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BSS Sizing and Economic Benefit Analysis in Grid-Scale Application
Shankar Mohan∗, Ali Hooshmand†, S. A. Pourmousavi†, and Ratnesh Sharma†

Abstract— Grid-scale energy storage systems are attracting
more attention because of increased public-awareness and
declining prices. However, there is still one question which needs
to be answered: when utilization of Battery Storage System
(BSS) is economical? To address this question, problems of
simultaneously sizing BSSs and optimal power sharing –with an
objective of decreasing daily operational cost– is investigated to
assess the economic viability of BSSs. The assessment is carried
out by specializing the problem formulation to mid-sized C&I
customers associated with PG&E and by simulating scenarios
that differ in the size of load, PV installation, cost of BSS
and participation in Demand Response (DR). Simulation results
indicate that, using price projections from DOE and Navigant,
BSSs can be used to shift loads economically (savings of 10%)
around the year 2019. Furthermore, the effective daily savings,
when participating in DR programs, is noted to be independent
of the load, and that participating in DR does not require a
significantly up-sized BSS.

I. INTRODUCTION

Storage devices (specially different battery technologies)
can play an important role in the smart grid era, where
dynamic pricing mechanisms, demand response programs
(DRPs), and demand charge (DC) will exist for almost
all customers in different sectors. These devices can be
utilized in peak shaving, for participating in DRPs, and to
decrease DC simultaneously. The outcome will be economic
benefits for both customers and utility companies. Although
mass production and widespread adoption have made energy
storage progressively more affordable, they are still relatively
expensive. According to reports from Navigant and the U.S.
Department of Energy (DOE), the price of electrochemical
energy storage systems is expected to halve in cost over
the next half decade [1], [2]. The question of when it is
economically viable (by achieving 10% savings) to adopt
BSSs, has yet to be addressed.

The problems of energy management and sizing Battery
Storage Systems (BSSs) have been widely studied in liter-
ature. In [3] the authors investigate the same problem with
the objective of reducing power demand cost in peak-shaving
applications. While [4] provides a method to compute the
smallest size of BSSs in a microgrid (MG) equipped with PV
modules in order to minimize daily operational cost, in [5] a
MILP is formulated to include WT installations. While works
such as [6], [7] address energy management in MGs, [8]
studies the energy management problem whilst participating
in DRPs as offered by utilities such as PG&E. In [8], the
reward earned by participating in DRPs was maximized in
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the absence of any energy storage systems. To the best of
our knowledge, there is not a research paper to evaluate
affordability of battery for such applications. This study
aims to formulate battery sizing and optimal daily operation
considering its lifetime in a single optimization framework.
Then, based on the economic benefit for participating in
DRPs and DC reduction for the customer will be evaluated
for various amount of load, PV generation and battery prices.

Additionally, to ground the work in a realistic market and a
group of potential adopters of BSSs, this study is presented as
a case-study targeting mid-sized C&I customers (whose peak
daily power consumption is in excess of 200 kW) associated
with Pacific Gas and Electricity (PG&E) utility. Conclusions
are drawn by simulating scenarios that differ from each other
in either the size of load and PV installations, the cost of BSS
and its projected life. In addition, the impact of participating
in DRPs on the size of chosen BSSs is investigated.

II. PROBLEM FORMULATION

The problem is formulated as a battery sizing optimization
where cost of energy from the grid, DC, battery capital cost,
and the benefit of participating in the DRPs are consid-
ered. Additionally, desired battery lifetime is integrated as a
hard constraint on daily energy throughput. In the proposed
framework, daily battery operation is also optimized to take
advantage of time-of-use (TOU) pricing structure. The most
complex scenario under consideration is the one that allows
for participation in DRPs. Rewards from DRPs are computed
based on the nominal power consumed on days of not
participating in DRPs (termed as baseline); since the BSS
affects the baseline, the BSS sizing problem is formulated as
one that has two objectives which are solved simultaneously–
minimize the cost of electricity–of the baseline (non-event-
days) and the cost of electricity; when participating in DRPs
(event-days).

A. Daily cost of electricity
The first component of the problem is daily cost of

electricity. Typically, it can be broken in to energy charge
and demand charge. Energy charges are computed based on
the TOU rates and the power purchased from the grid, which
can be represented as:

Jζenergy = 〈TOU,Pg〉ζ ,
where Pζg ∈ R24 is the vector of grid powers corresponding
to the hours of the day (to keep the problem tractable,
every day is discretized into hours); ζ is a place holder that
takes values from the set {DR, no-DR} and helps distinguish
between variables that are associated with an event-day (DR)
and a non-event-day (no-DR).

