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Abstract— Cyclic and Calendar agings are the two primary
sources of degradation in a battery. An accurate battery
degradation model can only be achieved when both processes
are considered. In this paper, a novel framework is proposed
to integrate Cyclic and Calendar aging processes. The proposed
framework is able to accommodate different individual Cyclic
and Calendar aging models only with slight modifications. It also
can work conveniently as a universal degradation framework
in different applications, such as large-scale battery storage
systems in microgrids (MGs) and electric vehicles (EVs).

I. INTRODUCTION

Recently, different battery technologies have attracted lots
of attention from power system industry and car manufactur-
ers for large integration. In power system industry, batteries
are expected to grow in capacity to an unprecedented level
for different applications such as frequency regulation, volt-
age support, peak shaving, increasing renewable penetration,
and microgrid (MG) applications. For instance, batteries are
recognized to be an inevitable tool for safe and secure
operation of MGs, especially during islanded operation. Al-
though different battery technologies (such as Li-Ion) show
significant price reduction in the past few years, they are
still considered as the most expensive part of the system,
whether a MG or electric vehicle (EV). Since batteries of
any technology will gradually lose initial capacity and power
capability, their optimal operation (by accounting for their
degradation) becomes an important factor for successful and
economic utilization of these devices in different applica-
tions. Typically, battery operation is controlled via battery
management system (BMS) or energy management system
(EMS) in EVs and power system applications. Either case,
utilizing a powerful battery degradation model in BMS/EMS
can improve battery operation.

Battery capacity degradation is a complicated nonlin-
ear phenomenon which is caused by two different aging
processes, namely Cyclic and Calendar aging. The Cyclic
aging, as the name suggests, occurs due to battery charge
and discharge activities over the course of its lifetime. It
is well-known that a battery will be directly affected by
charge/discharge characteristics such as average state-of-
charge (SOC), SOC deviation, charge and discharge rates,
and energy throughput. The Calendar aging, on the other
hand, takes place when battery remains idle. It is known
to be a function of storage SOC (i.e., battery SOC at the
beginning of the idle period) and its duration. In MG and
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EV applications, a battery will experience both type of
degradation on a daily basis. Therefore, a battery capacity
degradation model integrating the two aging processes can
potentially increase the accuracy of estimation.

In the past couple of years, significant research work have
been reported on battery degradation modeling caused by
cyclic activities, e.g. [1]-[12]. Few other research papers
focused on the Calendar aging separate from Cyclic aging,
e.g., [13]-[15]. However, to the best of our knowledge, very
few research papers addressed integration of the two aging
processes within the same framework. In [16], a battery
degradation model is proposed considering Cyclic and Cal-
endar aging together based on actual EV data. First issue
with this method is that a linear relation among different
parameters is hypothesized which is not adequate for battery
degradation modeling. The nonlinearity of this phenomenon
is even more significant in large-scale storage applications
where batteries are expected to work until they reach to 65%
of their nominal capacity, instead of 80% typical expectation
in other applications such as EVs. So, a nonlinear model can
potentially increase the accuracy of estimation, particularly
for MGs and grid-scale applications. Since both Cyclic and
Calendar aging models are put together in a single function
in [16], it can be realized that the proposed method is not
flexible in terms of accommodating more complicated and
nonlinear individual degradation models. Additionally, the
proposed method does not consider the impact of one aging
on the other one, i.e., the interactive terms.

To fill this gap in research, an innovative approach is
proposed in this paper to accommodate Cyclic and Calendar
agings in a single framework. The proposed framework
decouples Cyclic from Calendar aging so that any individ-
ual Cyclic and Calendar aging models can be employed.
It is also computationally inexpensive and fast for online
applications. The proposed approach starts with extracting
required data for individual Cyclic and Calendar aging
models. Then, battery capacity degradation will be estimated
for each aging processes separately for a hypothetical battery
lifetime. After checking the stability of the estimated values,
final integration will be made among individual Cyclic and
Calendar estimated values. Eventually, a curve fitting will be
carried out on the final integrated values to achieve battery
degradation function with respect to battery W.h throughput.

