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ABSTRACT
The ever-increasing uptake of distributed energy resources necessi-
tates the introduction of local electricity markets at the residential
level. Electric retailers, who are adversely affected by these changes,
can make a profit by operating local trading platforms and offering
services through community-level battery storage. In this work,
we propose a Stackelberg game-based approach for sizing the cen-
tralized battery unit under the operation of a multi-interval local
market. The optimization is formulated as a bilevel program, where
the leader is the market aggregator responsible for determining
the local prices and battery charging/discharging schedules. Also,
the followers in the bilevel program are prosumers, who can vary
electricity consumption with respect to their comfort and cost of
electricity. Upon obtaining the optimal capacity of the community
storage, we modify the algorithm to efficiently operate the battery
on a daily basis. The applicability of the proposedmodel is evaluated
using real-world data of residential prosumers with rooftop photo-
voltaic systems for two different pricing schemes, which represents
the profit trade-off between the aggregator and prosumers. The
results show the profitability of the proposed model for community
storage installation, where a relatively short payback period can be
achieved via either pricing scheme.

CCS CONCEPTS
•Hardware→ Batteries; • Computingmethodologies→ Plan-
ning and scheduling.
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1 INTRODUCTION
The electricity grid has been transitioning to a green and sustain-
able system over the past couple of decades by adopting larger
amount of distributed energy resources (DER) such as rooftop solar
photovoltaic (PV) systems and behind-the-meter battery storage.
Traditional customers can leverage their DER to lower the electric-
ity consumption cost as well as to reduce their carbon footprint.
Also, during the periods of excess solar generation, customers can
export their surplus electricity to the utility grid through fixed feed-
in tariff (FiT) schemes, which helps to decrease the overall energy
cost. As a result, rooftop PV systems in Australia have seen a steady
growth in the last decade and are expected to increase even more
within the next 20 years [2].

However, the roll out of DER reduces the revenue of utility
companies because of the self-consumption of PV owners in the
residential sector. In other words, retailers’ sale, hence their rev-
enue, have reduced compared to the past. At the same time, the
distribution network service providers are dealing with the techni-
cal and operational challenges to handle reverse power flow, which
mostly occurs during mid-day. For instance, on October 31, 2021,
the distribution network in South Australia (SA) observed a neg-
ative net demand for nearly four hours with a dipping record of
-69.4 MW due to the high export of rooftop solar PV systems [34].
To manage it, SA Power Networks has reduced the export limit
from 5 kW to 1.5 kW in some congested areas resulting in higher
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curtailment of renewable generation for solar customers [35]. With
the increasing trend of DER, we can expect similar incidents to
occur more frequently than before. Therefore, it is of great impor-
tance for electricity retailers and network operators to tackle these
techno-economic challenges. While retailers can develop new busi-
ness models for the consumers to avoid excessive curtailment and
low FiTs, the network operators can support new energy trading
platforms to facilitate the deployment of a large number of DER.

Among many possible solutions, such as time-of-use (ToU) in-
centives [48] or real-time prices [20], a local market that facilitates
energy transactions within a community of consumers is the pre-
ferred mechanism from the perspective of customers [38]. Through
a local energy trading platform, the excess energy of prosumers can
be consumed by other prosumers within the local market; thus, de-
creasing the negative impact on the grid (e.g., lower reverse power
flow) and avoiding the PV generation curtailment beyond export-
ing limit for prosumers [27]. In this respect, retailers can offer a
trading platform to the local communities or directly participate
in the market as an aggregator. This aggregator acts as an inter-
mediary entity to facilitate the trading process for the prosumers
and consumers by setting the local prices with maximization of
the stakeholders’ utility [26]. Within the local market region, the
aggregator is responsible for exchanging surplus generation or
compensating for the energy shortage with the grid. In order to
add new revenue streams, community-level battery storage can
be adopted to assist the energy sharing process by filling the gaps
in energy production and demand [25]. Such storage units allow
the aggregator to perform energy arbitrage under the ToU pricing
structure, which indirectly helps network operators by decreasing
reverse power flow and high load demand during peak periods [42].
The aggregator, as an entity with financial interests, is responsible
for purchasing, maintaining, and operating the centralized battery
unit.

In this paper, we focus on the optimal size and scheduling of the
community storage to maximize the total revenue of the aggregator.
The sizing problem is also integrated with demand response (load
shifting) at the users’ end to increase utility for all stakeholders.
The contributions of this paper are outlined in the following:

Sizing and operation of community energy storage for a
multi-interval local market: In addition to determining the local
prices, the aggregator can offer new services to the community
through a centralized battery storage. The storage can be used for
peak shaving during periods of high demand or reducing the interac-
tion with the grid; hence, lower cost and higher self-sufficiency for
the prosumers [33]. Despite being an essential element for business
viability, optimal planning of community storage for maximizing
the revenue of aggregators remains understudied. In this regard, we
aim to size the community storagewithin a local market considering
load demand response and the interaction between the aggregator
and prosumers. When the optimal capacity of community storage is
determined, the daily battery operation is scheduled so as to avoid
calendar aging when the battery sits idle, while maximizing the
aggregator profit.

Market operation using two pricing schemes: Since the ag-
gregator, who holds financial interests, functions as a central entity,
it is not impartial in the local market. Thus, it may undermine the

nature of local trading; hence preventing prosumers from achiev-
ing their true benefits. To address this issue, we structure the local
market such that the aggregator’s pricing is always more attractive
to the participating prosumers than the reference prices offered by
retailers. We also demonstrate two different pricing schemes, as
two business models for the aggregator, to represent the trade-off
between the aggregator’s profit and prosumers’ utility.

Inter-temporal rebound effect of prosumers: One impor-
tant aspect that must be governed is the energy management of
the participating prosumers. Since more than 90% of the electrical
appliances at the residential premises are shiftable loads [44], the
inter-temporal demand flexibility must be taken into account dur-
ing price determination by the aggregator. Demand flexibility in
this paper is a lump sum quantity. This allows the aggregator to
see when the prosumers are most active at home (high energy con-
sumption), and thus, have higher flexibility to offer. Moreover, the
prosumers’ privacy is respected due to the consideration of a lump
sum quantity without knowing the details of any specific house-
hold equipment. This way, the amount of flexibility will be decided
by the local energy management system at the prosumers’ end.
Therefore, at the end of the time horizon, total adjusted demand
must remain the same as the initial total expected consumption for
every prosumer. To capture the price-responsiveness of prosumers,
a piecewise linear function is used to model their demand response.

The remaining of the paper is structured as follow. Section 2
presents a comprehensive literature review about electricity local
markets. Section 3 explains the aggregator model based on the
proposed market structure, both conceptually and mathematically.
The optimization formulation for both the optimal battery capacity
sizing and market operation are discussed in Section 4. In Section
5, we propose the method for recasting the bilevel problem into a
mixed-integer linear programming (MILP) model. The numerical
results of implementing the model using the real-world data are
presented in Section 6. Finally, the paper is concluded in Section 7.

2 RELATEDWORK
Due to the recent advances in smart grid technology, local trading
schemes have gained significant interest in the energy sector, e.g.,
in the community microgrid management and operation [5, 6]. The
concept is motivated by the microgeneration and local consumption
of energy at the edge of the distribution network [16]. From the pro-
sumers’ viewpoint, local trading helps reduce the cost of electricity
consumption [23] and earn profit by selling excess generation at
higher prices than the FiTs [28]. From the power system operator
perspective, the benefits include local generation and demand bal-
ance in the network [29] and facilitating a larger DER deployment
[28]. Also, the emission of greenhouse gases is expected to reduce
by promoting the local consumption and production [39]. However,
most of the existing research studies focused on the single-interval
market operation by ignoring the time-coupling nature of shiftable
loads [7, 25, 26]. Other papers investigated the load rebound effect
by solving the market with 24-hour lookahead, but with a fixed
price assumption making it difficult to fully maximise the market
surplus [13]. The recent work of Werner et al. considers the time-
coupling nature of load shifting in all periods [46]. However, the
prosumers’ price-responsiveness was ignored, while the overall
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comfort was maintained by meeting the expected demand at all
times. Our model is motivated by the same concept of multi-interval
market dispatch but also considers the satisfaction of prosumers
from consuming electricity at every time interval.

