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Abstract—In this paper, a two-layer controller is proposed
to aggregate a fleet of behind-the-meter (BTM) energy storage
devices based on the Transactive Energy (TE) concept. In the
proposed model, aggregator offers an incentive to consumers
to purchase power from and/or sell the excess power back to
the grid. To do so, controller at the aggregator’s side deter-
mines optimal incentive which has to be offered to consumers
by maximizing its own profit. Then, local controller at the
consumer’s location optimizes battery operation by calculating
purchased/sold power from/to the grid based on the local
demand, PV generation, retail time-of-use (ToU) prices and
demand charge, and the incentive offered by the aggregator to
maximize its own profit. Different optimization problems are
formulated in the two layers, and the profit of aggregator and
consumers in the day-ahead energy market under perfect and
imperfect prediction scenarios are compared.

I. INTRODUCTION

The total energy bill for commercial/industrial (C/I) loads
consists of two parts: Energy and demand charges, which
are proportional to the total energy consumption and the
peak power consumption, respectively. In some cases, the
latter can contribute as high as 50% to the total cost [1].
In order to decrease the demand charge, C/I consumers
are encouraged to use controllable behind-the-meter (BTM)
storage to purchase energy at a lower cost in order to use it
for peak shaving and demand charge reduction. In this regard,
several studies proposed control mechanisms to optimally
operate on-site storage units [2]-[6]. Despite the storage cost
reduction over the last decade, storage technologies (such
as Li-lon batteries) are still very expensive so much so
that the investment on energy storage is still a risky one.
One way to increase the revenue and consequently reduce
the investment risk, is stacked application by participating
in the energy and ancillary services markets. However, a
single storage cannot meet the requirements to participate
in the wholesale energy/ancillary markets. For doing so, a
mechanism is needed to aggregate small BTM devices to
meet wholesale market operator’s requirements.

Recently, several attempts have been made to develop
BTM aggregation model [7]-[11]. However, the existing
methods mostly rely on the direct access to the BTM devices
based on long-term contracts and aggregator’s ownership.
Here, we propose a strategy for aggregation of BTM devices
by means of an optimal price (incentive) signal to each
consumer. In this structure, consumers can own the device
and participate in the market whenever they wish based
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on their own profit. The idea is to solve an optimization
problem at the aggregator level in which an optimal incentive
signal is calculated for each BTM storage device. Then, the
incentive signal will be communicated to a local controller at
consumers’ location to autonomously decide about participa-
tion with the offered incentive. The outcome will be higher
profit for consumers (by trading energy in the wholesale
market through an aggregator) and profit for the aggregator
by purchasing power from storage devices at lower price,
¢(t), and selling it back to the utility at the wholesale market
price, ¢(t). This strategy is designed based on the transactive
energy (TE) concept which is expected to be the future of the
distribution energy management systems [12], [13]. In this
framework, decisions at aggregator’s and consumers’ levels
are made locally; thus, it is scalable. Moreover, consumers
only respond to the price signal received from the aggregator
as opposed to the wholesale market structure which requires
participants to bid in the energy/ancillary markets. Therefore,
our mechanism leads to a full automation on the consumers’
side which further encourage participation. Also, aggregator
can make informed decisions based on the reaction of
the participants to the offered incentive. In this paper, we
only focus on designing an aggregation mechanism among
aggregator and consumers.

This problem is formulated as a two-layer controller, as
follows:

e A local BTM controller at the consumer level that
optimizes battery operation based on the demand, PV
generation, retail prices (both time-of-use (ToU) and
demand charge) and incentive received from the aggre-
gator. The ultimate goal is to maximize the consumer*s
profit. Therefore, the controller minimizes the daily
operation cost considering the ToU and demand charge,
and the profit of trading energy in the wholesale market.

o A controller at the aggregator level that optimizes the
incentive offered to each consumer. The outcome will
be a daily incentive profile for each consumer which
can change from one time instance to another during
the day. This way, the aggregator can trade aggregated
energy from BTM devices in the wholesale market in
order to maximize its own profit. If needed, the pro-
posed structure can adapt a non-profit aggregator model,
similar to the market operators at the transmission level.