Rest of the paper is organized as follows. In Section II, the
proposed integration framework is introduced from a general
perspective. Then, different parts of the proposed framework
is described in detail in Section III following up with an
example. Finally, the paper is concluded in Section IV.



II. THE PROPOSED INTEGRATION FRAMEWORK

In an individual Cyclic or Calendar aging model, single
degradation process is considered neglecting the aging oc-
curred by the other process. In addition, the impact of one
process is ignored on the other one. It consequently reduces
the accuracy of battery capacity estimation. To overcome
this issue, a novel framework is proposed in this paper to
integrate individual Cyclic and Calendar aging estimation. It
accounts for mutual impact of one process towards another.
Furthermore, the proposed framework can accommodate
any individual Cyclic and Calendar aging models. In this
framework, individual models will be used to generate
primary battery capacity estimation without accounting for
the impact of other aging process. Then, a procedure will
combine the individual primary estimated values accounting
for their mutual impacts. A unique combined degradation
model will be created for any given battery charge/discharge
profile, as the input parameter. As a result, the proposed
framework should be repeated when a new charge/discharge
profile is available. Bear in mind that this paper introduces
an innovative approach to integrate Cyclic and Calendar
aging within the same framework. So individual Cyclic and
Calendar aging models are not discussed here. Additionally,
the proposed framework is developed for single cell battery
operation. This way, it provides an opportunity to estimate
and track battery degradation for individual cell instead of
the whole stack of battery. It further increases the flexibility,
scalability, and accuracy of the estimation. It also comply
with the real-world application where individual cells are
not homogeneously degrading in a stack.

Prior to explaining the procedure, it is worthwhile to
highlight couple of premises which the model is built upon,
as follows:

e Premise 1: The idea is developed based on the fact
that Cyclic aging happens when battery is under either
charge or discharge while Calendar aging occurs when
battery remains idle. This way, two processes do not
occur simultaneously.

e Premise 2: It is assumed that the Cyclic and Calendar
agings can be superimposed. The only interactive pa-
rameters between the two processes are battery storage
SOC (in Calendar aging model) and battery estimated
capacity (used to estimate individual Cyclic and Calen-
dar agings) which is also affected by battery operation
in the past.

An overview of the proposed framework is shown in
Fig. 1. Similar to any other battery degradation model,
charge/discharge profile of the battery is required. Since the
framework is designed for cyclic operation, at least one day
worth of data is expected at the input. In addition, individual
Cyclic and Calendar aging models should be provided for
the proposed framework.

As it can be seen from Fig. 1, the procedure starts with
”Pre-Processing Unit” which extracts required data from the
given charge/discharge profile. Then, primary Cyclic and
Calendar aging values will be estimated in “"Primary Esti-
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mation Unit” for the given profile, using provided individual
Cyclic and Calendar aging models. After processing the re-
sults in “’Post-Processing Unit”, final estimation considering
both Cyclic and Calendar aging will be made in “Final
Estimation” unit. Fig. 2 shows the proposed framework in
detail.

A general flowchart of the proposed integrated model.

IITI. INTEGRATION PROCEDURE

In this section, different parts of the proposed framework,
shown in Fig. 1, will be explained in detail based on Fig. 2.
The procedure will start from receiving data and individual
Cyclic and Calendar aging models, and will end with final
loop integration.

A. Input Data

Individual Cyclic and Calendar aging processes require
certain input parameters to run. This is specific to each model
and can change from one model to another significantly.
However, most of the required data can be extracted directly
from battery charge/discharge profile. This profile can be
given either as battery power or current versus time. Battery
charge/discharge profile is typically generated by BMS or
EMS in different applications. The given profile will be used
to extract required data to run individual Cyclic and Calendar
aging model, as required by the given models.

