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ABSTRACT

Despite the high flexibility of Battery Energy Storage Systems
(BESS), existing operation strategies often fail to fully utilise these
assets. Additionally, the current literature on optimal BESS sched-
uling often relies on simplistic assumptions regarding their power
efficiency and ignores the intricacies of simultaneous participation
in energy and ancillary services markets. This makes these mod-
els inadequate for estimating the maximum potential revenue of
existing BESSs. Thus, this paper aims to quantify their unrealised
revenue in the Australian National Electricity Market (NEM). We
first introduce a new methodology that systematically identifies
the operational characteristics of BESSs using public data. Then,
we propose a mathematical model to optimise BESS scheduling
across NEM energy and ancillary services markets. By applying
this model to six BESSs in the NEM, we uncover their unrealised
potential revenue and show that nearly half of potential energy
arbitrage revenue is forfeited due to suboptimal dispatch decisions
or inaccuracies in price forecasting.
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NOMENCLATURE

Superscripts, Subscripts, and Indices
abs, typ “Absolute” and “typical” bounds
con Contingency FCAS
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d,c Discharging and charging

f FCAS index
g1 Generator and load modes of the BESS
i Four-second interval index

min, max Minimum and Maximum values
rc,lc  Raise and lower contingency index
reg Regulation FCAS

rr,lr  Raise and lower regulation index
sd Self-discharging

t Dispatch interval index
Parameters and Variables

psd Self-discharging power of BESS

E Total energy capacity of BESS

Ef Maximum enabled capacity of FCAS f

p Power capacity

Ai Duration of a 4-second interval, i.e., 4 seconds
At Duration of a dispatch interval, i.e., 5 minutes
Atf Maximum delivery duration of FCAS f

n Efficiency during charging or discharging

At Price of energy or FCAS at interval ¢

Ff Enabled amounts of FCAS f

pd pe Discharging and charging power of BESS

soc State of Charge (SoC)

U, Ul Utilisation, average delivered proportion of enabled raise
and lower regulation FCAS

Xt Binary variable indicating if the BESS is discharged at the
dispatch interval ¢

Sets

LCF  Set of lower contingency services

F Set of all FCAS, including 2 regulation FCAS and 6 contin-
gency FCAS

RCF  Set of raise contingency services

T Set of all dispatch intervals in the receding horizon

Qy Set of all possible BESS efficiencies
I Set of all four-second intervals in a month

1 INTRODUCTION

As the shift to renewable energy sources is gaining momentum,
Battery Energy Storage Systems (BESSs) have become a necessary
component of contemporary power grids. The Australian National
Electricity Market (NEM), characterised by high penetration of re-
newable energy generation and volatility of energy prices, presents
a unique context for investigating the operational efficiency and
revenue realisation of BESSs. NEM is an interconnected system that
fulfils about 80% of Australia’s electricity demand and operates only
on a spot market basis, making it unique compared to many electric-
ity markets around the world. Australian Energy Market Operator
(AEMO) allows units to rebid (i.e., change their offer) up to a couple
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of minutes before the start of each five-minute dispatch interval
[6]. Subsequently, AEMO employs a security-constrained linear
optimal power flow model to co-optimise the dispatch of energy
and Frequency Control Ancillary Services (FCAS), ensuring supply-
demand balance and system security in the most cost-efficient way
[8].

Given their rapid response and flexibility, BESSs are in a unique
position, compared to other utility-scale assets, to meet various
requirements of power grids in an optimal way, including the pro-
vision of inertia, frequency control, voltage support, and peak de-
mand shaving [24]. Beyond non-market services and contractual
agreements, BESSs can generate revenue by participating in nine
different markets in the NEM: the energy market, two regulation
FCAS (rFCAS) markets (raise and lower), and six contingency FCAS
(cFCAS) markets (raise and lower for 6-second, 60-second, and 5-
minute services). The rFCAS market addresses small frequency
deviations within the standard operating range, whereas the cFCAS
market manages larger sudden frequency deviations. Each of these
markets presents an opportunity for revenue generation and value
stacking of BESSs. Therefore, optimal scheduling of BESSs across
these markets is essential to maximise their revenue and provide
the necessary services to the grid.

Recent studies, however, have identified suboptimal operation
of existing BESSs, particularly in the energy market, leading to
unrealised potential revenue [23]. There are several elements that
could contribute to this underperformance, including inaccurate
price forecasts, operational inefficiencies, and suboptimal revenue
stacking. However, no research has been done to comprehensively
evaluate the maximum potential revenue that existing BESSs can
generate by optimally participating in energy and FCAS markets.