In the first step, we formulate the problem by assuming
that we have perfect prediction of uncertain parameters such
as wholesale market price, PV generation, and consumers’
load demand. A base-case scenario is designed where the
BTM controller only performs ToU and demand charge
management, and does not participate in the wholesale



market. Simulation results from the base-case scenario will
be compared with the ones from aggregation scenario to
quantify economic benefits for the aggregator and consumers.
In the second step, we evaluate the uncertainty of the
wholesale market price, PV generation, and load demand
on the proposed mechanism, and compare the results with
perfect case to reveal the effect of prediction errors.

The rest of the paper is organized as follows. In Section
I, we explain the structure of the proposed model, and in
Section III, we formulate the optimization problems for the
aggregator and consumer layers. Next, in Section IV, we
analyze the economic profit of consumers and aggregator
under both perfect and imperfect prediction, and finally
conclude the paper in Section V.

II. THE PROPOSED TWO-LAYER MODEL

Fig. 1 shows the interactions between the retail/wholesale
markets, aggregator and consumers in a two-layer structure.
There is a two-way communication between the aggregator
and consumers, where the aggregator sends a set of possible
incentives, Ci(t), to consumer ¢, and consumer % responds
with the amount of power willing to sell to the grid, Y*(¢),
for each incentive value C%(t); i.e. Y(¢) is a function of
C'(t). Then, the aggregator sell total aggregated energy to
the grid at the wholesale market price, ¢(t). If the aggregator
acts as a profitable entity, the incentive offered to the con-
sumers will be a fraction of the predicted wholesale market
price; i.e., C(t) = k.q(t) where 0 < k < 1. Alternatively, if
the aggregator is modeled as a non-profit entity, the incentive
signal will be the predicted wholesale market price.
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Fig. 1. Conceptual interactions between retail/wholesale markets, aggre-
gator and consumers.

Fig. 2 shows the complex model of the consumer’s layer.
We assume that every consumer has local PV generation
and BTM storage. Consumers purchase power, X;(t), from
utility at the retail market ToU price, Py(t), and also pays
for demand charge. Additionally, all consumers are assumed
to participate in the wholesale market via the aggregator, so
they are able to sell power back at the incentive price, C*(t).
They can also purchase power, X(t), from the wholesale
market at price, ¢(t), which must immediately be stored;
i.e., consumer cannot use or sell the power immediately.
Moreover, the total amount of power sold to the wholesale
market cannot be less than the total amount of power
purchased from the same market. This constraint ensures that
the consumer does not purchase cheaper energy from the
wholesale market for internal use. Please note that consumer

is not allowed to sell PV power directly to the wholesale
market in the proposed structure.

The ultimate goal of the consumer layer is to find opti-
mum daily charge/discharge profile of the battery, including
purchased/sold power from/to the grid, and PV utilization
so that the overall operation cost is minimized. Without loss
of generality, day-ahead market is chosen as the wholesale
market venue for the rest of the paper. It is assumed that the
aggregated BTMs satisfies all market requirements.

III. PROBLEM FORMULATION
A. Aggregator’s Layer

We formulate the problem of profit maximization for the
aggregator in Eq. 1. Let C'(t) be the incentive offered to con-
sumer ¢, and ¢(t) be the wholesale market price; i.e. the price
that aggregator predicts for selling energy back to the grid. In
this structure, consumers inform aggregator by the amount
of power they will sell/buy to/from the wholesale market
for every incentive value C%(t). Then, aggregator realizes
consumers’ response denoted as Y'(t, C(t)). Therefore, the
objective of the aggregator is to find the optimal incentive
that maximizes its own profit.

max Y > [q(t) — C*(t)].Y'(t,C(t))

Ci(t
® teT ieN

(Ta)

As explained in Section II, we assume that the incentive
is a fraction of the market price; i.e., C*(t) = k'.q(t). Thus,
Eq. 1 can be simplified to the following form:

maxe 37 S [1 = K (t).Y (1, K, 4(0))

teT ieN

(2a)

The value of K* can be different for each consumer
provisioning the physical constraints of the system. This way,
lower k' value can be used for a consumer in a congested
area.

Evidently, the response of consumer ¢ is a function of
k* and q(t). In this formulation, we consider the general
case where the aggregator makes profit by offering different
incentives to consumers. Using this formulation, we can
consider three types of aggregators as follows:

o Type I: Aggregator offers different incentives to the

consumers while maximizing its own profit;

o Type II: Aggregator offers the same incentive to all
consumers while maximizing its own profit;

o Type III: Aggregator offers the wholesale market price
to the consumers; i.e. it does not make any profit, and
acts similar to an independent system operator.

