERTS microgrid concept,” California Energy 
Commission, P500-03-089F, Oct. 2003. 

[5] Y. Fujioka, H. Maejima, S. Nakamura, Y. Kojima, M. Okudera, and S. 
Uesaka, “Regional power grid with renewable energy resources: A 
demonstrative project in Hachinohe,” CIGRE 2006, Paris, August 2006. 

[6] B. Bucholz, et al, PE Magazine, July/August 2007. 
[7] European Commission (Apr. 2006), “European SmartGrids technology 

platform: Vision and strategy for Europe’s electricity networks of the 
future”, (http://ec.europa.eu/research/energy/pdf/smartgrids_en.pdf). 

[8] Saul Gass, Linear Programming: Methods and Applications - 5th 
Edition, Dover Publications, Inc. 2003, pgs. 224-250. 

[9] A. Osyczka, “Multicriteria optimization for engineering design”, Design 
Optimization edited by J. Gero, Academic Press Inc., 1985. 

[10] C.M. Fonseca & P.J. Fleming, “Multiobjective optimization and 
multiple constraint handling with evolutionary algorithms - Part I: a 
unified formulation”, IEEE Transactions on Systems, Man, and 
Cybernetics Part A:Systems and Humans, Vol. 28, No. 1, Jan 1998. 

[11] M. Dorigo and T. Stutzle, Ant Colony Optimization. MIT Press, 2004. 
[12] K.Y. Lee and M.A. El-Sharkawi, Modern Heuristic Optimization 

Techniques – Theory and Application to Power Systems, IEEE Press, 
Piscataway, NJ, 2008.  

[13] P. Korosec and J. Silc, “The distributed multilevel ant-stigmergy 
algorithm used at the electric-motor design”  Engineering Applications 
of Artificial Intelligence, Vol. 21, No. 6, September 2008. 

[14] M. Lopez-Ibanez, T.D. Prasad, B. Paechter, “Ant colony optimization 
for optimal control of pumps in water distribution networks” Journal of 
Water Resources Planning and Management, Vol. 134, No. 4, 
July/August 2008. 

[15] S.K. Chaharsooghi and A.H. Meimand Kermani, “An effective ant 
colony optimization algorithm (ACO) for multi-objective resource 
allocation problem (MORAP)”, Applied Mathematics and Computation, 
Vol. 200, No. 1, Jun 15, 2008. 

[16] A. Ahuja, S. Das, and A. Pahwa. “An AIS-ACO Hybrid Approach for 
Multi-Objective Distribution System Reconfiguration”, IEEE 
Transactions on Power Systems, Vol. 22, No. 3, August 2007. 

[17] H. Bai, P. Zhang, V. Ajjarapu, “A novel parameter identification 
approach via hybrid learning for aggregate load modeling”, IEEE 
Transactions on Power Systems, Vol. 24, No. 3, 2009. 

[18] P. Maghouli, S. H. Hosseini, M.O. Buygi, M. Shahidehpour, “A multi-
objective framework for transmission expansion planning in deregulated 
environments”, IEEE Transactions on Power Systems, Vol.24, No.2, 
2009. 

[19] Y. Yare, G.K. Venayagamoorthy, U.O. Aliyu, “Optimal generator 
maintenance scheduling using a modified discrete PSO”, IET 
Generation, Transmission & Distribution, Vol. 2, No. 6, Nov. 2008. 

[20] A.H. Shahirinia, A. Hajizadeh, A.R. Moghaddamjoo, “Genetic-based 
size optimization of renewable energy sources”, International Journal of 
Power and Energy Systems, Vol. 28, No. 3, 2008. 

[21] A. Pregelj, M. Begovic, A. Rohatgi, “Recloser allocation for improved 
reliability of DG-enhanced distribution networks”, IEEE Transactions 
on Power Systems, Vol. 21, No. 3, August 2006. 

[22] J. Kennedy & R.C. Eberhart, “Particle Swarm Optimization,” 
Proceedings, 1995 IEEE Conference on Neural Networks, Vol. 4, 1995. 

[23] X. Hu, R. Eberhart, and Y. Shi. “Recent advances in particle swarm”, 
Proceedings from IEEE Congress on Evolutionary Computation , 2004. 

[24] Maurice Clerc, Particle Swarm Optimization, Wiley, 2008. 
[25] B. Fox, W. Xiang, H.P. Lee, “Industrial applications of the ant colony 

optimization algorithm”, International Journal of Advanced 
Manufacturing Technology, Vol. 31, No. 7-8, January 2007. 

[26] C.M. Colson, M.H. Nehrir, & C. Wang, “Ant colony optimization for 
microgrid multi-objective power management”, Proceedings of the 2009 
IEEE/PES Power Systems Conference and Exposition, 2009. 

[27] E. Carpaneto, “Distribution system minimum loss reconfiguration in the 
Hyper-Cube Ant Colony Optimization framework”, Electric Power 
Systems Research, Vol. 78, No. 12, Dec. 2008. 

[28] W. Tippachon & D. Rerkpreedapong, “Multiobjective optimal 
placement of switches and protective devices in electric power 
distribution systems using ant colony optimization”, Electric Power 
Systems Research, Vol. 79, No. 7, July 2009. 

[29] L. Wang & C. Singh, “Reliability-constrained optimum placement of 
reclosers and distributed generators in distribution networks using an ant 
colony system algorithm”, IEEE Transactions on Systems, Man and 
Cybernetics Part C (Applications & Review), Vol. 38, No. 6, Nov. 2008. 

[30] Chung-Fu Chang, “Reconfiguration and capacitor placement for loss 
reduction of distribution systems by ant colony search algorithm”, IEEE 
Transactions on Power Systems, Vol. 23, No. 4, Nov. 2008. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /OK
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