In addition to input parameters required by individual
Cyclic and Calendar aging models, other parameters might
be needed such as latest estimated battery capacity, accumu-
lated W.h throughput, and initial SOC of the battery at the
beginning of given profile. Other required parameters specific
to individual models (such as ambient temperature, sampling
interval (i.e., W.hyperva), maximum W.h (W.hy,,,) and so on)
can also be given in this module.

B. Pre-Processing Unit

As shown in Fig. 2, the proposed procedure starts with
extracting required information from given data at the input.
Except for specific parameters associated with Cyclic and
Calendar aging models, explained in the previous sub-
section, other parameters can be extracted directly from given
battery charge/discharge profile vs. time. In the rest of this
paper, the given charge/discharge profile is assumed to be
battery power versus time.

Typically, Cyclic aging models utilize parameters such as
daily average SOC, SOC deviation, charge and discharge
rates, ambient temperature, and W.h throughput. First, SOC
values will be calculated for each time stamp based on the
initial SOC value and given profile. The average daily SOC
will be the arithmetic average of the calculated SOC values.
To calculate SOC deviation, SOC values are divided into two
categories: 1) values greater than daily average SOC, and 2)
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values smaller than daily average SOC. The SOC deviation
then is the difference between average of the first category
and average of the second one. In order to find charge and
discharge rates, it is first required to calculate normalized
charge/discharge rates for each time step, neglecting idle
periods. Normalized rate is calculated as follows:

|| x AT;
Cprev X ‘/batt

(~)Tate = (1)
where (.)qre can be either Crqpe OF Diyge in pou.; By is
the absolute value of charge or discharge event ¢ in Watt;
AT; is the time interval of event 7 in hour; Cpe, is the
previous estimated capacity of the battery in A.h; and Vpayt
is the battery voltage during the event, or simply the rated
voltage. In this study, all values are calculated and reported
for a single battery cell. Ultimately, the average charge and
discharge rates for the daily profile will be the arithmetic
average rates of charge and discharges events throughout
the day, respectively. Extracted parameters will be stored
in "CYC Data” for later use. Daily W.h throughput of the
battery is calculated by:

N
W.hrp =Y _|Pi| x AT, )
i=1
where N is the number of intervals.

Calendar aging is affected by the storage SOC, idle time
duration, and ambient temperature. Although idle situation
can happen multiple times throughout a day with different
time duration, its accumulated impact is considered in this
study for further simplification. As a result, accumulated
daily idle time and average storage SOC will be calculated in
“Extracting Required Data” block. Average storage SOC is
the arithmetic average SOC of the battery at the beginning
of all idle events throughout the day. Derived information
will be stored in "CAL Data” module for later use.

C. Primary Estimation Unit

After calculating required information from input data,
battery capacity (known as primary battery capacity) will
be estimated for Cyclic and Calendar aging separately,
assuming that the parameters will remain the same for battery
lifetime. For Cyclic aging, battery capacity (i.e., Cg’;é"”(i))
will be estimated for different W.h throughput values while
other parameters (which resides in "CYC Data” unit) are

Detailed flowchart of the battery degradation model integrating Cyclic and Calendar aging.

kept constant. To do so, a vector of W.h throughput values
(i.e., Eyp (7)) will be generated from zero to “maximum W.h
throughput” with “W.h throughput interval”, which are given
as input parameters. For Calendar aging, battery capacity
(ie., CP'"™(i)) will be estimated based on accumulated
shelf time while other parameters, stored in the “CAL
Data” module, will remain constant. To combine two sets of
capacity estimations, Calendar aging will be estimated at the
same point in time as of Cyclic aging based on Fy, (). This
way, we will calculate a vector of battery accumulated shelf
time (i.e., Tjq(7) for primary Calendar aging estimation)
relative to every W.h throughput value created previously,
assuming that the given profile is for a day, as follows:

B (i). T

Tiare(i) =
zdle(l) 24 % Edm‘ly (3)

where Ey, (i) is the " W.h throughput value in W.h; 726"
is the daily idle time of the battery in hour; and Fgq1y is
the daily W.h throughput. This part of calculation will be
performed in “Creating days points for CAL” block.

