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Abstract—An aggregator acts as a middleman between the
small customers and the system operator (SO) offering a mutually
beneficial agreement to trade electric power, where each market
player (system operator, aggregator and electric vehicle (EV
owner) has its own economic incentives. The EV aggregator
aims to maximize its profit while trading energy and providing
balancing power in wholesale markets. This paper develops
a stochastic and dynamic mixed integer linear program (SD-
MILP) for optimal coordinated bidding of an EV aggregator
to maximize its profit from participating in competitive day-
ahead and real-time markets. Under uncertain day-ahead and
real-time market prices as well as fleet mobility, the proposed
SD-MILP model finds optimal EV charging/discharging plans for
every EV. The degradation costs of EV batteries are modeled. To
reflect the continuous clearing nature of the real-time market,
rolling planning is applied which allows re-forecasting and re-
dispatching. The proposed SD-MILP is used to derive a bidding
curve of an aggregator managing 1000 EVs.

Index terms: Coordinated bidding, two-settlement market,
EV aggregator, stochastic programming.

I. NOMENCLATURE

A. Indices
k index for storages, k = 1, . . . ,K;
t planning periods, t = 1, . . . , T ;
s scenarios, s = 1, . . . , S;
i index for possible bid prices i = 1, . . . , I;

B. Parameters
ωs Probabilities associated with the scenarios;
P k Max. storage rate of discharge, charge [kW];
P k Min. storage rate of discharge, charge [kW];
Ek Max. capacity of a storage [kWh];
γk Scalar to calculate max SoC (State of

Charge);
γ
k

Scalar to calculate min SoC;
η
ch/dch
k Charge, discharge efficiency of a storage;
SoCB

k,t=0 Starting storage level [kWh];
SoCBend

k, Storage level at the end of the day [kWh];
λs,t Day-ah. market price scenarios [e/MWh];
λ
up/dn
s,t Real-time market price scenarios [e/MWh];
ρi Fixed bid price for day-ah. market [e/MWh];
ρ
up/dn
i Fixed bid price for real-time market

[e/MWh];
ct Aggregator’s offer to storage owner [e];

ccapk Capital cost of a storage [e];
µk The slope of the linear approximation of the

battery life as a function of the cycles;
As,k,t Availability matrix indicating whether EV is

available or not;
Ds,k,t Average hourly driving distance of an EV [km];
ηdrk driving efficiency of an EV;
Γ1,Γ2 Sufficiently large Constant;

C. Variables
pDAch
s,k,t Day-ah. charge dispatch level for kth stor-

age [kWh];
pDAdch
s,k,t Day-ah. discharge dispatch level for kth

storage [kWh];
pBch
s,k,t Real-time charge dispatch level for kth

storage [kWh];
pBdch
s,k,t Real-time discharge dispatch level for kth

storage [kWh];
PDAch
s,t Energy as day-ah. buying position

[MWh];
PDAdch
s,t Energy as day-ah. selling position [MWh];

PBch
s,t Real-time down-regulating volume

[MWh];
PBdch
s,t Real-time up-regulating volume [MWh];
CPDAch

s,t Total day-ah. charge cost [e];
CPDAdch

s,t Total day-ah. discharge cost [e];
CPBch

s,t Total real-time charge cost [e];
CPBdch

s,t Total real-time discharge cost [e];
xDAch
i,t Day-ah. charge bid volume [kWh];
xDAdch
i,t Day-ah. discharge bid volume [kWh];
xBch
i,t Real-time charge bid volume [kWh];
xBdch
i,t Real-time discharge bid volume [kWh];
SoCB

s,k,t Storage level at the end of time step t
[kWh];

α̂s,t,i binary variable;
α̂
up/dn
s,t,i binary variable;

II. INTRODUCTION

According to [1], worldwide EV penetration is assumed
to increase up to 20 million units by 2020. Therefore, there
is a huge potential using EV batteries to assist the electric
power grid [2]. However, single EV can not enter to electricity



market to trade their energy for the following two reasons:
1) the available trading power of individual EV is below the
required threshold to participate in electricity markets [3],
and 2) the participation of individual EVs will increase the
number of market actors which will increase the difficulty of
managing electricity markets. Therefore, a new market entity,
an aggregator, will be required in order to enable smooth
cooperation between EV owners and SO.

The main target of the aggregator, as a market entity, is to
buy the electric power at the lowest possible cost to satisfy
driving needs of its fleet of EVs [2] and [4]. Meanwhile, the
economic incentive of the aggregator is to increase its revenue
by performing energy arbitrage [5], [6], [7] and [8]. With the
vehicle-to-grid (V2G) capability of EVs, the idea of using EVs
as an electric power source to provide balancing power is the
focus of many researchers in the field. Having a flexible power
source, EV aggregator can provide reserve power and increase
its profit. The possibilities of using EVs as a resource for
real-time balancing and system reserves by providing ancillary
services are studied in [9], [10], [11], [12] and [13].