Furthermore, the models proposed for the optimal scheduling of
BESSs in the literature cannot be used to determine the potential
revenue of actual BESSs in the NEM [16-19, 21, 23]. A major short-
coming of these models is that they do not take into account the
operational characteristics and limitations of actual BESSs, making
them inadequate for accurately calculating their potential revenue
[16-19, 21, 23]. For example, these models often use constant charg-
ing and discharging efficiencies, overlooking the significant vari-
ance in efficiency across different BESSs, as well as the variances
for an individual BESS over time. Furthermore, they do not offer
methodologies to estimate these important operational parame-
ters that can considerably affect the calculated potential revenue
[16-19, 21, 23]. Second, the existing literature investigated the par-
ticipation in the energy, and cFCAS or rFCAS markets, but not all
three together [17-19, 23]. These studies also do not accurately
model market rules related to different revenue streams, leading
to incorrect revenue estimation [16, 18, 19, 21]. For example, the
effects of energy exchanged with the grid while providing rFCAS,
the complementary nature of different cFCAS, and the joint energy-
FCAS constraints in the operation model are often overlooked. As
such, these models are unable to accurately calculate the revenue
of existing BESSs that participate in energy, cFCAS, and rFCAS
markets simultaneously.

We aim to fill these gaps by providing a new methodology for
estimating the BESS operational characteristics, as well as a new
model for optimal BESS scheduling in the NEM. First, we propose a
systematic method to determine the operational characteristics of
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the BESSs installed in the NEM. We then present a Mixed-Integer
Linear Programming (MILP) model that considers these BESS op-
erational characteristics and limitations, together with important
market details to optimise BESS scheduling for maximum revenue
across energy and all FCAS markets in the NEM. We use the pro-
posed optimisation model to calculate the maximum potential rev-
enue that existing BESSs can achieve when optimally dispatched.
We finally compare this with the actual revenue they earned over a
six-month period, calculated using public NEM data, to quantify
their unrealised potential revenue.

The rest of this paper is organised as follows. Section 2 provides
an overview of the proposed methodology. Section 3 presents the
details of our systematic approach to estimating the operational
characteristics of BESS. In Section 4, we describe our BESS schedul-
ing optimisation model. In Section 5, we present the outcomes of
our model when applied to six existing NEM BESSs and compare
their maximum potential and actual revenue. Finally, we discuss
the applications of our modelling approach and future research
avenues, and conclude the paper in Section 6.

2 METHODOLOGY OVERVIEW

This study aims to determine the maximum potential revenue of
BESSs in the NEM when optimally dispatched to quantify unre-
alised potential revenue due to their suboptimal operation. For a
fair comparison, potential revenue must be calculated while consid-
ering key operational limitations and characteristics of BESS, their
availability, total energy throughput, and total capacity dispatched
in the FCAS markets. The operational parameters of most BESSs
are not publicly available due to their commercially sensitive nature
and, therefore, must be estimated.

Estimating the operational characteristics of BESSs, such as
charging and discharging efficiencies, is the first step to finding
their maximum potential revenue. Operational characteristics of
different BESSs are not similar and change over time, caused by
various factors, such as the age of the batteries, the temperature
and environmental conditions, the original battery equipment man-
ufacturer, and the usage patterns [20, 22]. As these parameters
are used as the input to the BESS scheduling optimisation model,
they can significantly influence the calculation of BESSs’ poten-
tial revenue. Therefore, we must first estimate these operational
characteristics as accurately as possible. As such, we use historical
4-second discharging and charging power of the NEM BESSs for
the methodology detailed in Section 3. This data are measured by
the Supervisory Control and Data Acquisition (SCADA) system
and are published by AEMO on [2].

In addition to operational characteristics, there are operational
limitations for the BESS operation. Due to many factors, such as
contractual agreements, BESS warranty terms, and cyclic degrada-
tion management, BESS operators may be obliged to or deliberately
decide not to charge or discharge at the nominal power and energy
capacity. Thus, to ensure a fair comparison, we estimate their “abso-
lute” upper and lower state-of-charge (SoC) limits, as well as their
“typical” upper and lower SoC limits. The absolute limits refer to the
maximum and minimum SoC reached by the BESS at any interval
during the entire study period. These absolute limits may differ
from the battery being completely full or empty. The typical limits
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Figure 1: Energy-FCAS trapezium constraints in the NEM.

aim to show the most common range of BESS SoC over the study
period, which can be significantly smaller than the nominal BESS
energy capacity. These SoC limits for each BESS are estimated using
historical 4-second charging and discharging data. The discharging
and charging power capacity is also calculated by the lesser of the
empirical energy dispatch data and the maximum SCADA-metered
discharging and charging power.

