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Abstract: Demand response (DR) will be an inevitable part of the future power system
operation to compensate for stochastic variations of the ever-increasing renewable generation.
A solution to achieve DR is to broadcast dynamic prices to customers at the edge of the grid.
However, appropriate models are needed to estimate the potential flexibility of different types
of consumers for day-ahead and real-time ancillary services provision, while accounting for the
rebound effect (RE). In this study, two RE models are presented and compared to investigate
the behaviour of flexible electrical consumers and quantify the aggregate flexibility provided.
The stochastic nature of consumers’ price response is also considered in this study using chance-
constrained (CC) programming.
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NOMENCLATURE

Sets:

T Set of time periods, indexed by t, t ∈ [1, . . . , τ ].
J Set of consumers types, indexed by j.
α Types of regulation, i.e., up- or down-regulation.
D Set of days, indexed by tD, tD ∈ [1, . . . , τ24 ].

Parameters:

Rj Maximum rebound effect duration for consumer
type j [h].

λλλbase Base-line electricity price [DKK cent/Wh].
∆λ∆λ∆λut ,∆λ∆λ∆λdt Dynamic electricity price for up- and down-

regulation at time t [DKK cent/Wh].

∆λ∆λ∆λαj ,∆λ∆λ∆λ
α

j Minimum and maximum delta prices for regu-
lation type α of consumer type j [DKK cent].

Lbase
t,j Base-line consumption of consumer type j at time

t [W].
Lmin
t,j ,L

max
t,j Minimum and maximum electricity consump-
tion of consumer type j at time t [W].

aαt,j ,a
α
t,j Willingness and maximum willingness of con-

sumer type j to provide flexibility type α at time
t [p.u.].
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rαj Ramp-rate of consumer type j for regulation type
α [W/h].

nαj Maximum number of activations for consumer type
j to provide flexibility type α.

dαj ,d
α

j Minimum and maximum continuous flexibility du-
ration of consumer type j when activated to pro-
vide flexibility type α [h].

Variables:

Lαt,j Flexibility of end-users’ category j at time t for
regulation type α [W].

wt,j ,vt,j ,xt,j Binary variables defining the regions of the
overall flexibility provided up to time t by end-
users’ category j.

uαt,j Binary variables, indicating flexibility status of
end-users’ category j at time t for regulation type
α.

yαt,j ,z
α
t,j Starting and stopping binary variables of end-

users’ category j at time t for flexibility type α.
Θt,j Overall flexibility provided at time t from con-

sumer type j [W].

1. INTRODUCTION

Demand response (DR) programs are solutions that target
changes in the power consumption of electrical consumers
through economic incentives. With the higher penetration
of renewable energy resources in the system, such pro-
grams are becoming a popular solution to better meet the
stochastic electricity generation and support the power
system operation. Several DR solutions have been pro-



posed in literature, e.g., by offering long-term contracts,
or by broadcasting dynamic prices.

In the long term contracts, consumers allow an external
operator to decide about their electricity consumption in
exchange for an economic incentive (see e.g. Bitar and Low
(2012)). In dynamic price schemes, however, consumers
receive a time-varying price by their home-energy manage-
ment system (HEMSs) and decide individually their elec-
tricity consumption schedule to minimise overall cost while
preserving comfort and privacy (see e.g. Gillan (2017)).
As the latter does not restrict end-users’ autonomy or
independence, dynamic price schemes are most likely to
be accepted by consumers. As a result, we focus on DR
programs based on the dynamic prices as the control signal
in this study.

In order to fully exploit the potential of DR programs, it is
important for the operators (i.e., DR aggregators and sys-
tem operators) to understand how consumers respond to
prices on an aggregated level. Such an understanding can
facilitate the formulation of proper dynamic prices that
achieve a certain change in consumption from consumers.
Furthermore, it can support the operators in quantifying
the potential flexibility that can be achieved from DR
programs and better allocate the reserve requirements for
the power system operation.