Pricing structure within a local market has mostly centered
around two main schemes: a two-price market for purchase and
sale of electricity [3, 26], or one consensus price for both buyers
and sellers [19, 46]. While the former group resembles the current
retail structure, where there are separate tariffs for buying and
selling energy [24], the latter pricing scheme loosely represents
‘wholesale prices’ such that buying prices are equal to selling prices
[31, 32]. However, the profit analysis between both schemes was not
clear for the market participants. Hence, in this paper, we want to
analyze the quantitative profits and utility in both pricing schemes
for the aggregator and prosumers, respectively. Then, depending
on the strategy of the aggregator, it can either choose a business
model that maximizes their profit or attract more customers with
the business model that gives higher utility for prosumers.

Technology optimal sizing has gained significant interest in sev-
eral contexts, including solar PV [18, 47] and battery storage sys-
tems [4, 40]. However, most of these works are limited to a single
household [40] or aim to meet the anticipated consumption at a
minimum storage capacity [22]. Wang and Huang [45] proposed
a microgrid framework for distributed battery systems to support
the energy trading. Whereas the work of [25] adopted a centralized
storage unit with the capability of performing energy arbitrage to
maximize the profit of the market operator. However, they con-
sidered a fixed battery capacity by eliminating the impact of the
prosumers response. In [8], the authors developed a sizing algo-
rithm for a community-level storage considering initial acquisition
cost, maintenance and future replacement. However, similar to
[13], the model assumes a fixed price of electricity for the market
participants, where the comfort of prosumers is not considered
when deviating from the base load. In our model, however, we de-
termine the optimal battery size while considering the prosumers’
utility with the integration of dynamic pricing for the proposed
multi-interval local market.

3 PROBLEM STATEMENT
Since we are trying to maximize the profit of all participating par-
ties, constructing a good pricing scheme is crucial for attracting
new customers and exploting maximum available flexibility. In
our setup, the market aggregator is responsible for price determi-
nation while serving as an intermediary entity that operates the
local market. The aggregator must always provide the prosumers
with improved prices over conventional retailers. Such lucrative
prices can be in the form of lower buying prices or higher FiT for
excess solar generation. These new prices motivate prosumers to
alter their consumption from the expected demand based on their
utility function. In addition, the nature of shiftable loads requires
the aggregator to consider the time-coupling rebound effect during
the price determination. This means that during on-peak hours,
the aggregator can increase selling prices to lower the prosumers’
demand so that they can sell more energy. Also, the aggregator can
reduce buying prices during the intervals of surplus generation to
motivate more electricity consumption. This interplay between the

Forecasted 
energy profiles 
and prosumers 

behaviour

Battery cost 
and 

specification

Retail 
electricity 

prices

Bilevel model for day-ahead market operation

Upper-level problem:

{Aggregator profit}

Subject to: pricing constraints and battery operation

Lower-level problem:

{Prosumers utility}

Subject to: available flexibility and intertemporal 
rebound effect

Piecewise linear approximation for lower-level problem

Convert the bilevel model to an MILP problem

Optimal solution for multi-interval
local market with community battery storage

Figure 1: Bi-levelmodel for day-ahead localmarket operation

two prices allows the total expected demand to remain unchanged
at the end of the day with respect to the rebound effect constraint.

This sequential movement between an aggregator and prosumers
represents a hierarchical structure of a strategic game. Since both
the aggregator and prosumers are aiming at maximizing their objec-
tive functions with conflicting interests, the problem is an instance
of the Stackelberg game, which can be formulated as a bilevel pro-
gram. In this game, the aggregator is the leader determining the
trading prices for the local market. The followers are prosumers,
who are considered rational via the administration of a home energy
management system (HEMS). Given the aggregator’s prices, the
prosumers will adjust their consumption in regard to their utility
function. This process is shown in Figure 1. It can be seen in the
figure that the market prices, 𝑝b𝑡 and 𝑝s𝑡 , obtained from solving the
aggregator’s maximization problem are passed to the prosumers’
problem. Thus, they are deemed as decision variables for the leader
while being considered as known parameters for the followers. Con-
versely, in the lower level, each prosumer maximizes their interest
by optimizing the consumption. Hence, the adjusted demand, 𝑥𝑛,𝑡 ,
are decision variables for the lower level, while known at the upper
level problem. Together with the local prices, the aggregator needs
to determine the charging and discharging power, 𝑃ch𝑡 and 𝑃dis𝑡 , for
the community battery state-of-charge (SOC) 𝐸𝑡 , to maximize its
profit.

The bilevel problem can be solved by reformulating it as a Mathe-
matical Program with Equilibrium Constraint (MPEC) [30]. In such
problems, the Karush-Kuhn-Tucker (KKT) optimality conditions
are typically used to replace the lower level problem with a set of
constraints for the upper level. However, the converted single-level
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optimization is non-convex, which is not only intractable but also
does not guarantee convergence to optimality. To resolve the issue,
we firstly apply a piecewise approximation to the non-linear terms
in the prosumers objective function. Then, we apply the strong du-
ality theorem to obtain the equivalent linear expression in the final
optimization model. The outcome is a single-level MILP problem,
which guarantees the convergence to the optimal solution.

The physical implementation of the proposed local market re-
quires a bi-directional communication link between the aggregator
and the participating prosumers. The local market interacts with
the upstream utility grid to balance any mismatch in the local gen-
eration and demand. Moreover, each prosumer must be equipped
with a HEMS that can autonomously schedule the household appli-
ances based on the preferences of the dwellers. All HEMSwithin the
same community must be integrated with a homogeneous trading
algorithm as a representative of a rational player. From the load
schedule ability and the historical data, HEMS is also responsible
for predicting and measuring generation, consumption and energy
transaction through a smart meter. As the prediction is outside the
scope of this paper, it is assumed available in the simulation studies.

4 PROBLEM FORMULATION
In this section, we elaborate on the specific objective functions
and constraints of the stakeholders in the proposed bilevel model.
The problems are formulated to maximize the profit and utility
of the aggregator and the prosumers, respectively. In the battery
sizing problem, we maximize the aggregator’s profit and operate
the battery by considering the cost per energy throughput on daily
operation. Upon obtaining the optimal capacity, the sizing problem
is modified to schedule the daily operation of local market aiming
at fully utilizing the battery potential. Using this bilevel model for
local market operation, we determine the local cleared prices.

4.1 Prosumers’ role identification
The set of prosumers participating in the local market is denoted
byN = {1, 2, ..., 𝑁 } and 𝑁 = |N | is the number of prosumers. Each
prosumer 𝑛 ∈ N can produce energy𝐺𝑛,𝑡 or consume energy 𝑥𝑛,𝑡
in each interval 𝑡 ∈ T = {1, 2, ...,𝑇 }. Because each prosumer can
either be a buyer or a seller at each time interval depending on
their predicted demand 𝑥𝑛,𝑡 and solar generation 𝐺𝑛,𝑡 , their roles
must be identified before the trading. These roles are reflected in
the buying/selling prices within the local market, 𝑝𝑛,𝑡 , and the
buying/selling prices from the retailer, 𝜆𝑛,𝑡 . If buyer is the role, the
prosumer is exposed to the buying prices from the local market as
𝑝𝑛,𝑡 = 𝑝b𝑡 , and the utility grid as 𝜆𝑛,𝑡 = 𝜆

res,b
𝑡 . Whereas sellers are

the opposite of buyers, i.e., 𝑝𝑛,𝑡 = 𝑝s𝑡 and 𝜆𝑛,𝑡 = 𝜆
res,s
𝑡 .