Table I shows a typical TOU and DC rates in summer for
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TABLE I: Summer TOU and DC rates in Schedule E-19 [9]

Designation TOU rate ($/kWh) DC rate ($/kW)
Peak 0.16233 19.04

Off-peak 0.07397 –
Part-Peak 0.10893 4.42

All – 15.07

PG&E utility. The TOU rates are classified into peak, off-
peak, and part-peak rates, and the cost of energy consumption
is simply the energy in each peiod multiplied by the given
rates. Demand Charge, on the other hand, is more compli-
cated. DC rates are divided into peak, part-peak, and all
month, and is computed as a function of the maximum load
seen by the grid at different times of the month. However,
since this work focuses only on daily optimization, it is
assumed that all days in the month are identical and hence
the daily demand charge is proportionally scaled. The DC
function can be represented as:
DC(Pζg) =DCmax · ‖Pζg‖∞ +DCp−max · ‖Pζg,p−hours‖∞

+DCpp−max · ‖Pζg,pp−hours‖∞
(1)

where Pζg,P
ζ
g,p−hours, P

ζ
g,pp−hours are vectors of the grid

powers during the entire day, peak-hours and part-peak-
hours, respectively; DCmax, DCp−max, DCpp−max are the
rates associated with the entire day, peak, and part-peak,
respectively, according to Table I.

Equation (1) can be linearized by introducing auxiliary
variables Pg,max, Pg,p−max and Pg,pp−max, representing the
maximum grid power during the different periods of DC
rates. Accordingly, the DC cost function and constraints can
be rewritten as follows:

JζDC = DCmax · P ζg,max +DCp−max · P ζg,p−max
+DCpp−max · P ζg,pp−max

0 ≤P ζg,max, P
ζ
g,p−max, P

ζ
g,pp−max

P ζg,i ≤P
ζ
g,max ∀i ∈ N24

P ζg,i ≤P
ζ
g,p−max ∀i ∈ Npeak−hours

P ζg,i ≤P
ζ
g,pp−max ∀i ∈ Np.p.−hours

(2)

B. Accounting for BSS cost
The daily cost associated with the BSS (Capex.) is as-

sumed to be the same over the expected life of the BSS.
Thus, the daily cost is computed as below

Capex =
1, 000, 000

365× nyears
× capex multiplier

where it is assumed that a 1MWh battery costs $1,000,000
and ‘capex multiplier’ is a scaling factor that is used to adjust
the price of the BSS system to reflect the price points of
interest. The daily cost of battery is:

JCapex = ns · Capex
where ns is the number of battery units (not necessarily an
integer).

C. Accounting for battery degradation
Batteries experience degradation in energy capacity and

power, even at the time of being idle. Since battery capacity

degradation will directly affect battery performance in the
system, it is required to account for it in sizing and opera-
tion studies. Two primary causes of battery degradation are
cycling and calendar aging processes. Typically, both aging
processes occurs at the same time in a nonlinear fashion.
In order to account for battery degradation in this paper, a
nonlinear model is adapted from [10] which includes both
processes, as follows:

qT = 1− k1|E|k2 − j1T j2

where E is the total cycles of energy of the battery, T is the
age of battery in days and qT is the fraction of remaining
capacity. In order to accommodate the nonlinear aging model
within our linear optimization framework, and to guarantee a
certain lifetime, battery degradation is added as a constraint
on the daily number of cycles in the formulation. This
constraint is represented in terms of the positive (P+ζ

bnet,i)
and negative decomposition (P−ζbnet,i) of the net BSS power
(P ζbnet,i):

−P+ζ
bnet,i, P

−ζ
bnet,i ≤ 0 ∀i ∈ N24

P+ζ
bnet,i + P−ζbnet,i =P ζbnet,i ∀i ∈ N24

−P+
bnet,i ≤ −P

ζ
bnet,i |P

−ζ
bnet,i ≤ P

ζ
bnet,i ∀i ∈ N24

24∑
i=1

P+ζ
bnet,i − P

−ζ
bnet,i ≤E

∗

(3)

where

E∗ = exp

(
1

k2
log

(
1

k1
(1− qT − j1nj2)

)
− log(n)

)
and is the limit on daily maximum number of cycles derived
as the inverse of the degradation model and using the
desired life, n (in days), of the BSS. Associated with this
set of constraint, the following regularizing cost (to avoid
unnecessary battery usage) is required.