Later, we will compare the profit of aggregator and con-

sumers under all three types of aggregator’s models.

B. Consumer’s Layer

In Eq. (3), we formulate the cost minimization problem
for consumer 7. As it was mentioned earlier, each con-
sumer solves an optimization problem to calculate optimal
charge and discharge power of the battery, the amount of
purchased/sold energy from/to the grid, and PV utilization
for the entire day. In this study, the optimization interval is



15 minutes; i.e AT = 0.25 hour. Let ' = {1, -+ , Thnax}
be the set of 15-minute time instances during a day; i.e. 96
time instances. Similarly, let 77 and 7, be the set of time
instances during on-peak periods and partial-peak periods.
This is required for any time, on-peak, and partial-peak
demand charge calculations.

Also, let variable Xi(t) denote the amount of power
purchased from the retail market, variable XZ(¢) denote the
amount of power purchased from the wholesale market via
the aggregator, and variable Y?(¢) denote the amount of
power sold by consumer to the wholesale market via the
aggregator. Moreover, let D*(t) denote the predicted demand
of consumer ¢ at time ¢.

Let Py(t) be the ToU charge, and P;, P> and P; be the
cost associated with the maximum purchased power Xi(¢) at
on-peak, partial-peak and entire day, respectively. Moreover,
let q(t) be the predicted wholesale market price and C*(t)
be the incentive price offered by the aggregator.

Let PV(t) be the variable denoting the amount of solar
power utilized by consumer i, and PV}, () be the maxi-
mum available power from PV at time ¢ for consumer .

Let variable R'(t) be the power of battery, where R'(t) >
0 when it is charging and R(t) < 0 when it is discharging. In
addition, let R! . be the maximum charging or discharging
power of the battery. Finally, let S%(¢) be the amount of
stored energy, and let S . be the maximum capacity of the
energy storage.

min Y [Po(t). X1 (t) + q(t). X5(t) — C*(£).Y"(¢)]
teT
+ P ?é%gch{(t) + P. ?é%fX{(t) + Ps. I?e%z(xﬂt)
(3a)
st Xi(t)+ PVi(t) = Y'(t) — R'(t) = D(t)
teT (3b)
DX <> V) (30)
teT teT
0 < PVHt) < PVyo,(t) teT  (3d)
0 < Xi(t), Xi(t), Y (1) teT (3e)
Xi(t).Y(t) =0 teT (3D
X5(t).R'(t) > 0 teT (g
Sit+1) =8 (t) + (R'(t) + X4(t)).At
teT —Tmas (3h)
|R'(t) + X5(t)| < R: .. teT (31)
Sl < S t+1)< S t €T — Thas 3j)
SH1) = Spin (3k)
SYT) + (RY(T) 4+ X4(T)).At =S¢ . 31

The objective of consumer ¢ is to minimize its energy cost
which is equal to the cost of purchased energy from retail
market plus the demand charge minus the benefit obtained
by trading energy in the wholesale market as denoted in
eq. (3a). Constraint (3b) guarantees that supply and demand
balance is maintained at every time slot ¢, and constraint (3c)
ensures that the total amount of sold power to the wholesale
market is greater than or equal to the total amount of power

Purchases power X,(t) at

Wholesale Market price
To the Grid via
aggregator: Sells
power Y;(t) at
incentive C;(t)

From Grid: Purchases power
X, (t) at Retail Market price
+ Demand Charge

- Charges and
Discharges at rate R(t)

PV(t) - Stored Energy S(t)

Demand D(t)

Fig. 2. Consumer Layer and its interaction with aggregator and retail

market.

purchased from the same market. Moreover, constraints (3d)
and (3e) enforce the upper and lower bounds on the variables.
Constraint (3f) prevents consumers from purchasing and
selling energy simultaneously. Constraint (3g) requires con-
sumers to store purchased energy from the wholesale market
immediately: i.e., battery cannot be discharged during this
time; if X3(¢) > 0, then R*(t) > 0. Equation (3h) calculates
the battery state-of-charge (SOC) level at the beginning of
the next iteration with respect to the charge/discharge power
of current step, and constraints (3i) and (3j) enforce upper
and lower bounds on the battery power and SOC. Finally,
constraints (3k) and (31) ensure that battery starts and ends
with the same amount of energy, assumed to be S? ;.. in this
paper, which guarantees energy neutrality at the end of the
day.