4.2 Aggregator’s profit with sizing problem
(upper level)

In the proposed setup, the aggregator is sitting between the existing
retailer and all the participating prosumers. Any energy transaction
within the local market must be accomplished by the intermediary
entity. Thus, it is responsible for supplying electricity to all the
buyers and purchasing the surplus generation from all the market
sellers at interval 𝑡 . The mismatch between the local community’s

generation and demand can either be compensated by the commu-
nity storage or by trading with the conventional retailer. The net
profit of the aggregator is as follows:

𝑃agg =
∑︁
𝑡 ∈T

∑︁
𝑛∈N

[
𝑝𝑛,𝑡 (𝑥𝑛,𝑡 −𝐺𝑛,𝑡 )

]
−

∑︁
𝑡 ∈T

(𝜆b𝑡 𝑛+𝑡 − 𝜆s𝑡𝑛
−
𝑡 )

−
∑︁
𝑡 ∈T

𝑃dis𝑡 𝐵ThP − 𝐵Sup (1)

where the difference in the first term, (𝑥𝑛,𝑡 −𝐺𝑛,𝑡 ), represents the
amount of energy of each prosumer that should be traded with the
aggregator at price 𝑝𝑛,𝑡 . The second term defines the interaction
with the upstream grid to balance the local generation and demand
mismatch. If the aggregate net energy is positive, the aggregator
must procure electricity, 𝑛+𝑡 , at the commercial retail price 𝜆b𝑡 . Con-
versely, if there is excess generation locally, the aggregator can sell
surplus energy, 𝑛−𝑡 , at the FiT, 𝜆

s
𝑡 . Since the aggregator is considered

as a commercial company (large consumer), they are exposed to
business retail prices, 𝜆b𝑡 /𝜆

s
𝑡 , which are different from the residen-

tial rates, 𝜆res,b𝑡 /𝜆res,s𝑡 . Please note that the aggregator cannot buy
from and sell to the conventional retailer at the same time. This is
always ensured because the retailer’s sale price is higher than the
FiT, thus, only one of the two variables, 𝑛+𝑡 and 𝑛−𝑡 , would have a
non-zero value in each interval. The third term models the battery
degradation by applying a per unit cost, 𝐵ThP, on the amount of
energy discharged from the battery, 𝑃dis𝑡 . Assuming that the bat-
tery will require replacement once it reaches the total throughput
according to the manufacturers’ warranty terms, the cost per-kWh
is defined as 𝐵ThP =

𝐵Bat
𝐿 ·Γ , where 𝐵Bat is the battery cost, 𝐿 is its

life time throughput limit, and Γ is the round-trip efficiency. The
last term in equation (1) denotes the daily supply charge, 𝐵Sup, that
the aggregator must pay to the Distribution System Operator for
utilizing the network.

4.3 Utility model of prosumers (lower level)
At every interval, prosumers can increase or decrease their sat-
isfaction of consuming electricity by varying their consumption
according to the buying/selling prices. Thus, the utility function of
the prosumers includes the overall cost of electricity consumption
as well as the satisfaction it brings.

𝑈 pro =
∑︁
𝑡 ∈T

∑︁
𝑛∈N

[
𝑝𝑛,𝑡 (𝐺𝑛,𝑡 − 𝑥𝑛,𝑡 ) + 𝐵(𝑥𝑛,𝑡 )

]
(2a)

𝐵(𝑥𝑛,𝑡 ) = 𝜆𝑛,𝑡 (𝑥𝑛,𝑡 − 𝑥𝑛,𝑡 )
(
1 − 𝛽𝑛

𝑥𝑛,𝑡 − 𝑥𝑛,𝑡

2𝑥𝑛,𝑡

)
(2b)

where the first term in (2a) represents the overall cost of electricity
for prosumer 𝑛. If the net generation, 𝐺𝑛,𝑡 − 𝑥𝑛,𝑡 , is positive, pro-
sumer 𝑛 is selling to the aggregator at price 𝑝𝑛,𝑡 = 𝑝s𝑡 at interval 𝑡 ,
whereas prosumer 𝑛 must buy electricity at price 𝑝𝑛,𝑡 = 𝑝b𝑡 from the
aggregator if the net generation is negative. The second term is the
satisfaction of consuming electricity, as expressed by the quadratic
function in (2b) introduced by [41]. From the prosumer satisfac-
tion model, it can be seen that the response of the load demand
depends on various factors, namely time of the day, retail prices,
expected consumption, and a price-responsive parameter depicting
prosumers flexibility with respect to prices, i.e., 𝛽𝑛 (0 < 𝛽𝑛 < 1).
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𝛽𝑛 = 0 means that prosumer 𝑛 is 100% flexible at time 𝑡 at the
given electricity price; hence, load can be at the baseline or at the
maximum expected demand in that time. This parameter can either
be reported by the prosumers during the configuration of HEMS
or estimated by the aggregator over time [1, 36]. Moreover, the
quadratic satisfaction function in (2b) is an ascending concave func-
tion; hence, the higher the consumption, the higher the satisfaction
value of the prosumers. However, extra consumption increases the
electricity bill of the prosumers. Therefore, the competing nature
of the two terms requires the prosumers to make rational decision
with respect to the prices of the aggregator.

4.4 Community-level battery sizing problem
To represent the hierarchical decision-making process among the
market stakeholders, Stackelberg game theory is employed in the
local market model. In addition to setting the local prices for the
bilevel program, the aggregator must also efficiently operate the
community-level battery unit by determining the optimal storage
capacity and by scheduling charging/discharging of the storage unit
in each interval. The bilevel model for the aggregator’s community
battery sizing problem is formulated as follows:

max
Ψ1

𝑃agg =
∑︁
𝑡 ∈T

∑︁
𝑛∈N

[
𝑝𝑛,𝑡 (𝑥𝑛,𝑡 −𝐺𝑛,𝑡 )

]
−

∑︁
𝑡 ∈T

(𝜆b𝑡 𝑛+𝑡 − 𝜆s𝑡𝑛
−
𝑡 )

−
∑︁
𝑡 ∈T

𝑃dis𝑡 𝐵ThP − 𝐵Sup − 𝐵PenBat (3a)

s.t.

𝜆
res,s
𝑡 ≤ 𝑝s𝑡 ≤ 𝑝b𝑡 ≤ 𝜆

res,b
𝑡 ∀𝑡 ∈ T (3b)∑︁

𝑛∈N
(𝑥𝑛,𝑡 −𝐺𝑛,𝑡 ) + 𝑃𝑡 = 𝑛+𝑡 − 𝑛−𝑡 ∀𝑡 ∈ T (3c)

𝐸𝑡 = 𝐸init − 1
Γ

𝑡∑︁
𝑗=1

𝑃dis𝑡 +
𝑡∑︁
𝑗=1

𝑃ch𝑡 ∀𝑡 ∈ T (3d)

SOC𝐸cap ≤ 𝐸𝑡 ≤ SOC𝐸cap ∀𝑡 ∈ T (3e)

𝑃𝑡 = 𝑃ch𝑡 − 𝑃dis𝑡 ∀𝑡 ∈ T (3f)

𝑃min ≤ 𝑃𝑡 ≤ 𝑃max ∀𝑡 ∈ T (3g)

𝑃max = −𝑃min =
𝐸cap

𝑇𝑐
(3h)

𝑃𝑡 − 𝑃𝑡−1 = 𝛿+𝑡 − 𝛿−𝑡 ∀𝑡 ∈ T , 𝑡 > 0 (3i)

𝐵PenBat =
1
𝑀

(𝐸cap +
∑︁
𝑡 ∈T

𝛿+𝑡 +
∑︁
𝑡 ∈T

𝛿−𝑡 ) (3j)

max
𝑥𝑛,𝑡

𝑈 pro =
∑︁
𝑡 ∈T

∑︁
𝑛∈N

[
𝑝𝑛,𝑡 (𝐺𝑛,𝑡 − 𝑥𝑛,𝑡 ) + 𝐵(𝑥𝑛,𝑡 )

]
(3k)

s.t.

