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Abstract— The introduction of distributed generation (DG)
onto distribution networks has a significant effect on losses. This
effect cannot be characterized as a detrimental or beneficial but
is dependent on the allocation of DG on each distribution
network. This paper proposes a new method to calculate the
optimal size and to identify the corresponding optimal location
for DG placement (allocation) for minimizing the total power
losses in distribution networks. The proposed (presented)
algorithm is an evolutionary algorithm named Particle Swarm
Optimization (PSO). The method is implemented and tested on a
sample distribution network. The results show the importance of
placement of DGs for minimizing losses.

Distribution
PSO

Index  Terms—Allocation, Compensation,
Network, Distributed generation, Loss Reduction,
Algorithm, Short Circuit Level, Transmission Capacity.

I. INTRODUCTION

ISPERSED or distributed generation (DG) maybe

defined as a generating resource, other than central
generation station, that is placed close to load being served,
usually at customer site. It can be renewable source based
micro hydro, wind turbines, photovoltaic, etc or fuel based
fuel cells, reciprocating engines, micro turbines, etc. In term
of size, DG may range from a few kilowatts to over 100 Mega
watts [1].

The share of DGs in power system world wide is
increasing and their contribution in the future power system is
expected to be even more [2]. The general belief is that the
future of the power generation will be DGs. DGs come with
opportunities as well as challenges. They in one hand, are
expected to be the solution of most of the power system
problems while, on the other hand, they add new problems.

DG will affect the electric power system in wide range.
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These effects can be detrimental or beneficial depending on
where DG units are allocated. The proper placement of DG
units will reduce losses and will free available capacity for
transmission of power. Moreover, cost savings can be
expected by deferring distribution system upgrading. While,
improper placement of DG units will increase losses
significantly [3].

Losses are an important consideration when designing and
planning the distribution network. Losses are inevitable in any
network; however, the amount can vary considerably
depending on the design of the network. The level of losses is
closely linked to the power flows. Therefore, in a distribution
network utilizing distributed generation the allocation of DGs
provides an opportunity to ameliorate losses.

Hence, utilities and distribution companies need tools to place
DG units in their distribution systems.

A number of approaches to allocate DGs for loss
minimization have been proposed. In [3] the authors propose
an algorithm for allocating DG units in order to maximize
power available for sale and minimize losses on the system. In
[4] an analytical method is proposed for DG allocation. In this
method the authors have derived an equation so that solving it
would determine amount of real power that DG units have to
produce at various locations so as to minimize the real loss.
Then, by comparing the losses by putting DG of
corresponding optimum size at various locations the authors
solve the placement problem.

In [5] a methodology for optimal allocation of DGs in
distribution networks has been developed by the authors.
Some of considered constraints were voltage rise, thermal
limit, short circuit capacity and short circuit level. In [6]
authors derived an objective function that represents the
amount of generation demanded from or exported to the
transmission system. Then a linear programming is employed
to maximize the objective function with respect to some
constraints such as thermal limit, short circuit level, voltage
rise and transformer rating.

In this paper, a new method for solving the problem of
siting and sizing of DGs in distribution networks is proposed.
The algorithm is based on Particle Swarm Optimization (PSO)
algorithm.  Lying  somewhere  between evolutionary
programming and genetic algorithms, PSO is an optimization
paradigm that mimics the ability of human societies to process
knowledge. It has roots in two main component
methodologies: artificial life (such as bird flocking, fish
schooling and swarming), and evolutionary computation. PSO



algorithm, with capability to optimize complex numerical
functions, is initially developed as a tool for modeling social
behavior [7-8]. Moreover, it is recognized as an evolutionary
technique under the domain of computational intelligence [9].
It has been observed that the behavior of the individuals that
comprise a flock adheres to fundamental rules like nearest-
neighbor velocity matching and acceleration by distance. PSO
belongs to the broad class of stochastic optimization
algorithms and is a population-based algorithm that exploits a
population of individuals to probe promising regions of the
search space [10]. In this paper PSO algorithm is applied for
finding location of DGs for minimum loss in distribution
networks.

