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Abstract—Aggregators are expected to become an inevitable
entity in future power system operation, playing a key role
in unlocking flexibility at the edge of the grid. One of the
main barriers to aggregators entering the market is the lack
of appropriate models for the price elasticity of flexible demand,
which can properly address time dependent uncertainty as well
as non-linear and stochastic behavior of end-users in response
to time varying prices. In this paper, we develop a probabilistic
price elasticity model utilizing quantile regression and B-splines
with penalties. The proposed model is tested using data from
residential and industrial customers by assuming automation
through energy management systems. Additionally, we show an
application of the proposed method in quantifying the number
of consumers needed to achieve a certain amount of flexibility
through a set of simulation studies.

Index Terms—TFlexibility, data-driven modelling, quantile re-
gression, B-splines, industrial and residential consumers

I. INTRODUCTION

To ensure a green transition of the energy system and
enable further integration of renewable energy resources into
the power grid, new and green flexibility resources will be
necessary for the day-to-day grid operation [1]. Advancements
in behind-the-meter controllable technologies along with au-
tomation, i.e., Energy Management Systems (EMS), enable
both traditional electricity consumers and prosumers to pro-
vide flexibility. However, the flexibility provided by individual
consumers/prosumers is too small for direct participation in
the wholesale electricity market. Thus, there is a need for
aggregation of these resources.

While there is general agreement that aggregators will
become an inevitable part of the future power system, several
issues must be addressed before their full potential can be
realised in practice. One of the main barriers is the uncertainty
associated with Demand Response (DR) of diverse types of
consumers, especially through indirect load control by time-
varying price signals. Aggregators will need information and
methods to evaluate DR from flexible resources to develop
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strategies on how to optimally manage these resources. This
calls for probabilistic price elasticity models of prosumers,
specifically developed for aggregators.

As of today, several papers have investigated the long-term
price elasticity of electricity consumption, e.g., [2] in the US.
Unfortunately, the proposed approaches for long-term elastic-
ity cannot be used for day-to-day aggregator operations and
are substantially different in nature. In [3], elasticity values and
calculation methods are summarised from several studies. The
authors found 538 observations of price elasticity estimations
in literature, where the average short-term price elasticity was
—0.201. However, the authors did not provide a definition
of the short-term price elasticity; thus, the granularity of the
price elasticity is unclear. Furthermore, Miller et al. [4] used
three data sets for residential consumers in the US to estimate
price elasticity, which varies between —0.2 and —0.8 for the
given data sets. The variation in price elasticity estimation is
an indicator of the uncertainty associated with the underlying
phenomenon, in which point estimations may not be able to
explain it sufficiently. Hence, there is a need for dynamic and
probabilistic elasticity models. Furthermore, a probabilistic
consumer flexibility model is essential to apply risk-based
methods (e.g., CVaR in [5]) and scenario-based stochastic
programming (e.g., [6]) for optimal operation of aggregators.
In [7], the DR from households responding to economic
incentives for critical load and peak shifting is investigated.
The authors concluded that automation strongly increases the
price responsiveness, while manual DR can only make long-
run adjustments. Thus, automation, e.g., EMS, is necessary to
fully realise the potential of demand-side flexibility.

There are also a few papers on short-term price elasticity.
J. M. Gillan [8] investigated the short-term price elasticity for
residential electricity consumers in California. However, the
study only concerns explicit DR. In [9], the authors looked
at the price elasticity in the real-time and day-ahead market.
These studies consider all customers in the data set with pos-
sible effects of customer fatigue in manual DR. Furthermore,
in [10], the authors developed an artificial neural networks
solution to learn the behavior of a single electricity consumer.
The models developed in these studies are deterministic, which



is less useful for the aggregators’ operation in an uncertain
environment with low profit margin. Probabilistic DR models
are presented in the literature, e.g., [11] in which conditional
probability density for future demand is used for prediction
of demand. However, the model is based on two-way com-
munication and customers react manually to the electricity
price signals. A quantile and linear regression-based model
of DR is proposed for a single customer in [12] based on the
Spanish ADRESS project, in which 260 residential consumers
with Home Energy Management Systems (HEMS) partici-
pated. Nevertheless, these studies only considered individual
customers from a specific sector, explicit mechanism for DR,
and linear modeling approaches.