𝑥min
𝑛,𝑡 ≤ 𝑥𝑛,𝑡 ≤ 𝑥max

𝑛,𝑡 ∀𝑛 ∈ N , ∀𝑡 ∈ T (3l)∑︁
𝑡 ∈T

𝑥𝑛,𝑡 =
∑︁
𝑡 ∈T

𝑥𝑛,𝑡 ∀𝑛 ∈ N (3m)

where Ψ1 = {𝑝b𝑡 , 𝑝s𝑡 , 𝑃ch𝑡 , 𝑃dis𝑡 , 𝐸𝑡 , 𝑛
+
𝑡 , 𝑛

−
𝑡 , 𝛿

+
𝑡 , 𝛿

−
𝑡 , 𝑥𝑛,𝑡 }. The upper

level program (3a)–(3j) maximizes the aggregator’s profit from coor-
dinating the local transactions. The newly added term in (3a), 𝐵PenBat ,
represents a small penalty for sizing and operating the community
battery which is defined in equations (3i) and (3j). To be specific,
when solving for the sizing optimization, the battery capacity, 𝐸cap,
can take on any arbitrarily large value as long as it can satisfy the
charging and discharging requirements in each interval. Thus, a
penalty coefficient, 1

𝑀
where 𝑀 is a sufficiently large number, is

applied to lower the maximum capacity to a value that is equal to
highest battery SOC at any given time. Please note that the bat-
tery investment cost is already reflected in the per-unit cost, 𝐵ThP.
In addition, the battery operation can fluctuate rapidly from one
interval to the next that is harmful to the battery lifetime. Hence,
it is necessary to reduce switching from charging to discharging,
𝛿−, and vice versa, 𝛿+, by considering the charging/discharging
sequences in consecutive intervals (3i), and penalizing it (3j). To
ensure that the local market always provides more incentives than
the conventional retailer, the local prices are constrained by (3b).
Equation (3c) denotes the local net demand from the aggregated
energy profiles of all the prosumers and the battery operation, 𝑃𝑡 .
At any time interval, the battery SOC is given in (3d) with a lower
(SOC) and upper (SOC) bounds in (3e). Please bear in mind that
due to the round-trip efficiency, Γ, and the cost per energy through-
put, it is guaranteed that at most only one of the two charging,
𝑃ch𝑡 , and discharging, 𝑃dis𝑡 , variables in (3f) can be positive. The
limits on charging and discharging power are presented in (3g)
and (3h), where the constant 𝑇𝑐 is the minimum hours required to
fully charge the battery from the lowest SOC, and is given by the
manufacturers when purchasing from the available models in the
market, e.g., Tesla PowerWall [43].

In the lower level optimization (3k)–(3m), the objective is to max-
imize the prosumers utility over the time horizon. In this model,
the HEMS predicts day-ahead PV generation and load demand.
The expected energy consumption for every interval 𝑥𝑛,𝑡 for one
day ahead consists of base load and flexible demand. The flexi-
ble demand allows prosumers to vary their consumption either
upwards or downwards to minimize their electricity costs. Cor-
respondingly, this component specify boundaries on the energy
demand in (3l). The lower bound 𝑥min

𝑛,𝑡 = (1−𝛼𝑛,𝑡 )𝑥𝑛,𝑡 is considered
as the base load that must always be delivered, whereas the upper
bound 𝑥max

𝑛,𝑡 = (1 + 𝛼𝑛,𝑡 )𝑥𝑛,𝑡 is the maximum demand that can be
shifted to that interval. To determine the amount of flexible demand
at each interval, a weighting ratio on the expected consumption,
i.e. 𝛼𝑛,𝑡 (0 < 𝛼𝑛,𝑡 < 1), is utilized. Depending on the aggregator’s
prices, prosumers can decide to deviate from their expected demand
to maintain their utility at the highest value. However, at the end of
the time horizon, the adjusted consumption must always be equal to
the expected demand, which is ensured in (3m). This time-coupling
demand constraint represents the inter-temporal rebound effect of
the prosumers.

4.5 Market operation problem
During the market operation, the battery capacity is already de-
termined. Although the proposed sizing problem can still be used
for clearing the market, the model cannot use the full potential



e-Energy ’22, June 28–July 1, 2022, Virtual Event, USA Dinh, et al.

of the battery. This is due to the fact that the battery operation
is restricted by the cost per throughput, 𝐵ThP, which causes the
battery to stay idle when the market price drops below the per-unit
throughput cost. Since manufacturers normally offer their storage
warranty based on the number of years since the installation or
the total aggregated throughput, whichever comes first, the battery
might not achieve its rated cycle count before reaching the end of
warranty period. The issue can be tackled by removing the cost
per throughput and allowing the battery to freely operate on a
daily basis. However, due to the nature of ToU pricing, the storage
will be forced to practice tariff arbitrage by purchasing and selling
at different price ranges. This is not economical since the battery
operation is usually costlier than tariff arbitrage; hence, leading
to faster degradation by performing multiple cycles per day. As
a result, the proposed solution is to allow the battery an amount
of free throughput for daily operation and apply the per-unit cost
on the extra throughput within a day. The daily free throughput,
𝐶ThP = 𝐿 ·Γ

𝑊Pe
, is calculated from the lifetime throughput, 𝐿 · Γ, and

the warranty period,𝑊Pe, that are specified by the manufacturers.
In this respect, the battery sizing problem, (3), can be modified to
be used for optimal daily operation of the local market as follows:

max
Ψ2

𝑃agg =
∑︁
𝑡 ∈T

∑︁
𝑛∈N

[
𝑝𝑛,𝑡 (𝑥𝑛,𝑡 −𝐺𝑛,𝑡 )

]
−

∑︁
𝑡 ∈T

(𝜆b𝑡 𝑛+𝑡 − 𝜆s𝑡𝑛
−
𝑡 )

−
( ∑︁
𝑡 ∈T

𝑃dis𝑡 −𝐶ThP
)
𝐵ThP · 𝜙ThP − 𝐵Sup − 𝐵

′Pen
Bat (4a)

s.t. (3a)–(3i), (3k)–(3m) (4b)

𝐵
′Pen
Bat =

1
𝑀

( ∑︁
𝑡 ∈T

𝛿+𝑡 +
∑︁
𝑡 ∈T

𝛿−𝑡
)

(4c)

−𝑀 (1 − 𝜙ThP) ≤
∑︁
𝑡 ∈T

𝑃dis𝑡 −𝐶ThP ≤ 𝑀 · 𝜙ThP (4d)

𝜙ThP ∈ {0, 1} (4e)

where Ψ2 = {𝑝b𝑡 , 𝑝s𝑡 , 𝑃ch𝑡 , 𝑃dis𝑡 , 𝐸𝑡 , 𝑛
+
𝑡 , 𝑛

−
𝑡 , 𝛿

+
𝑡 , 𝛿

−
𝑡 , 𝜙

ThP, 𝑥𝑛,𝑡 }. The
penalty term, 𝐵

′Pen
Bat , in (4c) is modified to eliminate the battery

capacity, which is known at this stage. A new binary variable, 𝜙ThP,
is introduced to determine whether the battery used more than
the provided throughput for that day. Constraints (4d) enforce a
value of 0 on 𝜙ThP if the discharge energy is within the limit while
set it to 1 if the limit is reached; hence, the corresponding cost is
applied to the aggregator, as noted in (4a). It is worth noting that
the aggregator’s profit, i.e., the objective function (4a), does not
include the initial battery cost. This cost is then considered as daily
payment and is deducted from the objective value when analyzing
the aggregator’s net profit in subsection 6.2.

5 SOLUTION METHOD
The proposed bilevel problem can be solved by deriving the KKT
optimality conditions for the lower level problem, which turns the
optimization into a single-level model [11]. However, this conver-
sion introduces new complementarity constraints and combines
all the decision variables from both levels. Although the comple-
mentarity constraints can be linearized using binary variables [15],

there will be bilinear terms that include multiplication of the load
consumption, 𝑥𝑛,𝑡 , and the local prices, 𝑝𝑛,𝑡 , in (3a) making the
whole problem to be non-convex. To address the issue, strong dual-
ity theorem [10] can be applied to obtain a linear expression equal to
the bilinear term, 𝑝𝑛,𝑡𝑥𝑛,𝑡 . However, since the satisfaction function
in the lower level is quadratic, its dual function will also introduce
new bilinear terms in the model. Therefore, the satisfaction needs
to be linearized too. In this regard, the workflow for solving the
bilevel model is as follows:

(1) Step 1: Apply piecewise linear approximation on the satis-
faction function. Since the satisfaction function is concave
with respect to the decision variable, 𝑥𝑛,𝑡 , (see expression in
Appendix A), no binary variables are required.