Of particular importance in this matter is the rebound
effect (RE), which consists of the change in consumers’
consumption due to previous and future price reactions
and is related to the technical constraints of loads and con-
sumers’ preferences. RE represents the power consumption
increase (decrease) that follows an event of up- (down-)
regulation, for which the consumption is decreased (in-
creased) (O’Connell et al. (2014)). In the literature, RE is
mainly investigated in relation to thermal loads or refrig-
erators (O’Connell et al. (2014)) that will need to recover
their consumption immediately after a decrease in their
consumption by their own dynamics. In this paper, we ex-
tend this concept to shiftable loads (i.e., washing machines,
as discussed in Klaassen et al. (2016)) as they follow a
similar behaviour. Both thermal and shiftable loads can be
modelled by consumers that reduce (increase) their base-
line consumption scheduled at a certain time and consume
more (less) in the following time steps. The main difference
between the types of loads is the time period for which
the RE phenomenon must be completed (i.e., refrigerators
have faster dynamics than washing machines). Therefore,
we can formulate a general mathematical model of the RE
for both thermal and shiftable loads, where the different
dynamics impact appears in the maximum RE duration
parameter. In this paper, the RE is formulated assuming
that the increase and decrease in consumption perfectly
compensate each other in a certain period of time, defined
as perfect RE. Although such an assumption might not
be realistic for all types of loads, a practical model of
such requires detail models and field data. An alternative
representation to perfect RE will be investigated in our
future studies.

Despite the importance of quantifying consumers’ price
response, proper RE modelling has scarcely been investi-
gated and the majority of studies evaluated RE in relation
to the change in energy efficiency (Greening et al. (2000)).
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Fig. 1. Basic concept of perfect RE.

In Georges et al. (2017), RE was modelled for a pool of
residential heat-pumps, assuming that an operator could
decide the consumption of a pool of consumers. In that
study, the RE was modelled by a delay period with no
deviations from the baseline consumption, and a payback
period during which deviations in consumption occurred
to allow the heat-pumps to return to their baselines.
Although the study evaluated the dynamics of loads for
a pool of residential heat-pumps, additional studies are
needed to quantify the aggregate RE impact of different
types of consumers.

The main contributions of this paper can be summarised
as follows. First, we present two different formulations
to model RE on an aggregated level with different types
of consumers using mixed-integer linear programming
(MILP). Second, we compare both formulations and use
them to quantify the overall flexibility that can be achieved
from a heterogeneous pool of consumers. Furthermore, we
benchmark the two formulations with each other in terms
of computational time and model sizes.

The paper is organised as follows: in Section II, the two
formulations of RE are explained; in Section III, results of
the models are presented and discussed; in Section IV, we
summarise the conclusions.

2. MODELLING

We start by briefly explaining the concept of perfect RE.
In Fig. 1, the condition of perfect RE is shown for a
consumer of type j that provides regulation in α direction
at time t. Load flexibility Lαt,j can be provided either for
up-regulation (α = u) or down-regulation (α = d).

In Fig. 1, the increase in electricity consumption achieved
from consumers responding to a DR program (i.e., Ldt,j)
is always compensated with a decrease (i.e., Lut,j) of the
same magnitude in the following time steps. This concept
is also valid vice versa, where an increase in electricity
consumption follows a previous decrease. The duration
period for which the RE must be completed depends on
the characteristics of the loads and is here defined as
maximum of Rj periods for each consumer type j. If we
define Θt,j = Ldt,j − Lut,j , the general RE condition can

be formulated as
∑t+Rj
t Θt,j = 0. Depending on the type

and the dynamics of a load, it is possible to consider the
RE duration as static (i.e., for specific time periods) or
dynamic (i.e., allowing a more adaptable scheduling of the
flexibility). These two different formulations are presented
in the Sections 2.1 and 2.2, while the overall aggregation
model of the consumers is given in Section 2.3.
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Fig. 2. Rebound effect for specific time steps.
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Fig. 3. Rebound effect for duration.