The EV interaction with the grid can be categorized as
unidirectional and bidirectional. While the problem of bidding
regulation and spinning reserves for unidirectional EV interac-
tion is explored in [10], the bidirectional mode offers higher
flexibility and profits. Bidirectional EV interaction with the
grid is modeled in [11] and [13]. However, using the batteries
as storage devices for grid purposes reduces their lifetime [13]
and [14]. Thus, EV owners must be compensated for the lost
utility of their batteries due to degradation when providing
services.

Taking into consideration the uncertain nature of market
conditions and fleet characteristics, stochastic approaches fit
better to the aggregators optimal bidding problem. In [9] and
[12], the authors develop an optimal bidding strategy of an EV
aggregator participating in day-ahead energy and regulation
markets using stochastic optimization.

This paper develops an optimal bidding strategy model
for an EV aggregator who participates in the day-ahead
and real-time markets considering the uncertain nature of
market conditions and fleet characteristics. Unlike previous
formulations [9], [12] and [13], this formulation accounts
dynamically for clearing nature of the real-time market while
deriving optimal bids for day-ahead and real-time markets.
In order to benefit from the released information over time,
rolling planing framework is employed to update the scenario
tree of real-time prices within the planning day. In addition,
the developed model enables the aggregator to manage both
stationary storages and EVs. The main contributions of the
paper are:
• The development of a stochastic and dynamic mixed-

integer linear program (SD-MILP) for an aggregator who
manages a large number of stationary storages and EVs to
obtain the optimal coordinated bidding in two-settlement
markets.

• The derivation of optimal coordinated charge (discharge)
bids for day-ahead and real-time markets with moderate

computation time when applying scenario-reduction tech-
niques.

• The inclusion of uncertainty in both market prices as well
as EV mobility parameters.

The paper is structured as follows. Section III describes the
mathematical model formulation of an aggregator. Section IV
provides case-study results and in Section V the conclusion is
drawn.

III. MATHEMATICAL PROBLEM FORMULATION

The mathematical formulation of an EV aggregator inter-
acting with day-ahead and real-time markets is stated below.

A. Stochastic optimal strategy of an EV Aggregator

The stochastic optimization problem stated in (1) aims
at maximizing scenario-weighted expected profits from day-
ahead energy trading ΠDA

s,t and real-time power exchange ΠB
s,t.

MaximizeΦ E[ΠTot] =
∑
s

ωs(
T∑

t=1

(ΠDA
s,t + ΠB

s,t)) (1)

where ΠDA
s,t and ΠB

s,t are expressed as in (2) and (3)
correspondingly.

ΠDA
s,t = λs,tPDAdch

s,t − CPDAdch
s,t − λs,tPDAch

s,t + CPDAch
s,t

(2)

ΠB
s,t = λups,tPBdch

s,t − CPBdch
s,t − λdns,tPBch

s,t + CPBch
s,t (3)

The different components in (2) and (3) are expressed as
follows:

PDAdch/ch
s,t =

∑
k

p
DAdch/ch
s,k,t , PBdch/ch

s,t =
∑
k

p
Bdch/ch
s,k,t

(4)

CPDAdch
s,t =

∑
k

(ct
pDAdch
s,k,t

ηdchk

+
∣∣∣ µk

100

∣∣∣ ccapk

Ek

pDAdch
s,k,t ) (5)

CPDAch
s,t =

∑
k

(ctp
DAch
s,k,t η

ch
k −

∣∣∣ µk

100

∣∣∣ ccapk

Ek

pDAch
s,k,t ) (6)

CPBdch
s,t =

∑
k

(ct
pBdch
s,k,t

ηdchk

+
∣∣∣ µk

100

∣∣∣ ccapk

Ek

pBdch
s,k,t ) (7)

CPBch
s,t =

∑
k

(ctp
Bch
s,k,tη

ch
k −

∣∣∣ µk

100

∣∣∣ ccapk

Ek

pBch
s,k,t) (8)

It is obvious that the equations (2) and (3) express the
aggregator’s revenue minus cost while providing optimal dis-
charge/charge bids in day-ahead and real-time markets, respec-
tively. Note that the positive terms represent revenue and the
negative terms express cost for the aggregator. The equation
(4) provides the aggregated charge/discharge bids in both
markets. The aggregator’s cost in both markets while providing
charging/discharging optimal bids is set out in equations (5)-
(8), where the first term is the aggregator’s payment to the EV
owner and the second term is the battery degradation cost.