Furthermore, numerous studies have developed DR models
using consumer price elasticity, e.g., [13] in which the short-
term price elasticity is assumed to be —0.2 in their proba-
bilistic demand curve model. Also, [14] utilized a function of
elasticity to describe DR customer behavior. These studies did
not develop a model for the elasticity in particular nor did they
discuss the elasticity values/models. Analysing the potential
of flexibility to reduce power peak consumption in Northern
Europe, [15] found that the flexibility potential varies over
different sectors (residential, commercial and industrial). To
address the aggregators’ interest, the price-load models should
therefore be applicable to consumers from different sectors.

This paper aims to provide a methodology for quantifying
the consumer/prosumer price elasticity and associated uncer-
tainty. Our research contributes to this field by making hourly
price elasticity models using quantile regression and B-splines
with penalties. Thereby, we develop a non-linear probabilis-
tic model, reflecting the uncertainty of consumer/prosumer
flexibility. We then use the proposed model to quantify the
number of consumers required to achieve £1 MW flexibility
from different sectors in a probabilistic manner. To create a
price elasticity model suitable for the aggregators’ operation,
price-load flexibility data are required. However, due to the
scarcity of experimental data involving consumers equipped
with automation, synthesized data from [16]-[18] is used for
modeling and simulation studies. The contributions of the
paper can be summarized as follows:

o We develop hourly flexibility models of consumers that
represent non-linearity of the flexibility resources and
consumer behavior.

o A probabilistic approach is adopted using quantile regres-
sion to model the uncertainty of DR resources, which
does not require a probability density function (pdf) as a
priori. Therefore, its application is not limited to a certain
type of pdf.

o We utilize data from residential and industrial sectors,
which are assumed to be equipped with automation
through EMS, but still allow for customers’ preferences
and stochastic behavior.

To the best of our knowledge, such a price-response elasticity
model of consumers from different sectors has not been
presented in the literature.

The rest of the paper is organized as follows. Section
I presents the methodology of applying quantile regression
and B-splines with penalties, as well as the methodology to
quantify the number of consumers required to obtain a certain
amount of flexibility. Section III reports and analyzes the most
important findings and Section IV concludes the paper.

II. METHODOLOGY

In this section, we describe the methodology of applying
quantile regression (QR) and B-splines with penalties (also
known as P-splines) to the price-load data set. Thereafter, we
describe the methodology to estimate the number of activated
customers required to reach +1 MW bid size using the QRs.

In this work, up-regulation refers to a reduction in consump-
tion which is assumed to be a result from positive price on
top of the baseline price. Hence, down-regulation means an
increase in consumption, which is assumed to be a response
to negative incentives. The flexibility behavior appears to be
quite different for up- and down-regulation (i.e., to positive and
negative price deviations). Therefore, we apply the regression
methodology for up- and down-regulation separately.

A. Quantile regression and B-splines with penalties

The magnitude of flexibility, Ly, at a certain hour, h, given
a price deviation 7, can be described by some unknown pdf,
f(Ly) with cumulative density function (cdf) (1).
Ly,

P(Ly|my) = [y mp)de (1)

where the flexibility magnitude, L, is the change in load
from the baseline at a certain hour, h, while the price,
7, € [—0.75,0.75] is the deviation in electricity price from a
certain baseline electricity price (assumed 2.25 DKK/kWh as
in [16]) for the same hour h. For a specific data set C', we
can define the conditional distribution as P(Ly|Ly, ¢, Th.c)-

One approach to find the conditional distribution from a
data set is to utilize QR. The pdf of DR is unknown and can
vary depending on various factors such as type of customers,
time of the day and weather. Using QR avoids parametric
assumptions on the pdf. Thus, QR is especially well suited
for this purpose, since it does not assume any distribution a
priori [19].

When applying QR to find the cdf, quantiles may cross.
If this occurs, it would imply negative probability according
to the definition of quantiles. Hence, a method that does not
result in crossings should be applied. One methodology is
proposed in [19], in which constraints are applied on the fitted
parameters in the linear programming to ensure non-crossing
regressions. In this work, we utilize this method through the
R package quantregGrowth version 0.4.3 [19]-[21]. The QR
applied can be described as follows (2).