Ultimately, taking into account the specified limitations, we
present a BESS operation scheduling model, designed for partici-
pation in both the energy and FCAS markets, aiming to maximise
revenue over a 24-hour horizon. Assuming that the BESS is a price
taker, it will accept the market clearing price without attempting
to alter it through its bids. Since participants are paid at the market
clearing price for their dispatched energy and FCAS when their
bids are accepted, a price taker participant will submit a bid at the
market floor to be included in the dispatch or at the market cap
to avoid being dispatched. As market participants in the NEM can
rebid every 5 minutes, optimal bids are formulated based on the
optimisation results obtained for the first 5-minute interval of the
24-hour horizon. Therefore, the optimisation runs on a receding
horizon, advancing in 5-minute intervals, where only the optimi-
sation results of the first interval are binding. At every 5-minute
interval, the BESS can update its optimal operation based on the
most recent data to determine the optimal bids for the upcoming
dispatch interval.

In the NEM, a BESS can operate as both a generator and a load.
As a generator, it can participate in three raise cFCAS markets, in
the energy market by discharging, and in both raise and lower rF-
CAS. As aload, it can participate in the energy market by charging,
in three types of lower cFCAS markets, and in both raise and lower
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rFCAS [1, 15]. To accurately capture the energy-FCAS bidding con-
straints of BESSs in the NEM, we have incorporated constraints
on maximum dispatchable FCAS at each dispatch interval, total
dispatched FCAS over the analysis period, and FCAS trapezium
constraints using empirical dispatch data of the BESSs. According
to the NEM regulations [1], the FCAS offer trapezium shows the
capability of the plant to provide FCAS in relation to its levels of
power generation, consumption, or load reduction. A sample trapez-
ium for raise rFCAS, raise cFCAS, and power output of a BESS (for
both generator and load sides of the BESS) is illustrated in Figure 1.
The trapezium depicts the plant’s maximum FCAS availability at
various output levels, illustrating the relationship among rFCAS, cF-
CAS and the generation or consumption of the plant, as considered
in AEMO dispatch optimisation. To align closely with the existing
BESS operations in the NEM, our model integrates these essential
joint energy-FCAS constraints.

3 ESTIMATING BESS OPERATIONAL
CHARACTERISTICS

For every BESS in each month, we use an exhaustive search tech-
nique to estimate the monthly averages of its operational charac-
teristics, i.e., charging efficiency, discharging efficiency, and self-
discharge power!. One month was chosen as the analysis period,
for which the characteristics are assumed constant for the following
two reasons. First, a month-long interval provides sufficient data
for our exhaustive search method to find the best estimates of BESS
operational characteristics. Second, this timeframe is short enough
to ensure that the BESS operational characteristics remain relevant,
considering that battery performance can be affected by various
external variables over time, e.g., seasonal temperature.

The exhaustive search tests different combinations of BESS op-
erational characteristics within their realistic boundaries. These
boundaries are discretised into finite sets to systematically explore
the entire feasible operation space. For each combination, the al-
gorithm calculates the SoC at 4-second intervals based on SCADA-
metered charge and discharge data. Combinations leading to invalid
SoC values, i.e., exceeding the battery’s energy capacity or drop-
ping below zero, are automatically discarded. The most precise
set of parameters is determined by the tightness of the daily SoC
maximums and minimums. This yields the most accurate estimate
of the typical SoC range as it closely mimics how real-world BESS
operates within a specific, stable SoC range on a daily basis.

Algorithm 1 outlines the pseudocode of our methodology used
to find the best estimates of the BESS SoC, as well as its charging
efficiency, 7, discharging efficiency, n4, and self-discharge power,
Pgg4. It initialises a control variable MADj,; to infinity, representing
the baseline for the sum of Median Absolute Deviations (MAD) of
daily SoC maximums and MAD of daily SoC minimums for one
month. In statistics, MAD is defined as the median of deviations
from the data’s median. It is chosen as the variability metric of the
SoC maximums and minimums as it is not affected by outliers. The
best set of SoC estimates is the one with the lowest MADp,;.

Note that self-discharge power comprises on-site energy consumption, intrinsic self-
discharge of battery modules, and any other discharge that is not captured by the
SCADA meter at the point of connection to the grid.
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Each set of candidate operational characteristics, (¢, 74, s0co, Psq),
includes the desired operational characteristics of BESS, as well as
an initial SoC. For each set, the algorithm iteratively updates the
SoC at each 4-second interval, i, using the candidate parameters,
and the historical SCADA-metered charge and discharge data. Any
set with SoC that falls outside the permissible range [0%, 100%] is
invalid and excluded from further consideration. If a set of parame-
ters respects the SoC limits, the algorithm proceeds to calculate the
daily maximum and minimum of SoC values for that candidate set,
which are then used to compute their respective MADs. The sum
of the MADs of the maximums and minimums is then compared
to MADy,;. If the current parameter set results in a lower sum of
MADs, the global best solution MADy,; will be updated and the
set of associated parameters will be recorded. At the end of the loop,
the set of parameters with the lowest MADy,; is selected as the
best approximation of the operational characteristics of BESS. Fi-
nally, we use the estimated SoC values over a month to identify the
absolute and typical SoC limits. The typical upper and lower limits
correspond to the median of daily SoC maximums and minimums,
respectively. In contrast, the absolute upper and lower limits are
the overall monthly maximum and minimum SoC values. These
parameters are integrated into the model discussed in the following
section.