(2) Step 2: Apply strong duality theorem on the lower level prob-
lem to obtain the equivalent linear expression for 𝑝𝑛,𝑡𝑥𝑛,𝑡 .

(3) Step 3: Substitute the lower level problem by KKT optimality
conditions to cast the bilevel program into anMPEC problem.

5.1 Step 1: Linearization of the lower level
problem

To facilitate the understanding of readers, the linearization approx-
imation of a concave function 𝑓 (𝑥) into different regions | |PW| |
over the range [𝑥min, 𝑥max] is expressed in Appendix B. Since it
is assumed that the lower and upper bounds of the flexibility is
symmetric over the predicted load demand, the number of segments
| |PW| | must be even to enforce a change of slope at the forecast
consumption point. The optimization formulation is then written
as follows with the succession of dual variables for each constraint
equation.

max
𝑥𝑛,𝑡 ,𝑥

𝑝𝑤

𝑛,𝑡

𝑈 pro =
∑︁
𝑡 ∈T

∑︁
𝑛∈N

[
𝐵(𝑥min

𝑛,𝑡 ) +
∑︁

𝑝𝑤∈PW
𝑀

𝑝𝑤
𝑛,𝑡 𝑥

𝑝𝑤
𝑛,𝑡

+ 𝑝𝑛,𝑡 (𝐺𝑛,𝑡 − 𝑥𝑛,𝑡 )
]

(5a)

s.t.

𝑥𝑛,𝑡 = 𝑥min
𝑛,𝑡 +

∑︁
𝑝𝑤∈PW

𝑥
𝑝𝑤
𝑛,𝑡 : 𝛾𝑛,𝑡 ∀𝑛 ∈ N , ∀𝑡 ∈ T (5b)

0 ≤ 𝑥
𝑝𝑤
𝑛,𝑡 ≤

𝑥max
𝑛,𝑡 − 𝑥min

𝑛,𝑡

| |PW| | : 𝜇𝑝𝑤,1
𝑛,𝑡 , 𝜇

𝑝𝑤,2
𝑛,𝑡

∀𝑝𝑤 ∈ PW, ∀n ∈ N , ∀t ∈ T (5c)

∑︁
𝑡 ∈T

𝑥𝑛,𝑡 =
∑︁
𝑡 ∈T

𝑥𝑛,𝑡 : 𝜑𝑛 ∀𝑛 ∈ N . (5d)

5.2 Step 2: Linearization of the bilinear terms
With the approximation of the satisfaction function, the lower level
problem is linear and continuous. The strong duality theorem can be
used to obtain the equivalent expression of 𝑝𝑛,𝑡𝑥𝑛,𝑡 at the optimum.
At such point, the values for both the primary (5a) and its dual
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objective function are equal to each other [10]:∑︁
𝑡 ∈T

∑︁
𝑛∈N

𝐵(𝑥min
𝑛,𝑡 ) +

∑︁
𝑝𝑤∈PW

𝑀
𝑝𝑤
𝑛,𝑡 𝑥

𝑝𝑤
𝑛,𝑡 + 𝑝𝑛,𝑡 (𝐺𝑛,𝑡 − 𝑥𝑛,𝑡 )

 =

∑︁
𝑡 ∈T

∑︁
𝑛∈N

[
𝐵(𝑥min

𝑛,𝑡 ) + 𝑝𝑛,𝑡𝐺𝑛,𝑡 + 𝑥min
𝑛,𝑡 𝛾𝑛,𝑡

+
∑︁

𝑝𝑤∈PW

𝑥max
𝑛,𝑡 − 𝑥min

𝑛,𝑡

| |PW| | 𝜇
𝑝𝑤,2
𝑛,𝑡 + 𝑥𝑛,𝑡𝜑𝑛

]
. (6)

Then, the final model can be cast into an MILP by replacing the
bilinear terms 𝑝𝑛,𝑡𝑥𝑛,𝑡 with their equivalent linear expressions:∑︁
𝑡 ∈T

∑︁
𝑛∈N

𝑝𝑛,𝑡𝑥𝑛,𝑡 =
∑︁
𝑡 ∈T

∑︁
𝑛∈N

[
− 𝑥min

𝑛,𝑡 𝛾𝑛,𝑡 − 𝑥𝑛,𝑡𝜑𝑛

+
∑︁

𝑝𝑤∈PW

(
𝑀

𝑝𝑤
𝑛,𝑡 𝑥

𝑝𝑤
𝑛,𝑡 −

𝑥max
𝑛,𝑡 − 𝑥min

𝑛,𝑡

| |PW| | 𝜇
𝑝𝑤,2
𝑛,𝑡

)]
. (7)

5.3 Step 3: Casting the bilevel problem into an
MILP model

The final step in solving the proposed bilevel problem is casting it
into an MPEC model. The linearized lower level problem (5a)–(5d)
is substituted by the KKT optimality conditions as follows:

𝑝𝑛,𝑡 + 𝛾𝑛,𝑡 + 𝜑𝑛 = 0 ∀𝑛 ∈ N , ∀𝑡 ∈ T (8a)

𝑀
𝑝𝑤
𝑛,𝑡 + 𝛾𝑛,𝑡 + 𝜇

𝑝𝑤,1
𝑛,𝑡 − 𝜇

𝑝𝑤,2
𝑛,𝑡 = 0 ∀𝑝𝑤 ∈ PW, ∀n ∈ N , ∀t ∈ T

(8b)

𝑥𝑛,𝑡 − 𝑥min
𝑛,𝑡 −

∑︁
𝑝𝑤∈PW

𝑥
𝑝𝑤
𝑛,𝑡 = 0 ∀𝑛 ∈ N , ∀𝑡 ∈ T (8c)

∑︁
𝑡 ∈T

𝑥𝑛,𝑡 −
∑︁
𝑡 ∈T

𝑥𝑛,𝑡 = 0 ∀𝑛 ∈ N (8d)

𝑥
𝑝𝑤
𝑛,𝑡 ≥ 0 ∀𝑝𝑤 ∈ PW, ∀n ∈ N , ∀t ∈ T (8e)

𝑥max
𝑛,𝑡 − 𝑥min

𝑛,𝑡

| |PW| | − 𝑥
𝑝𝑤
𝑛,𝑡 ≥ 0 ∀𝑝𝑤 ∈ PW, ∀n ∈ N , ∀t ∈ T (8f)

𝜇
𝑝𝑤,1
𝑛,𝑡 , 𝜇

𝑝𝑤,1
𝑛,𝑡 ≥ 0 ∀𝑝𝑤 ∈ PW, ∀n ∈ N , ∀t ∈ T (8g)

𝑥
𝑝𝑤
𝑛,𝑡 ≤ Φ

𝑝𝑤,1
𝑛,𝑡 𝑀 ∀𝑝𝑤 ∈ PW, ∀n ∈ N , ∀t ∈ T (8h)

𝑥max
𝑛,𝑡 − 𝑥min

𝑛,𝑡

| |PW| | − 𝑥
𝑝𝑤
𝑛,𝑡 ≤ Φ

𝑝𝑤,2
𝑛,𝑡 𝑀 ∀𝑝𝑤 ∈ PW, ∀n ∈ N , ∀t ∈ T

(8i)

𝜇
𝑝𝑤,1
𝑛,𝑡 ≤ (1 − Φ

𝑝𝑤,1
𝑛,𝑡 )𝑀 ∀𝑝𝑤 ∈ PW, ∀n ∈ N , ∀t ∈ T (8j)

𝜇
𝑝𝑤,2
𝑛,𝑡 ≤ (1 − Φ

𝑝𝑤,2
𝑛,𝑡 )𝑀 ∀𝑝𝑤 ∈ PW, ∀n ∈ N , ∀t ∈ T (8k)