To derive the step-function bidding curve for hour t of the
day-ahead market, we first fix the parameters ρ1, ρ2, ..., ρI at



I arbitrary prices. The unknown variables x1, x2, ..., xI of the
step function are solved as follows:

PDAch/DAdch
s,t =

i∑
l=0

x
DAch/DAdch
i−l,t if ρi ≤ λs,t ≤ ρi+1

(9)

Using binary variable α̂ch/dch
s,t,i and a large enough constant

Γ1, (9) can be reformulated as constraints (10)-(12):

ρi − Γ1(1− α̂ch/dch
s,t,i ) ≤ λs,t ≤ ρi+1 + Γ1(1− α̂ch/dch

s,t,i )

(10)
i∑

l=0

x
DAch/DAdch
i−l,t − Γ1(1− α̂ch/dch

s,t,i ) ≤ PDAch/DAdch
s,t

≤
i∑

l=0

x
DAch/DAdch
i−l,t + Γ1(1− α̂ch/dch

s,t,i ) (11)

I∑
i=1

α̂
ch/dch
s,t,i = 1 (12)

The up- and down-regulating bids for real-time market are
expressed in (13).

PBch/Bdch
s,t =

i∑
l=0

x
Bch/Bdch
i−l,t

if ρ
up/down
i ≤ λup/dns,t ≤ ρup/down

i+1 (13)

In the similar way, using binary variables α̂dn/up
s,t,i and a large

enough constant Γ2, (13) can be reformulated as:

ρ
dn/up
i − Γ2(1− α̂dn/up

s,t,i ) ≤ λdn/ups,t ≤ ρdn/upi+1

+ Γ2(1− α̂dn/up
s,t,i ) (14)

i∑
l=0

x
Bch/Bdch
i−l,t − Γ2(1− α̂dn/up

s,t,i ) ≤ PBch/Bdch
s,t

≤
i∑

l=0

x
Bch/Bdch
i−l,t + Γ2(1− α̂dn/up

s,t,i ) (15)

I∑
i=1

α̂
dn/up
s,t,i = 1 (16)

The constants Γ1 and Γ2 must be tuned carefully to avoid
introducing extra bounds or ill-conditioning in the optimiza-
tion problem. The state of charge balance constraint can be
modeled as:

SoCB
s,k,t = SoCB

s,k,t−1 + [pDAch
s,k,t η

ch
k −

pDAdch
s,k,t

ηdchk

+ pBch
s,k,tη

ch
k

−
pBdch
s,k,t

ηdchk

]As,k,t −Ds,k,tη
dr
k (1−As,k,t) (17)

Equation (17) states that for each hour the new content of the
storage is equal to its old content plus energy inflow minus
energy outflow. Please note that, (17) allows to model both

stationary and mobile (EV) storages. For stationary storages,
the availability matrix As,k,t is always 1; hence the last term
which is energy spend on driving purposes vanishes. For EVs
the availability matrix is either 0 or 1 depending on weather
the EV is available or on a trip. The storage level is bounded
by its minimum and maximum levels (18).

γ
k
Ek ≤ SoCB

s,k,t ≤ γkEk (18)

The constraints (19) prevents discharging/charging in the
periods of unavailability.

As,k,tP k ≤ pDAdch
s,k,t − pDAch

s,k,t + pBdch
s,k,t − pBch

s,k,t ≤ As,k,tP k

(19)

Finally the constraint (20) states the end SoC condition.

SoCB
s,k,T ≥ SoCBend

k (20)

The day-ahead market is cleared at noon the day before
delivery day while the real-time market is continuous, hourly
market. This means the EV aggregator has new price informa-
tion realized after the day-ahead market clearing and before the
real-time market closure. In order to benefit from the released
information over time, the scenario tree of real-time prices can
be updated within the planning day using rolling planning.
Let Ω[t,T ] be the scenario tree predicted for hours t to T
using the historical prices up to hour t. In the rolling planning,
Ω[t,T ] is dynamically updated by real-time prices revealed until
hour t. The ideal case would be to update Ω[t,T ] on hourly
base. However, the solution time to solve the stochastic model
dynamically increases exponentially. Thus, in order to keep
the model computationally tractable, Ω[t,T ] is updated every
few hours which is called ’iteration’. For each iteration, new
scenario tree is used which contains the updated forecasts for
real-time market prices.