Qrin(Ln|Lenmen) = ajnBjn(mhiq) 2
j=1



where QT(ﬁh|Lc’h,7rc,h) is the estimated function for a
quantile 7, given the data set C' for hour h. The dimension of
the problem is n and is less or equal to the number of price
signals. In the loss function for the QR, there is a penalty
term A |A?|, as defined in the R package quantregGrowth
version 0.4.3 [19]-[21], where the order of the difference
operator (d) is set to 3. The penalty term penalizes overfitting;
thus, it affects the smoothness of the regression. We test for
several values of the weight of the penalty, A\, and allow the
algorithm to choose the best value through cross validation
as described in [19]. We also set the degree of the B-
splines to 3. Equation (2) is initially applied to quantiles
7=1[0.1,0.2,---,0.9]

From analyzing the load versus price data set (L. p, ¢ n),
the consumer flexibility appears to be non-linear. Thus, we
apply B-splines with penalties using the ps() function from
the quantregGrowth version 0.4.3 package in R as in [19].

We apply further modifications in the ps() function by
limiting the B-splines function to be monotonically non-
increasing. This is a reasonable implementation given that
the higher the price the lower consumption is expected. If
the customers are equipped with EMS, it is not expected
that a higher price will give a higher consumption. It should
be mentioned that, due to the stochastic behavior of flexible
electricity consumers, it can happen that a higher price yields a
higher consumption although a lower consumption is expected.
However, this would not be driven by the price, but rather
happen due to other reasons, e.g., rebound effect of critical
loads. Thus, it should not be reflected in the fitted spline
functions, but rather by the uncertainty, i.e., the shape of the
cdf. Alternatively, applying more explanatory variables, such
as the rebound effect, may fix this issue, although this has not
been investigated in this article.

B. Estimation of activated customers

As most markets require a minimum bid size to participate
in the market, aggregators are interested in estimating the
required number of customers to reach a minimum bid size.
This estimation can be utilized to determine the number of
customers in the pool. Alternatively, it can be used to evaluate
the participation of customers from different categories or
sectors by estimating the number of customers that should be
activated at a certain hour from an already existing customer
pool. Here, we set the required bid size of a hypothetical
market to £1 MW and describe how to make such estimates
from the proposed QR models.

As described above, the cdf for a certain price can be
extracted from the QR. Here, we demonstrate this by ex-
tracting the cdf for 0.5 DKK/kWh and —0.5 DKK/kWh
price variations, which are the medians for the positive and
negative price deviations. The extracted values are samples
from the cdf for their respective 7. To get a full cdf, we make
a piecewise linear regression between the extracted points.
Since the uncertainty is higher in the tail probabilities of
the cdf, where the cdf tends to vary more, we add quantiles

7 = [0.01,0.05,0.95,0.99] to the QR model. To deal with
the end points of the QRs, i.e., from 7 = 0.01 to 0 and
7 = 0.99 to 1, a different approach is needed. Since the
data in this case behave well and do not reach negative loads
for negative prices, it is possible to make a linear regression
between the QR for 7 = 0.01 and zero for down regulation.
The same is valid for up-regulation and 7 = 0.99, since the
load at 7 = 1 does not go above zero. For the case of down-
regulation and 7 > 0.99, there is no natural maximum that can
be extracted from the data. Therefore, we fit an exponential
function to describe the cdf from 7 = 0.99 to 7 = 1. For the
up-regulation, it is assumed that the total consumption will not
be negative and a linear regression is made from @Q,—¢.01(L)
to the negative value of what they are already consuming at
that hour, i.e., the base load, —Lygse, -

Using a uniform distribution, (0, 1), we then simulate from
the cdf until 1 MW or —1 MW is reached. In other words,
we find ¢ such that (3) for down-regulation is satisfied for
Ly;q = 1MW, similarly for up-regulation that (4) is satisfied
for Lbid =—1MW.

Lyia > Y F~'(r)) 3)
j=1
I
Lyia <Y _F~'(r)) “)
j=1

where r; ~ U(0,1). This is repeated 1000 times, giving an
estimate of mean and variance for how many customers are
required to reach 1 or —1 MW, respectively, for a certain
customer cluster and certain hour, given a price deviation.