Φ
𝑝𝑤,1
𝑛,𝑡 ,Φ

𝑝𝑤,2
𝑛,𝑡 ∈ {0, 1} ∀𝑝𝑤 ∈ PW, ∀n ∈ N , ∀t ∈ T (8l)

where (8a)–(8d) are derived from the Lagrangian function and (8e)–
(8l) are the equivalent linear expression of the complementarity
constraints (see Appendix C). These KKT optimality conditions

together with the primal constraints of the upper level problem
constitute the feasible region of the final MILP model. Also, the
objective function is derived from the upper level problem with the
linear substitution for the bilinear terms. The final model of the
sizing problem is written as follows:

max
Ψ3

𝑃agg =
∑︁
𝑡 ∈T

∑︁
𝑛∈N

[
− 𝑥min

𝑛,𝑡 𝛾𝑛,𝑡 − 𝑥𝑛,𝑡𝜑𝑛 − 𝑝𝑛,𝑡𝐺𝑛,𝑡

+
∑︁

𝑝𝑤∈PW

(
𝑀

𝑝𝑤
𝑛,𝑡 𝑥

𝑝𝑤
𝑛,𝑡 −

𝑥max
𝑛,𝑡 − 𝑥min

𝑛,𝑡

| |PW| | 𝜇
𝑝𝑤,2
𝑛,𝑡

)]
− 𝐵Sup

−
∑︁
𝑡 ∈T

(𝜆b𝑡 𝑛+𝑡 − 𝜆s𝑡𝑛
−
𝑡 ) −

∑︁
𝑡 ∈T

𝑃dis𝑡 𝐵ThP − 𝐵PenBat (9a)

s.t. (3b)–(3j), (8a)–(8l) (9b)

where Ψ3 = {𝑝b𝑡 , 𝑝s𝑡 , 𝑃ch𝑡 , 𝑃𝑑𝑖𝑠𝑡 , 𝐸𝑡 , 𝑛
+
𝑡 , 𝑛

−
𝑡 , 𝛿

+
𝑡 , 𝛿

−
𝑡 , 𝑥𝑛,𝑡 , 𝑥

𝑝𝑤
𝑛,𝑡 , 𝛾𝑛,𝑡 , 𝜑𝑛 ,

𝜇
𝑝𝑤,1
𝑛,𝑡 , 𝜇

𝑝𝑤,2
𝑛,𝑡 ,Φ

𝑝𝑤,1
𝑛,𝑡 ,Φ

𝑝𝑤,2
𝑛,𝑡 }. The market operation problem is pre-

sented as follows:

max
Ψ4

𝑃agg =
∑︁
𝑡 ∈T

∑︁
𝑛∈N

[
− 𝑥min

𝑛,𝑡 𝛾𝑛,𝑡 − 𝑥𝑛,𝑡𝜑𝑛 − 𝑝𝑛,𝑡𝐺𝑛,𝑡

+
∑︁

𝑝𝑤∈PW

(
𝑀

𝑝𝑤
𝑛,𝑡 𝑥

𝑝𝑤
𝑛,𝑡 −

𝑥max
𝑛,𝑡 − 𝑥min

𝑛,𝑡

| |PW| | 𝜇
𝑝𝑤,2
𝑛,𝑡

)]
− 𝐵Sup

−
∑︁
𝑡 ∈T

(𝜆b𝑡 𝑛+𝑡 − 𝜆s𝑡𝑛
−
𝑡 ) −

( ∑︁
𝑡 ∈T

𝑃dis𝑡 −𝐶ThP
)
𝐵ThP · 𝜙ThP − 𝐵

′Pen
Bat

(10a)

s.t. (3b)–(3i), (4c)–(4e), (8a)–(8l) (10b)

where Ψ4 = {𝑝b𝑡 , 𝑝s𝑡 , 𝑃ch𝑡 , 𝑃dis𝑡 , 𝐸𝑡 , 𝑛
+
𝑡 , 𝑛

−
𝑡 , 𝛿

+
𝑡 , 𝛿

−
𝑡 , 𝑥𝑛,𝑡 , 𝑥

𝑝𝑤
𝑛,𝑡 , 𝜙

ThP, 𝛾𝑛,𝑡 ,
𝜑𝑛, 𝜇

𝑝𝑤,1
𝑛,𝑡 , 𝜇

𝑝𝑤,2
𝑛,𝑡 ,Φ

𝑝𝑤,1
𝑛,𝑡 ,Φ

𝑝𝑤,2
𝑛,𝑡 }.

6 SIMULATION STUDY
To show the applicability of the proposed local market with central-
ized battery storage, we use real-world data of East coast Australian
prosumers [9]. In subsection 6.1, we present the simulation setup
and the workflow for sizing the community storage for both pricing
schemes. In subsection 6.2, we highlight the quantitative profits
and utility for the aggregator and prosumers, respectively.

6.1 Simulation setup
The load demand database contains one year worth of data for
300 prosumers including gross solar PV generation and general
electricity consumption from 2012. Due to the growth in size of the
average rooftop solar PV system in Australia [12], we increased the
PV generation data for all the prosumers by 2.5 times uniformly and
finally picked 33 prosumers with the highest rooftop PV capacity
for the simulation. Originally, the data has a resolution of half hour,
but to reduce the simulation time, we re-sampled the load demand
profiles to hourly intervals. Also, instead of using the whole year
worth of data for simulation, we selected the first 3 days of each
month (36 days in total) for ease of gathering results and analysis.
Out of those 3 days, two days are deliberately picked as working
weekdays and the third day is either Saturday or Sunday. Note that
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Figure 2: Residential retail ToU from EnergyAustralia [14]
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Figure 3: Business retail ToU from EnergyAustralia [14]

the proposed model can be applied for shorter interval resolution
as long as appropriate data is available.

EnergyAustralia [14], which is one of the largest electricity re-
tailer in Australia, is chosen as a reference for the retail tariffs in
(3b). Since the aggregator is considered as a business consumer,
they are subjected to the business plans, which have different prices
compared to the residential plans. The overview of the residential
and business ToU tariffs from EnergyAustralia is presented in Fig-
ure 2 and 3, respectively, with seasonal pricing structure depending

Table 1: Input data for the simulation study

Battery data
Γ 90 battery round-trip efficiency (%)
SOC 100 battery maximum SOC (%)
SOC 0 battery minimum SOC (%)
𝐸init 0 battery initial SOC (kWh)
𝑇𝑐 2.7 rated energy and power ratio (h)
𝐵ThP 0.23 cost per kWh throughput (AUD$/kWh)
𝑊Pe 10 battery warranty period (years)
𝐿 𝐸cap ·𝑊Pe battery warranty kWh throughput (kWh)

Prosumers data
𝛽𝑛 0.2 price responsiveness
𝛼𝑛,𝑡 0.7 amount of available flexibility (%)

on the months and days of the week. As one can see, the residential
electricity plan has a slightly higher on-peak price in comparison
with the business plan as opposed to lower rates on the other two
periods with a difference of more than 5¢/kWh during the Shoulder
periods. As unfavorable as it looks for aggregators in this scenario,
they still make profit, as later shown in subsection 6.2, by procuring
the energy from local sellers and selling back to the local buyers
at higher prices (still lower than retailers’ rates). Therefore, this
can be a hindrance to attract new customers due to the partial-
ity of the aggregator. To address the issue, we introduce a second
pricing scheme by eliminating the gap between buying and selling
prices to obtain only one consensus payment in each interval. This
is enforced by replacing (3b) with equality constraint such that
𝜆
res,s
𝑡 ≤ 𝑝s𝑡 = 𝑝b𝑡 ≤ 𝜆

res,b
𝑡 ∀𝑡 ∈ T .

Since the market horizon is 24 hours ahead, the sizing duration
is limited to the same horizon with hourly resolution. Although
the problem can be optimized for multiple days, the computational
time grows exponentially with respect to the number of discrete
intervals; hence, intractable. In this regard, the optimal capacity in
each day is considered as one of the many candidates that provides
us with an optimal range of battery capacities. Different battery
sizes within the range are then utilized to rerun the model using the
operation formulation in section 4.5. The workflow for determining
the optimal storage unit is illustrated in Figure 4.