It can be seen that the objective function (3a) as well as
constraints (3f) and (3g) are non-linear. These equations can
be linearized by introducing new slack variables; however,
due to space limitation, we do not explain the details here.

IV. SIMULATION STUDIES AND ANALYSIS

As it was mentioned earlier, analyses are carried out for
participation in the day-ahead energy market. We would
like to find the optimal incentive offered by aggregator to
each consumer, the amount of power that consumer will sell
to the grid, and the daily charge/discharge profile of the
battery. When these parameters are determined by solving
the optimization problem at each layer, we will be able to
quantify the revenue of aggregator as well as the net profit
of the consumer. The profit for consumer is the total saving
obtained by utilizing battery after deducting the average
daily cost of storage, which is the total cost of storage
(1100x R%, . +300x S¢. ..) divided by the number of useful
cycles in service (assumed to be 6000 cycles). The number

Tw X EtET |R(t)].

of cycles per day is calculated by 5 SA

A. Base-case Scenario

In the base-case scenario, each consumer utilizes the
storage locally to minimize ToU cost and demand charge;
i.e. no aggregator is involved and the consumer does not
trade energy in the wholesale market. In this case, problem
formulation is a subset of those introduced in Section III-B,
and the objective is to minimize the local energy consump-
tion which consists of the ToU cost as well as the demand
charge. Note that comparing the profit of consumer with and
without aggregation quantifies the economic benefit of the
aggregation control mechanism.



B. Data

The following data are required to analyze the behavior
of consumers and aggregator.

o ToU price and Demand Charge [14]: Py, P;, P>, Ps

o Physical constraint of the storage belong to consumer
it S jnaz’ R?ﬂaa:

o Day-ahead energy price prediction [15]: ¢(t)

« Load demand prediction for consumer i [16]: D(t)

« PV generation prediction for consumer i: PV}, (t)

In this study, aggregation of six different loads are consid-
ered. Simulation studies are performed for the 1% and 15"
day of every month in a year, i.e., 24 days in total.

C. Perfect Prediction Scenario

In this scenario, we analyze the control mechanism under
the assumption of prefect prediction; i.e. there is no error
in the predicted values. This scenario, although unrealistic,
quantifies maximum achievable benefits for aggregator and
each consumer by participating in the wholesale market
through the proposed two-layer aggregation mechanism and
set a legitimate base for comparison.

1) Consumers’ and Aggregator’s Profit: Fig. 3 shows
monthly profit of type I aggregator in a year. The average
daily profit of the aggregator per consumer is $28 which
results in $10220 annual profit per consumer for the aggre-
gator.

350
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Fig. 3. Monthly profit of Type I Aggregator

Fig. 4 shows the average daily profit of consumers under
Type I aggregation. It can be seen that for all consumers,
the net profit increases under aggregation compared to base-
case (local) scenario. Note that the percentage values indicate
extra net profit gained by consumers via aggregation.

Table I compares the profit of consumers and aggregator
under different types of aggregation in more details. The
simulation results indicate that the consumers’ cost decreases
more under type III aggregator compared to type II aggre-
gator. However, in some cases the average daily cost of the
storage has increased which caused smaller net profit for
consumers under type III aggregation.

2) Behavior of Consumer in a Day: Fig. 5 reveals a
consumer behavior in a day. It distinctively shows when
the consumer purchases/sells power from/to the grid, as

Comparing Net Profit under Local and Aggregated use of storage

9.7% MLocal
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Fig. 4. Net Profit of Consumers under Type I aggregation

well as charging and discharging of storage. Typically, it
is economical to sell power in the wholesale market at the
end of the day. The reason is that the consumer uses the
purchased power from the wholesale market during high
retail market prices (ToU) and sells back excess power to the
wholesale market later at night when local load consumption
is low. Remember that each consumer will sell energy to the
wholesale market equal or more than the total purchased
energy from the same market. So consumer will not be able
to exploit the wholesale market in this framework.

D. Imperfect Prediction Scenario

In this Section, we introduce a realistic scenario where
imperfect prediction of the day-ahead wholesale market
price ¢(t), consumer load demand D(¢) and PV generation
PV .(t) are available. We use the average of five previous
days Avg-q(t), Avg-D(t) and Avg-PV,,..(t) as a simple
prediction model in this study.