III. RESULTS AND ANALYSIS

In this section, we present some of the findings from
applying the methodology described in Section II. In addition,
we present the results of the simulations of activated customers
from the presented cases.

In the data utilized for this study, the baseline electricity
price is assumed to be 2.25 DKK/kWh with a variable price
component, m, € [—0.75,0.75]. Consumers categories are
aggregated to form 3 clusters (residential, light industry, heavy
industry). Further details of the data are described in [22],
accompanied by [16]-[18].

A. Flexibility model of demand with QR

In this work, we apply 9 QRs such that 75, takes on values
from 0.1 to 0.9, linearly spaced with 0.1 interval. Of course,
when applying the methodology to a specific case, this could
be changed depending on the aggregator’s needs in terms of
uncertainty analysis.

In Fig. 1, the results for the residential cluster at hour 12
are provided, while the results for the heavy industry cluster
can be seen in Fig. 2. In both figures, it is shown that a
point estimation would not be sufficient and that a confidence
interval would not give the full picture of the possible out-
comes of flexibility. Meanwhile, the QR curves span over the



entire data set. It can also be seen that the response function
is not linear, which supports the necessity of a non-linear
method. Additionally, it can be observed that crossings of
the QR curves are avoided through the application of the
quantregGrowth package [19], [21]. From both graphs (Figs.
1 and 2), cdfs can be extracted by simply fixing the electricity
price deviation and obtaining the flexibility magnitude from
the QRs, arranging the values of 74 in an increasing order.

For cluster 1 (Fig. 1), the variance is quite high for up-
regulation compared to cluster 3. For the case of down-
regulation, the flexibility has more dense QR curves in the
upper region of the data set. This implies a more skewed dis-
tribution function, with higher probabilities of the customers
actively responding. As a result, the widely-used normal
distribution in such studies does not properly describe the
flexibility. This justifies the application of QRs with which
a priori pdf is not required.

Looking at cluster 3 (Fig. 2), however, it can be noticed
that the variance is higher for the down-regulation. It is also
seen that the pdf is skewed towards non-responsive behavior,
unless the price deviation is high. For the up-regulation, on the
other hand, the observed reactions are smaller in magnitude
but more certain. Here, the response also appears to have a
bimodal distribution that is well captured by the QR curves
by being more dense around these lines. If simulations were
made from the up-regulation case, two most probable scenarios
would be observed.

One reason for this bimodal distribution for up-regulation
in cluster 3 could be that two categories in the cluster, “Non-
metallic” and “Other industries”, have quite similar behavior,
whereas the behavior of the category “Chemical” differs
significantly from the other two. This can be seen in the
assumptions made for the categories (Table I in [16]).

Furthermore, the lack of flexibility to down-regulation prices
can be explained by the industrial customers’ strict technical
and operational constraints compared to the residential ones.
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Fig. 1. Flexibility of 280 residential customers in cluster 1. The graph shows
hour 12 with 9 quantile regressions.
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Fig. 2. Flexibility of 210 heavy industry customers in cluster 3. The graph
shows hour 12 with 9 quantile regressions.

However, they are business-driven: for the right price deviation
at the right time, they react to optimize their energy consump-
tion expenditure. In Fig. 2, it can be seen that for hour 12, it
is not favorable for the industrial consumers to increase their
consumption, unless the price deviation is very high.

The fact that industries have technical constraints and
generally operate in more safety-driven ways than residential
consumers can also be seen in the comparison between clusters
1 and 3. Thus, the response from the residential cluster has
a higher variance, while for the heavy industry cluster, the
patterns are more recognizable, probably due to their routine
day-to-day operation.

B. Customer activation

In this section, we present the results from the 1000 sim-
ulations for up- and down-regulation respectively, to achieve
4+1 MW in load deviation through the flexibility models, as
described in Section II. To better account for the uncertainty
in the lower and upper end of the cdf, we also include QRs
for 7, = [0.01,0.05,0.95,0.99], as described in Section II.