The stochastic and dynamic optimal bidding strategy for
deriving the coordinated bidding curves in day-ahead and real-
time markets follows as:

MaximizeΦ

|Ω[t,T ]|∑
s=1

ωs(

T∑
t=1

(ΠDA
s,t + ΠB

s,t)) (21)

subject to :

(2), (3), (4), (5)− (8), (10)− (12), (14)− (16), (17)− (20)
(22)

IV. CASE STUDY

In order to study the applicability of the developed SD-
MILP optimal bidding strategy, both charging and discharging
modes are studied. The developed approach is applied to derive
a bidding discharge/charge curve of an aggregator managing
a fleet of 1000 EVs.

A. input data

1) Market data acquisition: The historical price data, for
both day-ahead and real-time markets, are taken from the
Nordic electricity market website, from March 10, 2012 to
March 10, 2013 [15].



2) Market price scenario generation and reduction:
The modeling and forecasting of electricity prices are very
challenging due to its complex structure. Its stochastic
behavior is typically mean-reverting and spiky with high
volatility [16]. The existing dynamics between day-ahead
and real-time markets make the price forecasting even more
complicated. Substantial amount of work has been done on
modeling and forecasting of day-ahead market prices [17].
However, the existing references on real-time price modeling
and forecasting is very limited [18], [19] and [20]. This
section develops the Markov-based Holt Winter (HW) model
for modeling and predicting the day-ahead and real-time
prices. The proposed model has the following steps.

a) Step 1: Estimate the parameters of the HW model:
Reference [21] presents the HW model for a time series with
unique seasonal pattern. The HW model is applied to forecast
the electricity demand and imbalance cost in [22] and [23].
The standard HW model for a time series of prices {λt}Tt=1

is as follows [24], [25]:

γ̂t = α(λt/It−Ξ) + (1− α)(γ̂t−1 + Tt−1) (23)
Tt = β(γ̂t − γ̂t−1) + (1− β)Tt−1 (24)
It = σ(λt/γ̂t) + (1− σ)It−Ξ (25)
p̃t(h) = (γ̂t + hTt)It−Ξ+h (26)

where γt is the exponential component, Tt is the trend and
It is the seasonal component with period Ξ. α, β, and σ
are smoothing parameters which belong to the interval (0,1].
p̃t(h) is the h-hour ahead forecast.

b) Step 2: Estimate the transition probability matrix of
Markov model for different states of real-time market prices:
The magnitude of day-ahead and real-time electricity prices
can be estimated using the HW technique. However, the real-
time market prices have discrete mode meaning that in addition
to price magnitudes, the price states need to be forecasted.
In each bidding interval t, the real-time market price may
have one of the following four states: (1) No up- or down-
regulating price exists, (2) Only down-regulating price exists,
(3) Only up-regulating price exists, and (4) Both up- and
down-regulating prices exist. The state of real-time market
prices can be modeled using a four-state Markov process.

The probabilities of the transition matrix for real-time
Markov model are estimated using historical real-time market
prices. Based on the real-time prices, for each bidding period
t, the binary pair (bupt , bdnt ) is defined as follows.

b
up(dn)
t =

{
1 if an up-(down-regulating) price exists
0 Otherwise

(27)
We define ot as the parameter which shows the state of the

real-time price at time t.

oReal−time
t =


1 if (bupt , bdnt ) = (0, 0)

2 if (bupt , bdnt ) = (0, 1)

3 if (bupt , bdnt ) = (1, 0)

4 if (bupt , bdnt ) = (1, 1)

t = 1, 2...T

(28)
Let Oij = {oReal−time

t : oReal−time
t = j, oReal−time

t−1 = i, t =
1, ..., T}, then element (i,j) of transition probability matrix prij
for i, j = 1, ..., 4 can be calculated as:

prij =
Card(Oij)∑4

n=1 Card(Oi,n)
i, j = 1, ...4 (29)

c) Step 3: The day-ahead and real-time price scenarios:
The prediction technique explained in Step 1 is applied to
forecast the day-ahead market price magnitude. Then, using
the expected values and the variances of day-ahead market
prices and assuming normal distribution, the day-ahead market
price scenarios are generated. However, both price magnitude
and direction have to be forecasted for real-time market.
To predict real-time market price magnitude, the real-time
market historical prices are collected and processed. Then the
forecasting procedure in Step 1 is applied. The Markov model
provided in Step 2 is employed to capture the price direction
for the real-time market. Again, the real-time market price
scenarios are generated using the predicted price magnitude,
direction and assuming normal distribution. For day-ahead and
real-time markets, various price scenarios are generated for
each planning hour. The backward reduction algorithm is used
to reduce the number of price scenarios. This is done in a way
that the statistical information in prices is maintained in the
best possible way [26]. Using the forecasted prices, 1000 price
scenarios with equal probabilities are generated and they are
reduced to 10 price scenarios. These preserved price scenarios
will be used for calculating the optimal bidding curve of the
EV aggregator.