Having input parameters ready for primary Cyclic and
Calendar capacity estimation for all W.h throughput and
shelf time created previously, it is possible to carry out
battery degradation estimation individually. Parameters re-
quired for each model (described in Section III-C) is already
derived from the given data and reside in "CYC Data” and
”CAL Data” modules. Finally, battery capacity for individual
Cyclic and Calendar aging will be calculated in “Parimary
CYC Capacity Estimation” and “Parimary CAL Capacity
Estimation”, separately. So far, one can realized that any
individual degradation model can be utilized without any
significant changes.

D. Post-Processing Unit

In this unit, one can develop algorithms to check primary
estimated values. For instance, battery capacity is supposed
to decline after each charge/discharge events (ignoring some
special instances), although minuscule. If there is an increase
in primary estimated values, it can be fixed before inte-
gration. Additionally, individual Cyclic and Calendar aging
models are developed using specific experimental datasets.
Sometime, it is possible to use one such model for a battery
of different capacity but similar chemistry. This can also be
considered in ”Adjusting Estimated Values” module. Because
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of the page limit, these algorithms are not discussed in this
paper.

E. Final Estimation

In order to combine individual Cyclic and Calendar aging
values from sub-section III-C, it is required to modify
battery operating point for each estimated value, and to re-
estimate W.h throughput and accumulated shelf day using
interpolation and extrapolation. The reason is simple: each
Cyclic and Calendar aging value of sub-section III-C is
estimated when the two aging processes did not have any
impact on each other. For instance, when calculating Cyclic
aging, there was not a notion of Calendar aging on initial
battery capacity and vice versa. In reality, however, battery
experiences idle period (and consequently Calendar aging)
which its impact should be considered on individual Cyclic
estimation. This can become more important at higher accu-
mulated W.h throughput values when battery degradation is
more nonlinear and faster. Therefore, it is required to modify
battery operating point (i.e., actual W.h throughput in Cyclic
aging, and actual accumulated shelf time in Calendar aging)
prior to combine them together. To do so, algorithm shown
in Fig. 3 is developed, which is detailed flowchart of “Final
Integration Loop” module in Fig. 2.

As shown in Fig. 3, the loop starts with primary Cyclic and
Calendar estimated values. Then, number of iteration, NN,
will be set to two at the beginning and maximum number of
iteration, N ax, Will be set to the number of Cyclic estimated
values from sub-section III-C. Minimum Cyclic battery ca-
pacity, Cpin, Will be set to the minimum estimated value
in the Cyclic primary estimated values of sub-section III-C.
The loop will stop when Cap(N) is less than C, or when
we reach N, or when W.h throughout exceeds maximum
limit. Cap(N) is the actual battery capacity considering both

Cyclic and Calendar aging. In the first iteration, battery starts
fresh. So Cyclic and Calendar agings will start from the
installed battery capacity. Combined battery capacity at each
iteration, Cap(N), is the previous combined battery capacity
minus individual Cyclic and Calendar aging values of that
iteration. The procedure is divided in to four steps, as shown
in Fig. 3:

e Step 1: Therefore, calculating new Cyclic aging for the
next point in W.h throughput vector requires modifying
W.h value based on the Cap(N). In other words, actual
W.h throughput value does not represent Cap(N) and
should be modified. The same rationale can be recog-
nized for Calendar aging except that accumulated shelf
time should be modified for the combined capacity fade,
i.e., Cap(N). In order to calculate new W.h, Wyo(N),
a linear interpolation is realized using primary Cyclic
estimated values. Experimental data analysis showed
that the battery capacity changes linearly in short period
of time, although it might be nonlinear in long-term
analysis.