Algorithm 1 Estimating the BESS operational characteristics

1: Initialise MADpegp «— 0
2: for (1, ng, soco, Pgq) in Qy x Q) x [0,100] X [0, P;’;l“x] do
3: forieldo

4: if 0% < soc; < 100% then

(Pene — Pa/ng — Psa)Ai
5: soc; < soci—1 + 7
6: else
7: Combination (7, ng4, soco, Psq) is invalid
8: end if
9: end for
10: if Combination (¢, 4, soco, Psg) is valid then
11 Compute daily Maxes and Mins of {soc;};es
12: MADZ%* « MAD of daily SoC maximums
13: MADT" « MAD of daily SoC minimums
14: if MADJY + MADJRZ < MADjes; then
15: MADpess «— MADZ + MADJEX
16: Estimated BESS SoC « {soc;};er
17: Best estimation « (1, ng, s0co, Pgq)
18: end if
19: end if
20: end for

4 BESS OPERATION SCHEDULING
OPTIMISATION

This section describes the BESS scheduling optimisation model
and provides the mathematical model formulated to determine the
optimal dispatch scheduling across all energy and FCAS markets.
In the NEM, generators or loads earn FCAS revenue based on the
enabled amount of FCAS (i.e., the reserved capacity), irrespective of
whether these services are actually utilised. In the energy market,
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Figure 2: Raise rFCAS utilisation for Lake Bonney BESS.

the cost or revenue is calculated based on the net energy exchanged
with the grid in each dispatch interval. This can include the energy
delivered due to FCAS obligations in addition to standard energy
market dispatch. As cFCAS deliveries are rarely needed in the NEM
[3], their impact on net energy exchange is negligible. On the con-
trary, enabled rFCAS is frequently used for frequency stability and
has a notable impact on both energy revenue and battery through-
put. As a result, our model calculates the energy exchanged due
to rFCAS dispatch based on its enabled amount and the average
rFCAS utilisation of BESS, U. The average utilisation is determined
based on historical 4-second data of Automatic Generation Control
(AGC) regulation instructions sent to BESSs (as can be found in
[2]) and their empirical rFCAS dispatch data. Figure 2 provides
an illustrative example, showcasing the enabled amount, the AGC
regulation signal, and the utilisation of the raise rFCAS for Lake
Bonney BESS during one specific hour on 1 May 2023. The utilised
raise rFCAS led to 3.7 MWh discharge of the BESS at that hour.
This is a significant amount of energy with an impact on energy
revenue and BESS throughput and, therefore, is considered in our
model.

We solve the optimisation model, formulated in (1), to maximise
the BESS revenue for each receding horizon, subject to the market
rules, BESS power and energy constraints, and other operational
limitations.

|7]-1
maximise Z R (1a)
t=0

subject to:

E;=E;_1+ (Uc(Pf +F§,lrUlr _ F;,rrUrr) _Psd

1
- (pé + R U - FPUT ) g ve € T/ o, (1b)
f 2
E;+ ZfeR‘F(Ft Ay < soch XEVt e T, (1c)
B res AFL A 2 socinE vt € T, (1d)
E; < soc%‘;,xE_;Vt eT, (1e)
E; > soc%’;lb;; VteT, (1f)
Pd < Pyxy; VE €T, (1g)
Pf < P(1-x); VteT, (1h)
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Fl<ifivieT fev, (1)
P4 FIT < Pyregs VEET, (1j)
1
0<Pl-FI" Ve, (1k)
PS4+ FPT < Pprogi VEET, (11)
L,
0<Pf—F';VteT, (1m)
Ptd + th,rr + Ftrc Spg,reg,con;Vt €T.rc eRCF, (In)
P+ FPT 4 FIC <Py oy con: Vt €T Ic € LCF, (10)
ZteT(P;‘_'_P;z'_'_F;IUIr +FtrrUrr) < Ptotal’ (1p)
DerF < FPVE €T, 19
P PLF B 20 VieT, fe, (1r)
x; € {0,1}; Vte T (1s)

The revenue of BESS at dispatch interval ¢ is also calculated as
follows:

Re = [Ad (P + FETUT — FPTUIT) < 26 (P

+ Fg,lrUlr _ Ftl,rrU”)]At + Z (A{F{)At;\ﬁ eT. (2
feF

The first term in (2) represents the energy cost or revenue of
BESS, calculated using the energy price and the net energy ex-
change, which includes the energy and the rFCAS dispatches. The
second term indicates the revenue of FCAS markets. It is worth
noting that charging and discharging prices, A{ and /1;1, are not the
same due to different Marginal Loss Factors (MLFs) of the generator
and load sides of the BESS [5].