We use Tesla PowerWall as the battery unit in this study with a
cost of AUD$11050 for a 13.5 kWh capacity and 5 kW power rating
[43]. Then, the optimal community battery system is constructed by
stacking multiple Tesla PowerWalls together to obtain the required
capacity and power ratings. Although the battery comes with a
default throughput warranty, it is assumed that the community
storage can perform at least one cycle per day for 10 years, which
is also the warranty period of the unit. This gives the battery a
total of 3650 cycles at the end of its life which is lower than the
expected warranty term in other works [17, 21]. Moreover, we
assumed that the per-unit cost decreases with respect to the scale
of the storage system [37]. In this model, the community storage is
expected to range between 80 kWh to 300 kWh depending on the
number of prosumers. Therefore, we applied an 8% reduction on
the battery price. Overall, the cost per kWh throughput is expected
to be 𝐵ThP = AUD$0.23/kWh. The remaining battery data together
with the prosumers input are presented in Table 1. All instances
are simulated using Python and Gurobi 9.0 on a desktop with an
Intel Core i7 at 2.00GHz CPU and 16GB of RAM.

6.2 The simulation results
The net profit and optimal storage capacities on selected 36 days
for both pricing schemes are shown in Figure 5. It is clear that
the aggregator receives higher payoff in the two-price scheme by
exploiting the gap between the local buying and selling prices.
As shown in Figures 2 and 3, both residential and business tariff
structures are the same during autumn and spring in Australia (Apr-
May and Sep-Oct) with a lower cost for the residential ToU. Hence,
the aggregator’s net profit is at minimum comparing to summer
and winter. Another reason contributing to the low aggregator’s
profit in those months is the lack of community storage. It can
be proven that the battery operation is only economical during
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Optimal 
capacity 
day #36

Battery sizing problem in Section 4.4

Figure 4: Flowchart for sizing the community battery storage
for two pricing schemes

Peak price intervals. To do so, assume that instead of selling excess
PV generation back to the grid, the community storage is charged.
In that case, the total cost per kWh for the aggregator will tally
at 0.3136¢/kWh, which is the sum of the storage cost per kWh
throughput and business FiT. This cost is only lower than the Peak
tariff and slightly higher than the Shoulder price. Therefore, while
the results show different battery sizes for weekdays of winter and
summer seasons, it is not cost-effective to adopt a storage unit for
the autumn and spring as well as weekends based on the retail tariff
structure. The optimal battery results in Figure 5c also reflect the
impact of longer summer days and Daylight saving hours in the
East coast Australia. Because days are longer in summer, prosumers
can generate more electricity from their rooftop PV systems in the
early morning and late afternoon when they need energy the most.
Thus, less energy is imported during Peak hours, which results in a
smaller battery size comparing to the winter months.

As mentioned in subsection 6.1, upon obtaining optimal battery
sizes for each day, these values are then used to provide a bound-
ary for finding the single optimal capacity for the entire year. We
assume that this community battery is constructed by stacking
multiple Tesla PowerWalls together. According to the battery sizes
from stage 1, the maximum battery capacity is about 24 Tesla units,
which is obtained from a weekday in July where the battery ca-
pacity was 322 kWh. Figure 6 shows the net profit from different
number of PowerWalls for both pricing schemes. As can be seen,
the aggregator’s net profits decrease significantly after around 9
Tesla units, we then halve the simulation results to only 12 Pow-
erWalls for ease of observation. The results show that the ideal
community storage is six (seven) Tesla PowerWall units in the two
(single) pricing scheme. That is equivalent to 81 kWh/30 kW (94.5
kWh/35 kW) in the two (single) pricing scheme. Since the difference
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Figure 5: Daily aggregator’s net profit and optimal storage
capacity from both pricing schemes
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Figure 6: Aggregator’s net profit from different number of
battery units for both pricing schemes in 36 days

between the profit of six and seven battery units in the one pricing
scheme is minimal, we will use six batteries to analyze for the rest
of our study. Please note that if a smaller battery step size was
considered, the sweep would be less significant in Figure 6. Yet, the
optimal battery size would have been between 6 to 7 Powerwalls
(81–94.5 kWh) in our case study. If the system is to be scaled up
to involve more prosumers, the 13.5 kWh discrete step would be
small compared to the optimal size of the battery system; hence,
the resolution would be less important. With a maximum profit of
AUD$576.16 (AUD$88.8) for the two (single) pricing scheme from
the chosen 36 days, a payback period of 5.1 years (8.7 years) can
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Figure 7: Prosumers’ utility in both pricing schemes

be achieved before the battery replacement. Since the aggregator’s
profit and consumers’ utility are competing objectives in this prob-
lem, the single pricing scheme, which gives a lower profit to the
aggregator, provides much higher utility for prosumers as high-
lighted in Figure 7. Moreover, when comparing to household-level
batteries, the optimal 6 Tesla units are equivalent to 2.45 kWh/0.9
kW storage unit per prosumer, which is significantly less than what
prosumers can buy from the market. Even if such a custom-built
battery was available, prosumers would not receive the more at-
tractive energy prices offered by the aggregator. Therefore, it is in
the best interest of the prosumers to join the local market operated
by the aggregator.

The energy and pricing profiles for themarket operation utilizing
six Tesla battery units are shown in Figure 8 and 9. One weekday
and one weekend in December (summer in Australia) are used to
highlight the prosumers demand response and community battery
operation. In both days, the total net energy profiles show a boost
in self-consumption (a decrease in reverse power flow) within the
local community, which is achieved by charging the community
battery and increasing consumption (shifted loads) from prosumers.
Specifically, as shown in Figures 8a and 9a, a cumulative reversed
energy of 85.4 kWh is reduced between hours 11–16 for the week-
day, while the weekend achieves a reduction of 139.9 kWh between
hours 9–16. Then, due to the rebound effect, prosumers reduce their
demand in later periods, specifically hours 17–20. These time slots
also correspond to the Peak and Shoulder periods of the weekday
and weekend, respectively, which is the most profitable intervals
for the battery to be discharged. In terms of local prices, it is obvious
that the proposed local market always give higher incentives than
the conventional retailer in both pricing schemes. Figures 8b and
9b show that in the first six hours of the two days, the local prices
are equal to the retailer’s prices. Since there is no solar generation,
no local trading occurs in these first few intervals. From 9–16, the
aggregator decreases the buying prices for the local community
in response to the excess solar generation, which triggers higher
consumption in prosumers by shifting their load. Then in late af-
ternoon, and also early morning, selling prices are increased from
the FiT to incentivize prosumers to lower their consumption with
respect to the rebound effect, and to increase utility by selling more
energy. As previously mentioned, even though operating the com-
munity battery on weekends is not as cost-effective as procuring
energy directly from the grid, the battery still performs energy
arbitrage due to the free daily throughput in Figure 9c. Also, the
weekday profiles of the battery operation in Figure 8c show that
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Figure 8: Market operation of a “weekday” in December (sum-
mer in Australia) with 81 kWh community battery

the battery does not exceed one cycle per day. Therefore, the aggre-
gator will not fully utilize the battery within the warranty period if
it stays idle during weekends.

7 CONCLUSION
In this paper, we proposed a local market model, where the aggre-
gator could optimally size and operate a community-level battery
storage system. Since the aggregator was proposed as a central
entity that coordinates the energy transaction for the local pro-
sumers, we used Stackelberg game to model the strategic behaviour
of the stakeholders. Here, the aggregator took the first move by set-
ting the market prices and battery charging/discharging processes
for one day ahead. Then, the local prosumers reacted accordingly
by adjusting the energy consumption with respect to their satis-
faction and load rebound effect. To solve the sizing problem, the
bilevel model was recast into an MILP problem using strong duality
theorem and KKT optimality conditions. In the end, two different
pricing scenarios were adopted to investigate the trade-off between
the aggregator’s profit and prosumers’ utility. We evaluated the
proposed framework using real-world data from 33 prosumers in
Australia. The simulation results showed that the local market al-
ways provided higher incentives than the conventional retailer,
especially in the single pricing scheme. In contrast, the two pricing
scheme provided a better business model for the aggregator. Both
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Figure 9:Market operation of a “weekend” in December (sum-
mer in Australia) with 81 kWh community battery

pricing schemes were optimal with a 81 kWh/30 kW battery. The
future work focuses on comparing the financial benefit of the com-
munity storage with multiple household-level battery units, and
the improvement of satisfaction function to incorporate the cross
elasticity of prosumers responsiveness.
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A PROOF OF PROSUMERS’ UTILITY
CONCAVITY