The rest of this paper is organized as follows. Section 1l is
devoted to exposition of losses in distribution networks.
Section 111 presents the modeling of DG units. Then in section
IV PSO algorithm is explained. Section V describes siting and
sizing of DG units. Finally, in section VI, results of simulation
are given.

Il. LOSSES

The transmission of power will always incur certain
amount of electrical losses. The integration of large amounts
of DG is transforming distribution networks from what were
traditionally energy delivery networks to networks that both
deliver and harvest energy. A key element to the efficiency of
this energy transmission is losses. The introduction of
generation downstream will change the losses, with the losses
initially decreasing until the load at the bus is met and then
increasing as the excess power flows back up the line in the
opposite direction [6].

The losses depend on the line resistance and currents are
usually referred to as thermal losses. Therefore loss of any
distribution system can be calculated as (1):
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where

P_ is total system loss,
j is number of lines in the distribution network,

R:

; is resistance of j™ line,

|Ij| is absolute of jth line current.

While the line resistances are fixed, the currents are a
complex function of the system topology and the location of
generation and load.

Consider the well-known power flow equations, with
complex power S; =R + jQ;, injected at the bus i as
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where Y;; is the magnitude of the i— j™ element of the bus

admittance matrix, V; is the voltage magnitude at the i pus,
7ij is the angle of the i— jth of the bus admittance matrix,

and ¢&; is the phase angle of the voltage V;.

In this paper, only the real losses are considered. System
losses can be calculated by subtracting total demand from total
generation.

n n
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In the above equation, P_ is the total loss of distribution

system, PGi is generated power at i bus including

distributed generations and Pp, is demand at i™ bus. In this

paper we use equation (4) to calculate system losses.

I1l. PSO ALGORITHM

PSO introduced by Kennedy and Eberhart [7] is one of the
most recent and hopeful evolutionary metaheuristics which is
inspired from the swarming behavior of and human social
behavior. The general principles for the PSO algorithm are
stated as below:

Similarly to evolutionary computation technique, the PSO
maintains the population of particles, where each particle
represents a potential solution to an optimization problem. Let
K be the size of the swarm. Each particle i can be
represented as an object with several characteristics.

Suppose that the search space is n-dimensional, then the

th

i" particle can be represented by a n-dimensional vector,
Xi ={%1, X2, Xin |, and velocity Vi ={Vi;,Vip,....Vin} ,
where i=1 2,...,K.

In PSO, particle i remembers the best position it visited so
far, referred to as R ={pj, piz,...pin} , and the best position
of the best particle in
G ={G,Gy,...Gp} .

The PSO is similar to evolutionary computation algorithm

the swarm is referred as

and, in each generation t, particle i adjust its velocity vitj

t

and position x;; through each dimension j by referring to,

with random multipliers, the personal best position pitj‘l and

the swarm’s best position Gﬁ’l using equations (5) and (6).

t t-1 t—1 -1 t-1 -1
Vij :Vij +C_|r1(pij _Xij )+Czr2 (Gj _Xij ), (5)
t t-1 t
Xij = Xij +Vij (6)

where ¢; and c, are the acceleration constants and r; and r,



are random real numbers drawn from U(O,l). Thus the

particle flies through potential solutions toward P‘,t and G! in

a navigated way while still exploring new areas by the
stochastic mechanism to escape from local optimum. Since
there was no actual mechanism for controlling the velocity of
a particle, it was necessary to impose a maximum value V.,

on it. If the velocity exceeded this threshold, it was set equal
Vimax » Which controls the maximum travel distance in each

iteration to avoid this particle flying past good solutions.

The PSO algorithm is terminated with a maximal number
of generations or the best particle position of the entire swarm
that cannot be improved further after a sufficiently large
number of generations.

The aforementioned problem was addressed by
incorporation a weight parameter for the previous velocity of
the particle. Thus, equation (5) and (6) are changed to the
following ones.

vij = ;((a)vitj’l + olrl( Pt - xitj’l) +Cyoly (th’l - xitj’l)) @

xitj = xitj‘l +vitj (8)
where @ is called inertia weight and is employed to control
the impact of the previous history of velocities on the current
one. Accordingly, the parameter o regulates the trade-off
between the global and the local exploration abilities of the
swarm. A large inertia weight facilitates global exploration,
while a small one tends to facilitate local exploration. A
suitable value for the inertia weight @ usually provides
balance between global and local exploration abilities and
consequently results in a reduction of the number of iteration
required to locate the optimum solution.

x is a constriction factor which is used to limit velocity.