The energy level (E;) of the BESS considering its energy dispatch
(charge or discharge) and enabled rFCAS volumes is formulated in
(1b), while (1c)—(1f) apply the energy level constraints of the BESS.
Specifically, (1c) and (1d) ensure that the BESS SoC remains within
the absolute upper and lower limits, even when it is required to
provide all enabled FCAS. Equations (1e) and (1f) further constrain
the BESS SoC to the typical upper and lower limits, as discussed in
the previous section. This ensures that the BESS operates in a way
that is either similar to or more conservative than the actual case.

The constraints limiting the charging and discharging power,
together with the enabled amount of rFCAS or cFCAS, are pre-
sented in (1g)—(10). Constraints (1g) and (1h) limit the charging
and discharging power to respect the battery power capacity, while
(1i) restricts the enabled FCAS for each dispatch interval to the
BESS’s FCAS capacity. Modelling the FCAS trapezium constraints
[1], (1j)-(1m) are added as joint rFACS-energy limits, while (1n) and
(10) are joint capacity constraints. These limitations ensure that
the BESS maintains adequate power capacity to deliver frequency
control services when enabled in the raise and lower FCAS markets.

Constraint (1p) ensures that the BESS energy throughput is be-
low its total daily limit, which is the daily average of historical
BESS throughput, determined using its 4-second telemetered data.
Similarly, (1q) limits the total amount enabled for each FCAS to its
total daily limit, which is equal to the daily average FCAS enable-
ment of the BESS, calculated using its empirical dispatch data. The
total daily limits of BESS throughput and FCAS enabled amount are
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updated at each receding horizon to reflect the changes caused by
the dispatched energy and FCAS in the past five-minute dispatch
interval. This ensures that, over the simulation period, both total
BESS throughput and dispatched FCAS capacity are lower than
their respective empirical values for the BESS.

5 CASE STUDIES

In this section, we present a comparison between the actual earn-
ings of six BESS in the NEM and the maximum potential revenue
that could have been obtained through optimal dispatch decisions
under perfect information. We studied Hornsdale Power Reserve
and Lake Bonney BESS in South Australia (SA), Queanbeyan and
Wallgrove BESS in New South Wales (NSW), Wandoan BESS in
Queensland (QLD), and Ballart BESS in Victoria (VIC).

We initially validate the proposed methodology in Section 3 by
determining the operational characteristics and limitations of these
BESSs. Second, we calculate the monthly revenue of each BESS for
two cases,

(1) Perfect Information Revenue: Calculated using the bat-
tery operation optimisation model, detailed in Section 4,
and assuming perfect information of market prices in the
next 24 hours. It sets an upper benchmark for BESS’s realis-
able revenue, representing the maximum potential revenue
achievable under perfect market information.

(2) Actual Revenue: Calculated using empirical dispatch data,
market prices, and telemetered charge/discharge data of the
BESSs, obtained from [2, 7]. This case reflects the genuine
earnings of BESSs in the NEM based on their actual opera-
tions.

Finally, a comparative assessment is carried out between the Per-
fect Information Revenue and the Actual Revenue for each BESS,
assessing their market performance within the NEM. Perfect In-
formation Revenue shows the potential revenue achievable under
ideal conditions, but attaining this theoretical maximum in reality
may be impossible due to the complexities inherent in practical
operations, such as inaccuracies in electricity price prediction. This
analysis highlights the potential for BESS revenue enhancement by
juxtaposing the maximum potential revenue of BESSs with their
actual earnings in the NEM.

The granularity of our simulation studies is 5 minutes, aligning
with the NEM’s 5-minute spot market structure. In each optimisa-
tion, we consider one day ahead of data, translating to 288 dispatch
intervals, to determine the optimal operation of the BESS. The op-
timisation operates on a receding horizon, advancing in 5-minute
increments, where only the optimisation results of the first interval
are binding. This is because, at every 5-minute interval, the BESS
can update its optimal operation based on the most recent data
to determine the optimal bids for the upcoming dispatch interval.
Thus, to determine the potential revenue of a BESS in each month,
the optimisation is performed at least 8064 times (adjusting for the
specific number of days in the month) to find optimal decisions at
each interval.

Gurobi Optimiser 10.0.1 was used to solve the MILP optimisation
with an optimality gap of 0% as stopping criterion. The optimisation
was run on a desktop PC with an Intel i7-10700 CPU @ 2.90GHz
processor and 32 GB of RAM. The average run time of the MILP



e-Energy ’24, June 4-7, 2024, Singapore

§ e Estimated February
S 7 % : ’1 .
3 . | .
E so fi -: A ":y § v] )U\ )
EB ) i) il Lty A i H)‘{J&ﬁ;' ] 7";,'L\'J )
80 25 v ! L T
2 W '
= 0] Corr=095 Corr =0.68 -
= 1001 March April
=z
] e
ERR bl .w \]. |
! ML
3 o] Cor=094 Corr £ 0.98
§ 100 May | June
=7 'ﬂ 1 F ﬂ -
g 50 HI! q {
= U. 1‘ ¢
& 25 J ' RN
=0 Corr = 0.86 Corr = 0.97
1 8 15 2 29 1 8 15 2 29