The results of the simulations for cluster 1 (residential),
are presented in Fig. 3. In general, it can be seen that the
uncertainty in the number of required customers is larger for
up-regulation compared to down-regulation. This is a direct
result from the larger variance on the up-regulation side in Fig.
1. It can also be observed that significantly more customers
are needed for down-regulation compared to up-regulation for
hours 2, 3, and 4, as well as hours 12, 13, and 14. This could
be due to the rebound effect and the fact that the residential
customers are asleep in the earlier hours or not at home in the
middle of the day. Thus, there is no need for increasing their
electricity consumption.

For cluster 2 (light industry), the results are visualized in the
box-plot of Fig. 4, where it can be observed that significantly
fewer customers are required to obtain —1 MW than 1 MW
of flexibility. The number of electricity customers required



for down-regulation in hours 1, 8, 17, and 24 is high, which
means that there is not much flexibility (or willingness by the
consumers to provide flexibility) to be activated; thus lower
commitment for the aggregator in the wholesale market can
be suggested. For hours 6, 10, 11, 13, 20, 21, 22, and 23,
we stopped the simulations at 2.8 million customers without
reaching 1 MW. It should, however, be noted that for a larger
price deviation, the 1 MW flexibility could be achieved.

For cluster 3 (heavy industry) in Fig. 5, it can be seen that
fewer consumers are required to achieve —1 MW than 1 MW.
This is in line with what is shown in Fig. 2. For a price
deviation of —0.5 DKK/kWh, there is a 70-80% probability
that there will be no reaction or a very small reaction from the
customer cluster. On the other hand, for 0.5 DKK/kWh, the
probability that the cluster is not responsive to the incentives is
less than 10%. It can also be seen that the number of required
customers for both up- and down-regulation decreases over
the day. The base-load consumption is lower during the early
hours of the day and higher in the later hours. Seeing higher
activity in the later part of the day suggests that there are more
active loads to be offered for both up- and down-regulation.

Overall, these results could be further used by the aggre-
gators to target the right consumers for flexibility provision.
Aggregators can get an insight into how large a customer
pool from different clusters they need and their associated
uncertainty. In other words, they can estimate the number
of activated customers that are required at each hour in the
best and worst case scenarios. Such results can be used in
operational risk assessments and meeting the minimum bid
requirements. As another advantage of the proposed approach,
the aggregators receive valuable insights into cluster integra-
tion. For instance, while more customers in cluster 2 are
required for up-regulation in hours 19, 20, and 21, consumers
in cluster 3 can provide a lot more flexibility in the same
period of time. These complementary effects can be exploited
by the aggregators.
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Fig. 3. Number of activated electricity customers required to achieve +1
MW in DR from cluster 1 (residential cluster).

1500

regulation

£ down
£ up

1000

Number of customers/1000

'

%%' ¢ % %%%_

e T et T Ll

I3
S
S

——

o] Fortoie v mue - .

1234567 89101112131415161718192021222324
Hour

Fig. 4. Number of activated electricity customers required to achieve +1
MW in DR from cluster 2 (light industry cluster).
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Fig. 5. Number of activated electricity customers required to achieve +1
MW in DR from cluster 3 (heavy industry cluster).

IV. CONCLUSION

This paper presents an hourly price load model for implicit
flexibility provision. QR and B-splines with penalties were
applied to achieve a non-linear probabilistic model to capture
the variance and uncertainty in the data. A future scenario
was assumed, in which the customers are equipped with
EMS and the model was applied to both residential and
industrial electricity customers. From the QRs, the cdf for
+0.5 DKK/kWh was extracted. From this study, we observed
a higher uncertainty for up-regulation compared to down-
regulation from the residential cluster. We also discovered that
fewer customers were required for up-regulation compared to
down-regulation from both light and heavy industry clusters.

From an aggregator’s perspective, the simulation results
can be further employed for risk assessments. For instance,
scenarios can be defined, such as best, worst and most probable
scenarios of required activated customers from an already
existing customer pool. Additionally, the results may assist



aggregators in determining the customer segments with the
highest flexibility and willingness for their business.

Furthermore, QR and extracted cdfs could be used for
scenario generation for flexibility. Alternatively, they can also
be utilized to generate inputs for CVaR models.
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