The PSO algorithm has shown its robustness and efficacy
in solving function value optimization in real number spaces,
only a few researches have been conducted for extending PSO
to combinational optimization problems on the binary form.

IV. MODELING OF DG UNITS

DGs can be divided into two parts from the energy source
viewpoint. One is non-renewable energy including
cogeneration, fuel cells and micro turbine systems and the
other is renewable energy including photovoltaic, wind,
geothermal, biomass and so on [11].

A constraint for DG source, similar to central generation, is
active power constraint. It can be formulated as below:

P < Pg < Pg MAX (9)

Ymin

The reactive power output of DG units is also important
and must be considered. Small and medium sized DG units
mostly use asynchronous generators that are not capable of
providing reactive power. Several options are available to
solve this problem. On the other hand, DG units with a power
electronic interface are sometimes capable to deliver a certain
amount of reactive power [12]. These interfaces (or power
converters) can generate and inject Q to the network, but

3

ratings of elements will increase [13]. The reactive power
generation of DG units which use synchronous generators,
depends on reactive power control strategy. There are two
control strategies for this group [14]:
a. Constant Q/constant power factor mode.
b. Voltage regulated mode.
Considering this point, the bus connected to the DG can be
modeled as a PQ or PV bus, depending on control strategy.
In this paper, DG buses can be considered as a PQ or a PV
bus.

V. SITING AND SIZING OF DG UNITS

Distribution system planners need to have powerful tools
for finding and identifying optimum size and location of DG
resources in a given (existent) distribution networks. Because
of some limitations in traditional procedures, experts have
applied evolutionary algorithm to solve siting and sizing of
DG units’ problem. These evolutionary algorithm include
Genetic Algorithm (GA) [15-17], Hereford Ranch Algorithms
[18] or PSO.

In this study, PSO algorithm is used for finding optimum
size and location of DG units. Every particle is a 1xn vector
representing an answer. Each particle conveys information on
location and size of DG. The particle has 3 variables for each
DG unit. First variable is number of bus that DG located there.
The second one represents real power of each DG. The last
one depends on the type of DG. If DG is modeled as a PQ
bus, it indicates reactive power must be generated by DG. If
DG is modeled as a PV bus, it shows voltage of bus DG is
connected to. Length of each particle is dependent on number
of DG units that must be located. For example if 2 DG units
are located in network, length of each particle must be 6. A
particle is shown for a DG modeled as a PV bus in Fig. 1.

Mummber of Bus | Feal Power | Waoltaze

Fig. 1. a particle in PSO algorithm

The type of particle used is suitable for every kind of
network structure (radial, meshed, etc.). But the algorithm has
been applied to a radial distribution network, which are usual
in Iran.

In the first step, after determination of number of DGs and
maximum active and reactive power of each DG and model of
DG (PV or PQ), an initial population of possible solutions is
randomly generated. These random solutions must satisfy the
constraints that will be discussed in Appendix. If an answer
violates the constraints, it will be regenerated until the
constraints are satisfied. Number of population in each
generation is at least 5 times greater than total variables in
problem. For instance, for a network with 3 DG units, total
variable of network is 12 and minimum population is:

(4><3)><5:60 (20)
At the second step, the power flow program calculates the

total loss of system for each answer. Then the loss of each
answer attribute to it as fitness. At the next step, PSO



algorithm begins. At the end the best answer is introduced as
optimum answer. PSO achieves the optimum point very fast
and captures global optimum with high probability.

V1. RESULTS AND DISCUSSION

A. Results

The structure of distribution network in Iran is radial or
open loop MV ring. The medium voltage network is three-
wire 20 kV. The 20 kV in HV/MV substation has been
considered as slack bus and in the MV/LV substations and
other nodes, the loads are modeled as a constant balanced PQ
loads. The case study is an MV feeder with 11 buses (nodes)
and 11 branches. It is assumed that the voltage of slack bus is
1.0 p.u. and 5% voltage deviation is permissible.