Day of month Day of month

Figure 3: Comparing the actual and estimated SoC of Wall-
grove BESS.

optimisation was 0.16 seconds. While the addition of more markets
only marginally increases the computational burden of our MILP
model, its scalability can be significantly influenced by the number
of BESS units and timesteps (i.e., dispatch intervals) in the optimi-
sation. This is due to their direct effect on the number of binary
variables in the optimisation. Nonetheless, the model is scalable
for the applications discussed in this paper as they do not lead to a
large number of binary variables, confirmed by our simulations.

Finally, it should be noted that all input data used for our simu-
lations are publicly available. Interested readers can find 4-second
SCADA data for BESSs in [2], market clearing price data in [11],
predispatch price data in [9, 10], and historical unit dispatch data
in [7]. Also, the power and energy capacity of the BESSs within the
NEM are available at [14].

5.1 Accuracy of BESS Characteristic Estimation

To validate the exhaustive search method described in Section 3, we
compare the estimated SoC of Wallgrove BESS, located in NSW, with
publicly available SoC data for this battery [12]. Figure 3 visualises
this comparison during the first six months of 2023, confirming a
strong correlation between the estimated values and the actual data.
In February, the Pearson correlation drops, attributable to the BESS
being largely inactive or minimally used. This can be seen in the SoC
changes of the battery in Figure 3. Although there are periods with
notable discrepancies between estimated and actual energy levels,
the high correlation level confirms the alignment in SoC changes
between the two sets. Importantly, what affects the calculation of
perfect information revenue is the range of SoC, not its absolute
magnitude. As such, it is imperative that our estimated SoC range
closely aligns with that of the actual BESS data. This would warrant
that the perfect information revenue is determined fairly when
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taking into account the BESS operational limitations. Figure 4 shows
the daily SoC min-to-max range for actual and estimated cases
for six months. The figure confirms that our estimated SoC range
closely approximates the actual values on most days, while being
lower on some days.

Expanding our analysis, Figure 5 contrasts the typical SoC ranges,
defined as the range between the typical minimum and maximum
SoC, estimated by our model and those calculated based on actual
historical data from Wallgrove BESS over the six-month period. As
a reminder, typical SoC limits are calculated based on the median of
daily SoC maximums and minimums, as discussed in Section 3. The
figure shows that our estimates align with or are more conservative
than the actual data, with our model’s estimated SoC range being,
on average, 3% lower than the actual data.

Overall, these comparisons confirm that the operational charac-
teristics estimated using our methodology are aligned closely or
even more conservative than those of the actual BESSs. This allows
us to conduct a fair comparison between their actual and perfect
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Figure 6: Absolute and typical SoC ranges of six BESSs in the
NEM.

information revenue calculated through the optimisation model
presented in Section IV.

Finally, Figure 6 shows the estimated typical and absolute SoC
ranges, as well as the estimated round-trip efficiency, over six
months for the six BESSs studied in this paper. Significant monthly
fluctuations in SoC ranges across different BESSs further prove the
necessity of having precise operational characteristics to accurately
estimate maximum potential revenue. Also, an interesting observa-
tion is the significantly lower SoC range of older BESS in the NEM,
such as Hornsdale and Lake Bonney, compared to recently com-
missioned ones, i.e., Queanbeyan and Wandoan. We use charging
and discharging efficiencies, self-discharge power, and SoC limits
obtained in this subsection as optimisation input parameters.

5.2 BESS Revenue Potential in the NEM

Using historical energy and FCAS prices, empirical dispatch data,
and telemetered power data of the six NEM BESSs [2, 7], we first
calculate their actual monthly revenue in the rFCAS, cFCAS, and
energy markets for the first half of 2023. Then, we apply our BESS
scheduling optimisation over 24-hour rolling windows for each
BESS to determine their monthly perfect information revenue. Fig-
ure 7 shows a comparison between the actual revenue and the
perfect information revenue of the BESSs in the NEM for the six
months. We also show the actual revenue as a percentage of its
perfect information revenue each month to make the comparison
simpler, which is used as a metric to measure the BESS’s perfor-
mance. The figure shows that there is a significant variation in the
performance of different BESSs over the six months, ranging from
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Figure 8: Average energy and FCAS prices, and energy price
spread and spikes.