JζET = γ1

24∑
i=1

P ζbnet,i

where γ1 is a small number (0.001 in this study).

D. Allowing Demand Response Participation
PG&E offers five different Demand Response (DR) pro-

grams to businesses of which two, namely Demand Bidding
Program (DBP) and Scheduled Load Reduction Program
(SLRP), are being considered in this study. The DBP is
a penalty free DR program to reduce the load by a user-
determined amount. Participants in DBP are given a day
ahead notice where they are asked to indicate the time of
the day during which the participant will reduce the load
and the amount of reduction. In return, participants receive
a reward of $0.5/kWh of actual energy reduction without
any financial penalty for failure. In SLRP, on the other
hand, the participants commit to reduce their load during
at most three events every week between month of June and
September. Three non-overlapping SLRP events occur every
day between 8:00 and 20:00 hours with each lasting four
hours. The participant is restricted to choose no more than
one event per day. More details about these programs can be
found in [11]. To address these requirements, the following
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constraints are enforced:
udrs,i − udre,i =udr,i − udr,i−1 ∀i ∈ N24\{1}
udrs,i + udre,i ≤ 1 ∀i ∈ N24

udrs,i ≤udr,i+k ∀i ∈ N24

udre,i ≤ 1− udr,i+k ∀i ∈ N24

udr,i ≤ug,i ∀i ∈ N24

(4)

where k ∈ {j ∈ N24 | i + j ≤ 24}, udrs,i and udre,i
are binary variables that serve as indicators of the start and
end hours of participating in the DR programs, respectively;
udr is a binary variable that will be 1 during the period of
participation and is 0 at other times; and ug,i is a binary
variable that takes 1 when power is drawn from the grid.

In both DRPs, baseline plays an important role since the
amount of reduction in load as seen by the grid, and hence
the resulting rewards is computed by comparing the grid load
during event and baseline. To isolate the baseline, another
vector of decision variables labeled Pg−pick is introduced
which is zero at hours when not participating in DR on
event-days and is equal to the baseline at other hours. The
following constraints are enforced on this vector:

−Pg−pick,i ≤ 0 ∀i ∈ N24

Pg−pick,i ≤Kudr,i ∀i ∈ N24

Pg−pick,i ≤P no-DR
g,i ∀i ∈ N24

P no-DR
g,i − Pg−pick,i ≤M(uDR

g,i − udr,i) ∀i ∈ N24

(5)

0 ≤ PDR
g,i − Pdr,i ≤M(ug,i − udr,i) ∀i ∈ N24

Pdr,i ≤Kudr,i ∀i ∈ N24

Q · udr,i ≤Pg−pick,i − Pdr,i ∀i ∈ N24

(6)

where Q is the program specific constant that determines
the minimum reduction in grid power when participating in
DRPs (10 in DBP and 100 in SLRP); K and M are arbitrary
large constants (M,K > Q); Pdr is the grid power during the
hours when participating in DRPs on event-days. Therefore,
reward for participating in DRPs is computed as follows with
DRreward being the dollar value of the reward per kW of
power reduced:

JDR = DRreward

24∑
i=1

(Pg−pick,i − Pdr,i) (7)

Bear in mind that the baseline load profile to compute
reward is Pg−pick and not Pl, which is the load profile
without BSS.

Additionally, since the DR cost function, JDR, is not
strictly a sum of positive quantities, it is necessary to ensure
that the optimal solution does not culminate in negative sav-
ings. Negative savings are likely to occur on non-event-days
when the potential for increasing savings during event-days
comes at the expense of operational cost on non-event-days.
It occurs because we solve event-days and non-event-days
simultaneously. To overcome this situation, the following
constraint is enforced which ensures that the operational cost
during non-event-day is not any more than when not using
a BSS:
Jno-DR
energy + Jno-DR

DC + Jno-DR
ET ≤ 〈TOU,Pbl〉+DC(Pbl) (8)

where Pbl,i = max(Pl,i − Ppv,i, 0). Ppv,i is hourly PV

generation, if any exists.