Based on the proposed method, optimum location of DG is
bus 8 with real power 3.95 MW and reactive power 2.40
MVAR. Losses before DG allocation are 94.58 kW and after
DG allocation it decreases until 8.88 kW.

Fig. 2 shows voltage profile of the network before and after
DG allocation.
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Fig. 2 voltage profile before and after DG allocation

In Fig. 3 the apparent power through lines of network is
depicted.
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Fig. 3. apparent power of lines

The losses can be reduced 90.60% and the constraints are
satisfied.

The proposed method is tested in another loop network that
has 2 generators and 3 compensating capacitors. Originally
this case is IEEE 14 bus that 20 branches. The total loss in
base case is 13.39 MW. The optimum place for DG unit is at
bus 3 with 139.63 MW and 58.62 MVAR. The total loss
changes to 5.867 MW. Voltage profile of network after
allocating DG unit is shown in Fig. 4.
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Fig. 4. voltage profile after installing DG unit

In Fig. 5 apparent power in lines is shown.
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Fig. 5. apparent power in lines.
In Fig. 5, it is obvious that line apparent power in line 1
reduces because part of power is delivered by DG.
Short circuit level of buses is shown at Fig. 6. As could be

seen, short circuit level increases due to installing DG units.
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Fig. 6. short circuit level of network buses

It is noticeable in prepared computer program, in addition
to DG allocation an option is considered for allocating
capacitors. 3 capacitors and 1 DG have allocated in mentioned
network. Losses are reduced to 4.973 MW. This shows
reduction in losses approximately 65.85%. Results are briefly
shown in table (1). Voltage profile of network is depicted in
Fig. 7.

TABLE I
RESULTS FOR ALLOCATION OF 3 CAPACITORS AND 1 DG

Bus P Q V
DG 3 154 21 1.01
Capacitor 5 0 16.47 0.98
Capacitor 9 0 17 1.02
Capacitor 13 0 10 1.02
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Fig. 7. voltage profile for sample network with 3 capacitor and 1 DG

Table I shows possible reduction of losses for proper
allocation of DG units. Comparison between optimum case
and original case shows that applied technique can results in
considerable saving.

Trend of converging in proposed algorithm for 5
executions of program is presented in Fig. 8. From this figure,
one can see a high convergence rate in the algorithm. This
point is merit of PSO algorithm in suggested technique of this

paper.
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Fig. 8: trend of convergence in PSO algorithm for 5 executions

VII.

Size and location of DG are crucial factors in the
application of DG for loss minimization. This paper presents a
new algorithm to calculate the optimum size of DG and find
the best location corresponding to the optimum size for
reducing total power losses in primary distribution network. In
this paper, PSO is used as optimization algorithm. This
algorithm has enough ability to solve the problem accurate
and fast with the view of minimizing total losses. The paper
considers technical constraints in DG siting and sizing. As a
result, it is shown that used technique can allocate and find
size of DG units to reduce losses significantly. In radial
networks proposed algorithm can reduce losses by 90% and in
loop network the losses can be reduced to 66%.

CONCLUSION

VIII. APPENDIX

A. Thermal Constraint:
Si < SiRated ivVN
where S; is the apparent power flowing through line i,

sRad s the maximum apparent power for line i. N is
1

number of branches in distribution network.

B. Voltage Limit:

0.94<V; <106 pu. jvM
where V; is voltage of jth bus. 6% deviation is allowed. M
is number of buses in the network.

C. Short Circuit Level

MV .
i
where MVAg,, is base apparent power in network. Zj; is the



element which is located on row ™ and column ™ of Z,

matrix. SCL; is short circuit level of i™ bus and SCLyax 1S

maximum allowed short circuit level in distribution network.

D. Back Power Flow

M
2P <) P
j=1

where Z Pog s total active power generated by distributed

M

generation allocated in distribution network and ZPL]_ is

i=

total load in system. This constraint checks that the power
always flow from upper network to lower network. Violation
of this constraint will result in protection malfunctions.
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