40% to 80%. Additionally, while the revenue of each BESS from
FCAS markets is generally consistent over different months, the
perfect information revenue, as well as the actual revenue from
the energy market, varies significantly. This variation can be attrib-
uted to the notably volatile energy prices compared to the more
consistent FCAS prices over the six-month period analysed. This
is illustrated in Figure 8, which shows the monthly average prices
of energy and FCAS, the spread of the energy prices (determined
based on the difference between the 10th and 90th quantiles), and
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the number of spikes in energy prices greater than $1,000 for four
regions of the NEM. While both the actual and the perfect infor-
mation energy arbitrage revenues of each BESS are higher in the
months when the energy price spread or the number of price spikes
is high, the performance of BESSs often drops as they cannot realise
a significant amount of the potential energy arbitrage revenue.
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Figure 12: Revenue of Lake Bonney BESS over May 2023.

Figure 9 shows the performance of each BESS over six months in
both the energy and FCAS markets. As expected, all BESSs perform
better in the FCAS market compared to energy. This is mainly
due to the unpredictable nature of the energy prices compared
to the FCAS, as evidenced by the larger Median Absolute Errors
(MAEs) in the AEMO’s predispatch energy prices compared to
rFCAS and cFCAS [13], shown in Figure 10. These predispatch
prices influence asset operation optimisation in the NEM, either
directly or indirectly. Thus, larger errors in the energy predispatch
prices complicate realising the potential energy arbitrage revenue
of BESSs. Additionally, Figure 9 reveals that BESSs’ performance
in the energy market fluctuates between 40% and 60%, averaging
around 50%. This indicates that nearly half of the potential revenue
from energy arbitrage goes unrealised due to suboptimal operation.

Assuming a 10-year lifetime and a cost per MWh of $673 (as given
in [4] for a 2-hour BESS), a IMWh/0.5MW BESS would require $185
per MWh throughput to break even, since it is limited to one full
charge-discharge cycle per day. Figure 11 shows the monthly rev-
enue of BESSs per MWh throughput in energy, rFCAS, and cFCAS,
as well as their perfect information energy revenue and energy
arbitrage performance. Due to the substantial revenue from FCAS
markets, which typically require minimal energy throughput, all
BESSs generate revenue well above the break-even point. However,
with the likely saturation of FCAS markets in the next few years
due to committed BESS projects in the NEM, FCAS revenue could
significantly drop. This is alarming because four out of six BESSs
have generated energy market revenue below the break-even point.
While Ballart BESS appears to deliberately prioritise revenue from
FCAS markets, the poor performance of the other BESSs seems
largely due to suboptimal energy arbitrage strategies. Although
BESS operators may have limited control over certain factors that
lead to loss of potential revenue, such as temporary unavailability,
temperature-imposed limitations, and system constraints, there
are opportunities for improvement, particularly in the accuracy of
energy price forecasting and battery operation optimisation.

5.3 Instances of Unrealised Energy Arbitrage
Revenue

To show examples of significant unrealised revenue, we compare
the actual cumulative five-minute revenue of Lake Bonney BESS in
May 2023 with the revenue that it could generate through optimal
dispatch decisions under perfect information. This case was chosen
because the BESS performs well in the energy market compared to
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Figure 14: Comparison of empirical and optimal dispatch
decisions on 29 May.

other BESSs, yet its energy arbitrage performance dropped in May.
Figure 12 shows the cumulative five-minute revenue of the BESS
for the two cases. While the figure shows a slow, but consistent,
increase in unrealised revenue as the month progresses, the main
reason for the poor performance is due to two major events on 4
May and 29 May, which are highlighted in the figure.

Figures 13 and 14 show the net-discharging power and energy
level of the BESS based on the empirical data compared to the
optimal dispatch decisions under perfect information. On 4 May,
suboptimal decisions led to more than $200,000 in missed revenue
during a 3-hour window. Figure 13 reveals several dispatch deci-
sions made by the BESS operator on 4 May that led to this financial
loss. First, the BESS charges at four dispatch intervals when price
spikes occurred, including one spike between 6:30 and 7:00 and
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Figure 15: Sensitivity Analysis of the optimal revenue for
Lake Bonney BESS under various price forecasting scenarios.

three more between 8:00 and 8:35. This could be attributed to the
poor BESS operation and bidding decisions in those instances. Sec-
ond, the BESS discharges all its remaining energy between 7:15 and
7:40, when the price is around or less than $4000/MWh and loses the
discharging opportunities at prices above $10000/MWh, occurring
later between 7:40 and 8:25. This means that the BESS captured less
than one-third of the available revenue due to myopic dispatch de-
cisions or significant price prediction errors that missed the larger
price spikes. Figure 14 shows the other instance, which happened
on 29 May, when the BESS could not capitalise on the two price
spikes between 23:30 and 23:40. This poor performance occurred
despite having sufficient energy, suggesting that the shortfall can
be attributed to inefficient BESS operation and bidding strategies.