E. Accounting for PV installation
As a result of policies and efforts from policy makers and

energy industry, more commercial facilities are considering
PV installation for further economic benefits. So a possible
scenario in which PV installation exists in the facility should
be considered in the formulation. In this study, it is assumed
that PV generation can be curtailed, if needed. Furthermore,
PV generation is decomposed into three components: 1) Load
support (Psl); 2) BSS charging (Psb); and 3) dispatched
power Psd; each of these power components are constrained
as follows:

0 ≤ P ζsl,i, P
ζ
sd,i, P

ζ
sb,i ≤Ppv,i ∀i ∈ N24 (9)

where Ppv,i is the maximum hourly power output from the
PV installation. In an effort to avoid the possible solution
where BSS accept power from the PV installation and
support the load simultaneously, the following additional
term is introduced in the cost function:

Jζpv = γ2

24∑
i=1

P ζsb,i

where γ2 is a small number. When PV installation is not
present, it is to be enforced that Ppv is identically zero.

F. Accounting for operating constraints
Operating constraints such as power balance and maxi-

mum/minimum values of decision variables are mathemati-
cally represented in Eqn. (10).

Cζi+1 =Cζi − P
ζ
bnet,i

∀i ∈ N24

P ζb,i + P ζg,i + P ζsl,i =Pl,i ∀i ∈ N24

PDRsl,i + PDRsd,i + PDRsb,i =Ppv,i ∀i ∈ N24

P ζbnet,i
=P ζb,i − P

ζ
sb,i ∀i ∈ N24

ns · cmin · Crated ≤ Cζi ≤ns · cmax · Crated ∀i ∈ N24

C1 =C24

0 ≤P ζg,i ∀i ∈ N24

Pb,min ≤ P ζb,i ≤Pb,max ∀i ∈ N24

(10)
where Pb is the power output of the BSS; C is the State of
charge (SOC) of the BSS (in kWh); cmin and cmax are the
fractions of minimum and maximum SOC as a ratio of total
capacity of BSS; and Crated is the nominal capacity of each
BSS module. In this study, battery SOC at the end of the day
is enforced to be the same as battery SOC at the beginning
of the day (i.e., C1 = C24).

G. Final Problem formulation
Using the constraints and components of the different

objective functions described in previous sub-sections, the
final optimization problem is formulated as:

min J , st., Eqns. (2)− (10)

where
J = λ ·

(
JDR
energy + JDR

DC + JDR
ET + JDR

pv

)
+(1− λ) ·

(
Jno-DR
energy + Jno-DR

DC + J+no-DR
ET + Jno-DR

pv

)
−JDR + JCapex
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Fig. 1: Sample power profiles of the load and PV installation

and λ (∈ [0, 1]) is the relative weight that penalizes the
operational cost on event-days; superscripts no-DR and DR
correspond to variables that belong to non-event days and
event days, respectively.

Based on the above formulation and the information
available about the DRPs, the individual cases of DBP
(λ = 0.05) and SLRP (λ = 0.13) are simulated based on
their occurrences over a year.

III. SIMULATION FRAMEWORK AND RESULTS

In this paper, a grid-connected micro-grid including load,
PV installation and BSS system (where BSS size will be
determined by the proposed approach) is considered as a case
study. The hourly load profile used hereon was derived from
publicly available data from PG&E [12] pertinent to Medium
Commercial TOU customers; Fig. 1 charts a sample load
profile and that of a PV installation used (when applicable).
For simulations that attempt to study the influence of varying
size of loads and PV installations, the basic power profiles
depicted in Fig. 1 are scaled. The BSS under consideration
is assumed to be modular and scalable with each module
having a capacity of 15 kWh. The entire BSS, regardless of
its capacity is assumed to have a discharging and charging
power limit of 1MW. In an effort to reduce the number of
integer variables in the subsequent optimization problems, it
is assumed that the number of modules takes rational values.
Finally, it is assumed that the battery SOC is limited to
[10%, 100%] of the total capacity of the cell. Additionally,
SOC at the end of the day should be equal to the SOC at the
beginning of the same day, which is considered to be 50%.

The MG under consideration is assumed to participate in
PG&E Schedule E-19 pricing structure. Table I summarizes
the Summer time rates for both energy and demand charge.
The rewards for the DRPs under consideration are: DBP
($0.5 /kW) and SLRP ($0.1 /kW). The optimization problem
in Sec. II-G is used to study the economic feasibility of
using ESSs to reduce daily operating cost for varying values
of Capex, total load levels and different extents of PV
penetration.