o Step 2: If Wyo(N) + Wohintervar s less than Wl
(which is given as a parameter in "CYC Model”),
the new W.h throughput value is within the range of
experimental data which individual model is trained.
The loop will be terminated when it goes outside of
the range. Having new W.h throughput value associated
with Cap(N), we can calculate the Cyclic degradation
for the next W.h throughput value which is Wyio(IN) +
W.hinterval, Where W.hinervar 1S the interval of W.h
throughput fetched as input parameter from "CYC ANN
Model” in Fig. 2. Here, new Cyclic capacity estimation,
CYCpew(N), is calculated using linear interpolation
among primary Cyclic aging estimated values.

e Step 3: When new Cyclic degraded capacity is calcu-
lated, we compute battery new capacity as a result of
Calendar degradation for the next interval. Prior to do
that and similar to Cyclic aging calculation, we need
to adjust accumulated shelf time for the new combined
degraded capacity, i.e., Cap(N). This can be done by
interpolation in the primary Calendar estimated values
for Cap(N).

e Step 4: If the new accumulated shelf time, Dyio(V),
in this iteration is less than maximum available storage
days in the primary aging estimations, we can carry out
interpolation to calculate new Calendar aging capacity,
i.e., CAL,e (V). Otherwise, as shown in Fig. 3, we
need to perform extrapolation. In both cases, a linear
operation is preferred because Calendar aging in typical
ambient temperature (i.e., below 40 °C) follows a linear
trend. In temperature-controlled environment, batteries’
temperature is kept well below 40°C which further
justifies this assumption.

Having both Cyclic and Calendar aging calculated in each
iteration for new W.h throughput and new accumulated shelf
time, we can calculate the total degraded capacity at the end
of current iteration (which equivalently is the beginning of
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Fig. 4. Sample results of the integration framework with individual Cyclic
and Calendar aging values.

the next iteration, i.e., N — N + 1), as follows:
Cap(N+1) = CYCnew (N) + (Cap(N) - CALnew (N)) (4)

where Cap(N+1) will be used as the new battery capacity
considering both Cyclic and Calendar agings at the begin-
ning of the loop in the next iteration. At the end of the loop,
we will have combined battery capacity estimation for the
given profile from the beginning of the battery lifetime to its
end.

Ultimately, combined battery capacity can be expressed as
a function of either W.h throughput values or accumulated
shelf time. Typically, a second-order polynomial function is
adequate fit on the estimated values. However, any other
curve fitting models and techniques can be used without
changing the proposed framework. Please note that this
function is valid only for the given battery charge/discharge
profile. Any changes in the battery profile requires repeating
the proposed method from the beginning to derive a new
function for battery degradation. Since the whole process is
automated and very quick, the proposed approach can be
utilized for different online and offline applications.

A sample result of the proposed framework is shown
in Fig. 4. An arbitrary battery charge/discharge profile is
defined where ambient temperature is 23 °C; average SOC
and average SOC daily deviation are 0.5 p.u.; average daily
charging and discharging rates are 1.0 p.u.; average storage
SOC is 0.8 p.u.; and daily cycle is 10. The primary Cyclic
and Calendar values are estimated by neural network models
which have been developed and tested at NEC Laboratories
America (NECLA). Without loss of generality, this curve
is achieved by assuming that battery experiences the same
profile until the end of its lifetime. As shown in the figure,
Calendar aging values change linearly after 650 days, while
Cyclic estimated values are nonlinear from the beginning.
The final combined degradation values are nonlinear, as
expected.

IV. CONCLUSIONS

In this paper, a framework is proposed to integrate battery
Cyclic and Calendar aging together. The proposed proce-
dure starts with extracting required information from battery

charge/discharge profile for a certain period of time, prefer-
ably a day. Then, primary Cyclic and Calendar estimation
will be made based on the extracted information. After
adjusting and checking the stability of the primary results,
modified values will be utilized in a loop where these two
primary estimation will be integrated for final estimation.
Ultimately, second-order curve will be fitted on the final
estimated values. The proposed approach is flexible, fast, and
accurate in terms of integration. Any individual Cyclic and
Calendar aging can be utilized in the proposed framework.
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