2.1 Modelling rebound for static RE duration

In this subsection, we model the RE for consumers that
require a static RE duration. An example of this condition
could be the charging of an electric vehicle (EV) that starts
at 11:00 and needs to be completed by 16:00. In Fig. 2, this
RE model is graphically presented. With static time steps,
the RE can be formulated as:

(t−1)Rj+Rj∑
t′=(t−1)Rj+1

Θt,j = 0 (1a)

∀t : [t ∈ T, (t ·Rj ≤ τ)], j

For this formulation, we divide the time set T by the RE
duration of each type of consumers j. In this manner,
we set the time intervals for which the total amount of
flexibility provided by consumers type j up to time t must
be nullified. Therefore, in Eq. 1a, the overall flexibility
provided by each type of consumers j must be nullified
within each RE cycle.

2.2 Modelling rebound for dynamic RE duration

Not all loads can be represented by a static RE model.
An example is thermal loads, which can always provide
flexibility as long as some operational constraints are
respected. For this type of loads, the condition that the
perfect RE is completed must be imposed only when
flexibility is being provided. This concept is visualised in
Fig.3.

In Fig. 3, the RE duration is set dynamically whenever reg-
ulation is provided. However, the RE must be completed
at least once within Rj (i.e., to guarantee a certain tem-
perature in the room). When the perfect RE is achieved
(highlighted as light grey area in Fig. 3), a new RE cycle
can be started. This RE model can be formulated as:

εxt,j −Mwt,j − εvt,j ≤
t∑

t′=1

Θt′,j ∀t, j (2a)

R1
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wt,j = 1
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Fig. 4. Definitions of three possible regions of
∑t

1
Θt,j .

t∑
t′=1

Θt′,j ≤ −εwt,j +Mxt,j + εvt,j ∀t, j (2b)

xt,j + wt,j + vt,j = 1 ∀t, j (2c)

vt−1,j − vt,j ≤
t+Rj∑
t′=t

vt′,j ,∀t : [t ∈ T, t ≤ τ −Rj ], j (2d)

The total amount of flexibility provided by consumer type
j until time t,

∑t
1 Θt,j , can either be zero (when the

amounts of down- and up-regulation perfectly compensate
each other), positive or negative. For this reason, we define

three possible regions for the value of
∑t

1 Θt,j in Eqs. (2a)-
(2b). These regions are modelled through three binary
variables where only one of them can be non-zero at
time t. xt,j=1 represents the region where

∑t
1 Θt,j has

positive values; wt,j=1 describes the region where
∑t

1 Θt,j

has negative values and vt,j=1 models the region where∑t
1 Θt,j is zero (see Fig. 4). To define the three possible

regions in the model, we use a big-M formulation, where
M is a large constant and ε is small constant. Eq. (2c)

guarantees that
∑t

1 Θt,j can only be in one of these regions
at time t. Eq. (2d) ensures that when consumers start
providing flexibility, the RE must be perfectly completed
at least once within Rj periods.

2.3 Quantifying the flexibility provision

In this subsection, we provide the overall MILP that can
schedule the flexibility provision to achieve cost minimisa-
tion for each customer type j (see De Zotti et al. (2018)).

min
Lα
t,j

τ∑
t=1

(
λλλbase + ∆λ∆λ∆λut + ∆λ∆λ∆λdt

) J∑
j=1

(
LLLbase
t,j + Θt,j

)
(3a)

s.t. − rαj ≤ Lαt+1,j − Lαt,j ≤ rαj ∀t, j, α (3b)(
Lmax
t,j − Lbase

t,j

)
= Θd (3c)(

Lbase
t,j − Lmin

t,j

)
= Θu (3d)

0 ≤ Lαt,j ≤ uαt,jΘαaαt,j ∀t, j, α (3e)

udt,j + uut,j ≤ 1 ∀t, j (3f)

yαt,j − zαt,j = uαt,j − uαt−1,j ∀t, j, α (3g)

yαt,j + zαt,j ≤ 1 ∀t, j, α (3h)

(tD−1)24+24∑
t′=(tD−1)24+1

yαt′,j ≤ nαj ∀j, α, tD (3i)
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Fig. 5. Modelling consumers’ willingness, aαt,j , as a function of delta
price.

t+dαj∑
t′=t

uαt′,j ≥ dαj y
α
t,j (3j)