In this study, the value of BSS Capex is drawn from
the set of prices in ${150, 200, 300, 500, 1000}/kWh which
is the set of estimated/projected cost of BSS in the years
{2023, 2020, 2017, 2015, 2013}. The projected values of
Capex are extracted from a Navigant report [1]. Figure 2
shows the results for the case with varying load levels, PV
penetration and BSS Capex. The simulation trials represented

$ $$$ $

Fig. 2: Impact of varying load levels, PV penetration and BSS capex
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Fig. 3: Impact of varying expected BSS lifetime

are such that the PV penetration never exceeds 15%1 of the
maximum load demand. Results are computed assuming that
the life of the BSS is 11 years.

In each figure, the different base colors represents a differ-
ent value of Capex—for example, markers in red correspond
to a capex of $ 200 /kWh. In addition, markers of the same
shape have color gradient that reflects the contribution of PV
installation with respect to the load; lighter the color of the
marker, greater the contribution of PV power.

From Fig. 2, it is observed that the load level (total energy
consumed by the load over the entire day) does not impact
net savings; although higher load levels, understandably,
utilize a bigger BSS to achieve the same daily cost reduction.
Secondly, the effective savings is intrinsically tied to the
cost of the BSS; cheaper the BSS, greater the potential
for savings. Finally, it is noted that larger the size of the
PV installation (in energy output), the higher the potential
for increasing daily savings. This is to be expected since
increasing PV outputs affords the user to increase BSS
size to effectively reduce daily operational cost. Using the
projections of Navigant and expectations of DOE, by the
year 2019, it may be possible to reduce the daily expense by
∼10%.

Since the expected battery lifetime adds a limit to the
number of daily cycles, its impact on the solutions is investi-
gated. Figure 3 presents a comparison between the computed
daily achievable savings for different values of Capex and the
expected lifetime when there is no PV available. From Fig. 3,
it can be seen that the effective daily saving is monotonically

1For establishments which have a bigger PV presence, PG&E offers an
alternate pricing scheme–Option R.
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Fig. 5: Potential for participating in DR; (a) Demand Bidding
Program (DBP) (b) Scheduled Load Reduction Program (SLRP)

increasing with respect to the expected life of the BSS; longer
the expected life, the greater the savings. This trend is the
result of the fact that constraint in Eqn. (3) is not active and
cannot shape the savings curve.

Figure 4 presents a sample result of the optimization for
the case when studying the impact of participating in the DR
programs under consideration. Whilst subfigure (a) traces the
power trajectory of load and other energy sources throughout
the day on a non-event-day, subfigure (b) shows power
profiles on an event-day. The yellow section of subfigure
2 corresponds to the period during which the system is
participating in demand response. From subfigure (a) it can
be noted that the BSS primarily helps to move part of the
load from peak periods into the off-peak and part-peak hours.
It further reduces energy cost and demand charges for the
system. On the event day though, because of the reward,
the grid power gets altered to increase negative cost by load
reduction through DRPs.

Figure 5 shows the expected savings for different levels

of load during both–a non-event-day and an event-day in
the presence of PV installation. By comparing Fig. 5 with
Fig. 2, it can be noticed that co-optimization reduces the
achievable savings on any non-event-day. This is expected
because participating in DBP could potentially make the
rewards outweigh the cost of energy. However, according
to information available from SDG&E, the frequency of
DBP events are very infrequent and hence such returns are
not sustainable. On the other hand, participating in SLRP
does increase savings on event-days by ∼5% and is more
frequent than SLRP (possibly 13% of the year). It should
be noted that by virtue of the way the optimization problem
was formulated, the calculated size of BSS with or without
participating in DRPs are similar. Thus, it may be possible
to be opportunistic and participate in DR with an existing
BSS installation.

IV. CONCLUSION

In this work, the problem of BSS sizing for a grid-
connected micro-grid was studied by co-optimizing for the
size of the BSS and corresponding optimal power sharing
among different components in the network. Using simula-
tion studies in which the load, size of PV installation, cost
and life of the BSS were perturbed, it was concluded that by
around the year 2019, it can be expected that using BSS for
the sole purpose of reducing energy and demand charge re-
lated expenditure will be economically viable. Furthermore,
using the BSS sized based solely on TOU and DC rates, it
may be possible to make significant gains by participating
in DRPs such as DBP.
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