The prosumers utility function in (2a) and (2b) can be expanded as:

𝑈 pro =
∑︁
𝑡 ∈T

∑︁
𝑛∈N

[
−
𝜆𝑛,𝑡 𝛽𝑛

2𝑥𝑛,𝑡
𝑥2𝑛,𝑡 +

(
𝜆𝑛,𝑡 𝛽𝑛 − 𝑝𝑛,𝑡 + 𝜆𝑛,𝑡

)
𝑥𝑛,𝑡

+ 𝑝𝑛,𝑡𝐺𝑛,𝑡 −
𝜆𝑛,𝑡 𝛽𝑛𝑥𝑛,𝑡

2

]
=

∑︁
𝑡 ∈T

∑︁
𝑛∈N

𝑓 (𝑥𝑛,𝑡 ). (11)

Considering the fact that 𝑓 (𝑥𝑛,𝑡 ) is a continuous quadratic function,
its second derivative is given by:

𝑓 ′′(𝑥𝑛,𝑡 ) = −
𝜆𝑛,𝑡 𝛽𝑛

𝑥𝑛,𝑡
∀𝑛 ∈ N , ∀𝑡 ∈ T . (12)

Since 𝜆𝑛,𝑡 > 0, 𝑥𝑛,𝑡 > 0 and 0 < 𝛽𝑛 < 1, we then have 𝑓 ′′(𝑥𝑛,𝑡 ) < 0.
Thus,𝑈 pro is strictly concave with respect to 𝑥𝑛,𝑡 .

B PIECEWISE LINEAR APPROXIMATION OF A
CONCAVE FUNCTION

The linearization approximation of a concave function 𝑓 (𝑥) into
different regions | |PW| | over the range [𝑥min, 𝑥max] can be written
as in (13a)-(13c), while (13d)-(13e) are used to define the associated
constants.

𝑓 (𝑥) = 𝑓 (𝑥min) +
∑︁

𝑝𝑤∈PW
𝑀𝑝𝑤𝑢𝑝𝑤 (13a)

𝑥 = 𝑥min +
∑︁

𝑝𝑤∈PW
𝑢𝑝𝑤 (13b)

0 ≤ 𝑢𝑝𝑤 ≤ 𝐴𝑝𝑤 ∀𝑝𝑤 ∈ PW (13c)∑︁
𝑝𝑤∈PW

𝐴𝑝𝑤 = 𝑥max − 𝑥min (13d)

𝑀𝑝𝑤 =
𝑓 (∑𝑝𝑤

𝑞=1𝐴
𝑞) − 𝑓 (∑𝑝𝑤−1

𝑞=1 𝐴𝑞)
𝐴𝑝𝑤

∀𝑝𝑤 ∈ PW. (13e)

C KKT OPTIMALITY CONDITIONS
The Lagrangian function for the lower level problem in (5a)–(5d) is:

L = −
∑︁
𝑡 ∈T

∑︁
𝑛∈N

[
𝐵(𝑥min

𝑛,𝑡 ) +
∑︁

𝑝𝑤∈PW
𝑀

𝑝𝑤
𝑛,𝑡 𝑥

𝑝𝑤
𝑛,𝑡 + 𝑝𝑛,𝑡 (𝐺𝑛,𝑡 − 𝑥𝑛,𝑡 )

+
∑︁

𝑝𝑤∈PW
𝜇
𝑝𝑤,1
𝑛,𝑡 𝑥

𝑝𝑤
𝑛,𝑡 −

∑︁
𝑝𝑤∈PW

𝜇
𝑝𝑤,2
𝑛,𝑡

(
𝑥
𝑝𝑤
𝑛,𝑡 −

𝑥max
𝑛,𝑡 − 𝑥min

𝑛,𝑡

| |PW| |

)
− 𝛾𝑛,𝑡

(
𝑥𝑛,𝑡 − 𝑥min

𝑛,𝑡 −
∑︁

𝑝𝑤∈PW
𝑥
𝑝𝑤
𝑛,𝑡

)
− 𝜑𝑛

(
𝑥𝑛,𝑡 − 𝑥𝑛,𝑡

)]
.

(14)

Then, the KKT optimality conditions can be written as:

𝜕L
𝜕𝑥𝑛,𝑡

= 𝑝𝑛,𝑡 + 𝛾𝑛,𝑡 + 𝜑𝑛 = 0 ∀𝑛 ∈ N , ∀𝑡 ∈ T (15a)
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𝜕L
𝜕𝑥

𝑝𝑤
𝑛,𝑡

= 𝑀
𝑝𝑤
𝑛,𝑡 + 𝛾𝑛,𝑡 + 𝜇

𝑝𝑤,1
𝑛,𝑡 − 𝜇

𝑝𝑤,2
𝑛,𝑡

= 0 ∀𝑝𝑤 ∈ PW, ∀n ∈ N , ∀t ∈ T (15b)

𝜕L
𝜕𝛾𝑛,𝑡

= 𝑥𝑛,𝑡 − 𝑥min
𝑛,𝑡 −

∑︁
𝑝𝑤∈PW

𝑥
𝑝𝑤
𝑛,𝑡 = 0 ∀𝑛 ∈ N , ∀𝑡 ∈ T (15c)

𝜕L
𝜕𝜑𝑛

=
∑︁
𝑡 ∈T

𝑥𝑛,𝑡 −
∑︁
𝑡 ∈T

𝑥𝑛,𝑡 = 0 ∀𝑛 ∈ N (15d)

𝑥
𝑝𝑤
𝑛,𝑡 ≥ 0 ⊥ 𝜇

𝑝𝑤,1
𝑛,𝑡 ≥ 0 ∀𝑝𝑤 ∈ PW, ∀n ∈ N , ∀t ∈ T (15e)

𝑥max
𝑛,𝑡 − 𝑥min

𝑛,𝑡

| |PW| | − 𝑥
𝑝𝑤
𝑛,𝑡 ≥ 0 ⊥ 𝜇

𝑝𝑤,2
𝑛,𝑡 ≥ 0 ∀𝑝𝑤 ∈ PW,

∀𝑛 ∈ N , ∀𝑡 ∈ T . (15f)

The complementarity constraint with the form of 𝑎 ⊥ 𝑏 for
𝑎, 𝑏 ≥ 0 can be linearized by using Big M formulation provided as
follows:

0 ≤ 𝑎 ≤ 𝑏 ·𝑀 (16a)

0 ≤ 𝑏 ≤ (1 − 𝑏) ·𝑀 (16b)

𝑏 ∈ {0, 1} (16c)

where𝑀 is a sufficiently large constant and 𝑏 is the binary variable.
Thus, the two constraints in (15e) and (15f) can be written as:

0 ≤ 𝑥
𝑝𝑤
𝑛,𝑡 ≤ Φ

𝑝𝑤,1
𝑛,𝑡 ·𝑀 ∀𝑝𝑤 ∈ PW, ∀n ∈ N , ∀t ∈ T (17a)

0 ≤ 𝜇
𝑝𝑤,1
𝑛,𝑡 ≤ (1 − Φ

𝑝𝑤,1
𝑛,𝑡 ) ·𝑀 ∀𝑝𝑤 ∈ PW, ∀n ∈ N , ∀t ∈ T

(17b)

0 ≤
𝑥max
𝑛,𝑡 − 𝑥min

𝑛,𝑡

| |PW| | − 𝑥
𝑝𝑤
𝑛,𝑡 ≤ Φ

𝑝𝑤,2
𝑛,𝑡 ·𝑀 ∀𝑝𝑤 ∈ PW, ∀n ∈ N , ∀t ∈ T

(17c)

0 ≤ 𝜇
𝑝𝑤,2
𝑛,𝑡 ≤ (1 − Φ

𝑝𝑤,2
𝑛,𝑡 ) ·𝑀 ∀𝑝𝑤 ∈ PW, ∀n ∈ N , ∀t ∈ T

(17d)

Φ
𝑝𝑤,1
𝑛,𝑡 ,Φ

𝑝𝑤,2
𝑛,𝑡 ∈ {0, 1} ∀𝑝𝑤 ∈ PW, ∀n ∈ N , ∀t ∈ T . (17e)
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