5.4 Sensitivity Analysis of BESS Revenue Based
on Price Forecasting Scenarios

As mentioned earlier, Perfect Information Revenue represents the
maximum revenue a BESS could achieve under perfect market in-
formation, which is realistically unattainable. Thus, this section is
dedicated to examining the impact of price forecast accuracy on
BESS revenue. A sensitivity analysis is conducted for the Lake Bon-
ney BESS across six scenarios. These scenarios range from relying
only on predispatch energy price forecasts, provided by AEMO, to
utilising actual energy prices exclusively, with intermediate sce-
narios, which are generated using weighted averages of both. For
example, in Scenario 1, the BESS operation optimisation model
detailed in Section 4 is applied using input prices composed of 80%
actual market prices and 20% predispatch prices to calculate rev-
enue. On the contrary, Scenario 2 uses a mix of 60% actual market
prices and 40% predispatch prices for revenue calculation. There-
fore, as we progress from Scenario 0 to Scenario 5, the proportion
of actual energy prices decreases while the reliance on predispatch
prices increases, leading to a gradual decrease in the accuracy of
price predictions used in the optimisation.

Figure 15 illustrates the energy market revenues for Lake Bonney
BESS over six months in six different pricing scenarios, compared to
actual revenue. As illustrated in this figure, the difference between
revenues obtained from predispatch prices (Scenario 5) and actual
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prices (Scenario 0) fluctuates substantially over different months.
For example, in February and May, the gap between Scenario 0
and Scenario 5 revenues is more significant than in the months
of January and March, showing the importance of better price
forecast accuracy in these months. In January and February, the
actual revenue exceeds that of Scenario 4, which is indicative of a
battery operation that effectively capitalised on market conditions.
However, in other months, the actual revenue aligns more closely
with that of Scenario 5, which suggests that the battery’s market
performance was near the level expected from predispatch price
signals. In particular, May is the only month that actual revenue
fell slightly below the revenue of Scenario 5. This could be due
to various factors, including the higher accuracy of predispatch
prices compared to the BESS operator’s forecasts during important
periods, suboptimal decisions by the battery operator, or network
constraints.

This analysis demonstrates the important link between price fore-
cast accuracy and BESS revenue outcomes. The Perfect Information
Revenue stands as a benchmark for BESSs, as discussed in previous
sections; nevertheless, it is expected that actual revenues will fall
short of this mark. Additionally, the financial performance of BESS
can vary substantially over time. For example, when forecasting
becomes particularly complex at times, the BESS’s performance
may descend below its typical value.

6 CONCLUSION

In this paper, we provided a BESS scheduling optimisation model
to participate in the energy and FCAS markets, aiming to uncover
the unrealised revenue by BESSs in the NEM. To do so, we first
presented a systematic method for estimating operational character-
istics of real-world BESSs in order to use them as input parameters
to the optimisation model. Second, we provided a MILP optimisa-
tion model for BESS scheduling across both energy and all FCAS
markets. By combining these two methods, we could determine the
maximum potential revenue of existing BESSs in the NEM. This is a
significant improvement over the approaches proposed in the liter-
ature, which often rely on oversimplified operational assumptions
or concentrate solely on individual markets.

We first validated our estimation method for BESS operational
characteristics by testing it on Wallgrove BESS and comparing the
results with the actual historical values. We then applied our BESS
scheduling optimisation model to six existing BESSs in the NEM
over a 6-month period and compared the results with their actual
revenue over the same period. Our simulation results indicate a
significant revenue gap between the current operation of BESSs in
the NEM and their maximum potential. Specifically, the results show
that existing BESSs are unable to capture nearly half of this potential
revenue from energy arbitrage. With the anticipated saturation of
FCAS markets, this inefficiency poses a risk to BESS profitability
and could impede merchant BESSs from achieving their break-
even points. This inefficiency also raises concerns about BESSs’
availability to be dispatched when the grid needs them the most,
reflected in spot market price spikes.

Our findings highlight the necessity for better price prediction
and bidding algorithms to enhance BESS dispatch decision-making
in the NEM, especially given the increasing volatility of spot market
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prices as the share of renewable generation rises in the system. The
model proposed in this paper enables BESS asset managers and
operators to identify unrealised potential and suboptimal dispatch
decisions across all markets in the NEM, suggesting operational
adjustments to maximise revenue. These potential improvements
are also beneficial for the power grid as they help the process of
ancillary services and energy procurement when the grid faces
dire needs. The proposed model can also be used to quantify the
maximum potential revenue of existing BESSs in the NEM and
provide relevant insights to different stakeholders in the energy
industry. However, it is important to acknowledge that this potential
revenue is a theoretical benchmark that may not be fully achievable
under real-world market conditions.

Additionally, it should be noted that this model cannot accurately
determine the maximum potential revenue of price-maker BESSs
in the NEM. Future work will include estimating the efficiency of
BESSs over shorter periods by utilising additional operational data,
thus improving the revenue potential assessment. Future research
can also explore models that consider the unpredictable nature of
spot market prices, thereby providing a clearer insight into the
potential revenue that can be captured by BESSs.
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