The predicted values are used in the day-ahead wholesale
market where the aggregator commits to pay the incentive
C'(t) and consumer i promises to sell power at Y., (t).
However, in real-time during the next day, consumer’s con-
troller operates under the actual day-ahead market price ¢(¢),
known from day-ahead market operation, and has a better
prediction for D%(t) and PV'(¢). Thus, the consumer might
prefer to sell less power to the grid and be penalized in order
to increases its own profit. To evaluate this sort of conditions,
we perform a real-time analysis by solving the optimization
problem every 15 minutes (with actual day-ahead wholesale
market prices and better prediction of Di(¢) and PV(t)) to
find the actual power sold to the aggregator and consequently,
the actual profit of aggregator and consumers. We assume
that in the real-time operation, consumer cannot sell more
than the committed power Yeixp (t); however, if it sells less
than the committed power, it will be penalized at the whole-
sale market price; i.e. it should pay q(t).[Y/,,(t) — Y'(t)]
to the grid. Again, the total purchased energy from the
wholesale market is enforced to be equal or less than the
energy sold to the wholesale market by the end of the day.

Moreover, we assume that in the real-time operation,
consumer has better prediction of load demand and PV
generation, as it moves towards the end of the day. Let
AvgData(t) be the average of the data from 5 previous days,
and RealData(t) be the real data at time ¢ of the same day.
At any time ty of the day, the error of predicted data for

time ¢ > { is as follows: error(t) = 51 x [AvgData(t) —




CONSUMER: AVERAGE DAILY NET PROFIT IN DOLLARS AND THE

TABLE 1
AGGREGATOR: AVERAGE DAILY PROFIT PER CONSUMER;

EXTRA NET PROFIT PERCENTAGE

Daily Profit ($) — Extra Net Profit(%)
Type 1 Type 1T Type III
Aggregator $28 $23.5 30
Consumer 1 $177 — 9.7% $177 —9.7% | $204 —11.1%
Consumer2 | $82 —10.0% | $113 —13.9% | $90 —11.0%
Consumer3 | $164 —9.9% | $173 —10.4% | $187 —11.3%
Consumer4 $131 — 8.6% $164 — 10.8% $148 — 9.8%
Consumer5 | $246 — 15.2% | $240 — 14.8% | $297 — 18.4%
Consumer6 | $170 —20.0% | $177 —20.8% | $170 — 19.9%
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700r 5
600f i
500
§ -—-_- ::::I?::e from Retail Market T
= 400 —— Purchase from wholesale Market |
8 B00[ | I Sorage Charge Discharge Rate
o | e Used PV
o 200f
100¢
0
-100¢
0 5 10 15 20
Time (h)
Fig. 5. Behavior of a consumer during a day (July 01)

RealData(t)] where ¢ and t, are time instances in hour. We
use RealData(t) 4 error(t) as the new predicted values.

Figs. 6(a) and 6(b) indicate that for both consumers, the
net profit decreases under imperfect prediction scenario for
a year of simulation. Additionally, Figs. 6(c) and 6(d) show
that for both consumers, participation in the aggregation
program is still more profitable than the only local use
of storage under the imperfect prediction. While extra net
profit for consumer 1 is decreased from 9.7% to 8.1% in
imperfect case, net profit for consumer 5 has increased from
15.2% to 24.6%. Finally, the simulation results indicate that
the average daily profit of the aggregator per consumer is
$18 which results in $6570 annual profit per consumer;
i.e., about 36% reduction in profit because of imperfect
knowledge. In all simulation results, the annual net profit for
every consumer was increased even in the case of imperfect
scenarios. Thus, by improving the prediction method, the
profit potentially can be increased.

V. CONCLUSION

In this paper, we designed a two-layer incentive-based
controller for aggregation of BTM storage devices. We con-
sidered the participation of storages in the day-ahead energy
market under both perfect and imperfect prediction scenarios,
and calculated the aggregator and consumers’ profits.

Different simulation for 24 days of a year and six con-
sumers showed that aggregation creates about 12% extra
revenue stream for every consumer on average considering
the wearing cost of the storage. Also, the proposed model
offers scalable and local decision-making framework, follow-
ing the TE principles. Furthermore, it is fully automated on
the consumers’ side which facilitates their participation in
the aggregation program.
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