3) Availability simulation: A Monte Carlo simulation tool
is used to produce mobility scenarios for imitating the uncer-
tain driving behavior. Then, discrete cumulative distribution
functions (cdf) is employed, which is derived considering i) the
probability of travel on a specific day, ii) the probability that a
trip starts in a specific hour, and iii) the probability that a trip
covers a certain distance. Like in [12], independent sampling
is executed. Finally, 10 equally probable mobility scenarios are
produced and integrated with the 10 price scenarios prepared
in Step 3.

4) General parameters: The EV driving patterns are ac-
cording to the reference [27]. The maximum battery capacity
is taken 50 kWh [27], while the battery level is bounded by its
minimum of 20 % and maximum of 100 % of the maximum
capacity [28]. Both the charging and discharging power rate is
taken 6 kW. Finally, the charging and discharging efficiency is
set to 90 % and 93 %, respectively [29]. For every scenario,
the target state of charge level is equal to the initial state of
charge level and assumed to be 60 % of the maximum capacity.



The capital cost for EV battery is set to 200 e/MWh and the
slope µk=-[0.0013] according to [13].

B. Simulations results

A three-level step function with ρ1=15e/MWh,
ρ2=50e/MWh, and ρ3 =75e/MWh is considered for
bidding curves. The proposed Markov-based HW model,
scenario backward reduction algorithm and the Monte Carlo
simulation tool to produce mobility patterns are coded in
MATLAB. The HW parameters are estimated as = = =
0.1. The SD-MILP is coded in GAMS platform and solved
using CPLEX solver. All optimization problems are solved
with optimality gap of 0%. The whole simulation is run
on a computer with 2.66 GHz processor and 4 GB RAM.
The objective function values together with the total cost,
degredation cost and the computation time for a fleet of 1000
EVs and all iterations are stated in Table I. According to
Table I, the computation time is highest for the first iteration.
Moreover, the computation time for the second iteration is
lowest, then it is slightly increasing in the third and the fourth
iterations. Possible answer to this is the application of rolling
planning in the SD-MILP optimization model. After the first
iteration, all variables for the day-ahead market is fixed to
their optimal values. In addition, for the real-time market and
for every iteration the information related to previous hours
is kept and the information related to remaining hours is
updated. The resulting optimization problem becomes tighter.

TABLE I: Model solution report for a fleet of 1000 EVs, It: Itertaion

It. 1 It. 2 It. 3 It. 4
E[ΠTot](e) 200.35 168.8 167.35 130.24

Total cost (e) 2243 1957 1992 1909
Degredation cost (e) 175 156 159 152
Comp. time (second) 28.64 15.2 18.3 19

The optimal coordinated bids of the storage aggregator in
two markets is given in Table II. The bid volumes to day-
ahead market remain the same for all iterations (the first and
the second columns in Table II). In contrast, Table II shows
that real-time bid volumes (up/down regulation) are changing
when time evolves and new price information reveals over
time. According to Table II, the EV aggregator is actively
participating in day-ahead market offering discharging bids
and in real-time market providing down-regulation bids.

The day-ahead and real-time bidding curves for hours 2 and
3 are shown in Fig. 1 and Fig. 2. According to the Fig. 1 the
model offers to enter directly to real-time market providing
up- and down-regulating bids. However, Fig. 2 shows that, for
the hour 3 the model yields an incentive to offer discharging
bid to day-ahead market and charging bid to real-time market.

V. CONCLUSION
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Fig. 1: The bidding curves for hour 2.
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Fig. 2: The bidding curves for hour 3.

The aggregators are required business entities, who enable
smooth cooperation of large fleets of EVs and the SO while
maximizing their own profit. This paper proposes a SD-
MILP for deriving optimal coordinated bidding in day-ahead
and real-time markets for a profit-maximizing EV aggregator.
The prices in these market places are modeled and predicted
using a proposed Markov-based HW model. The HW model
predicts the magnitude of day-ahead and real-time market
prices. The direction of real-time market prices are predicted
using Markov model. The scenario tree is also updated with
arrival of new information for real-time market prices. This
has been done by implementing the rolling planning in the
SD-MILP. The developed procedure is tested using a fleet of
1000 EVs. Results show that EVs can provide a new collection
of services to the power system. However, the degradation of
the batteries should be accounted precisely in order to motivate
the EVs’ participation in day-ahead and real-time markets. The
current paper can be extended by modeling also the intra-day
market.
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