∀t : [t ∈ T, (t+ d
α

j < τ)], j, α

t+d
α

j∑
t′=t

zαt′,j ≥ yαt,j (3k)

∀t : [t ∈ T, (t+ dαj < τ)], j, α
τ∑
t=1

Θt,j = 0, ∀j (3l)

The objective function (3a) minimises the cost of customer
type j for purchasing electricity within the planning hori-
zon of τ periods. In the objective function, the electricity
price consists of a base-line component λbase (that covers
fixed costs and taxes) and a dynamic component, which
might be positive (∆λut ) or negative (∆λdt ) depending on
the type of regulation needed. The dynamic price compo-
nents are assumed to achieve a certain change in consump-
tion from the consumers. The constraints are formulated
as follows: Eq. (3b) is related to the up- and down-ramp
limits of the flexible loads, which are represented for each
consumer type j by the ramp-rate parameter rαj ; Eq. (3c)-
(3e) enforce lower and upper bounds on the amount of
flexibility that can be provided by each consumer type
j. Note that the minimum and maximum load for each
consumer type j at time t, i.e., Lmin

t,j and Lmax
t,j , represent

the lowest and highest possible consumption that each
consumer type can sustain at time t. In other words, they
define the demand flexibility that can be achieved from
each consumer type in a specific time.

In Eq. (3e), aαt,j represents the willingness of consumers to
provide DR for regulation type α. It is a function of the
price and can vary between -1.0 and 1.0. Beyond a certain
price threshold, which we define as ∆λj , consumers have
a willingness of:

aαt,j = aαj

(∆λαt −∆λαj

∆λ
α

j −∆λαj

)γ
(4)

However, beyond a certain cap price, denoted by ∆λj ,
price response saturates and no additional flexibility can
be provided. The parameter aαt,j is also illustrated in Fig. 5.

In order to include the stochastic behaviour of con-
sumers, we apply chance-constrained (CC) programming

to Eq. (3e) for a confidence level of β = 95%. In order to
do that, we assume that aαt,j follows a normal distribution,
as it is related to human behaviour. Eq. (3e) is therefore
reformulated to:

0 ≤ Lαt,j ≤ µαauαt,jΘα + σαau
α
t,jΘ

αΦ−1
βββ (5)

In this formulation, µαa and σαa represent the mean value
and the standard deviation of aαt,j . For more information
about the use of CC programming in this setting, the mod-
elling of aαt,j and the validity of the normality assumption,
please refer to De Zotti et al. (2018).

Eq. (3f) ensures that only one type of flexibility (i.e.,
up- or down-regulation) is provided by consumer type j
at time t; Eq. (3g) represents the flexibility activation
and deactivation for consumer type j at time t; Eq. (3h)
implies that flexibility provision cannot be activated and
deactivated at time t for consumer type j; Eq. (3i) enforces
a limit on the number of times that a certain consumer
type can be activated in a day. Eq. (3j)-(3k) refer to
the minimum and maximum duration for which the load
response can be sustained. Eq. (3m) guarantees that the
overall flexibility provided is nullified over the time period.

For the numerical results, we combine the overall model
with the two types of RE modelling. In the remainder of
this paper, the model with static RE duration is referred
to as model A and it consists of Eq. (1a) and Eq. (3a-3l).
The model with dynamic RE duration is referred to as
model B and involves Eq. (2a-2d) and Eq. (3a-3l).

3. NUMERICAL RESULTS

In this section, we provide the numerical results to quantify
the overall flexibility provision when considering different
RE models and a computational study of the models. To
solve the MILP problem, we use actual Danish electricity
consumption data for 29 different consumers’ categories
(i.e., residential, commercial and industrial), as discussed
in De Zotti et al. (2018). The data have been collected by
Energinet and Dansk Energi during the Elforbrugspanel
project and are available at Elforbrugspanel (2018). The
values of the parameters which have been used in the
simulation studies can be found in De Zotti et al. (2018).

In this study, we investigate the two models A and B for
2 days (i.e., τ = 48 hours) for different delta price sets
and temperature settings to identify the range of flexibility
that can be provided at each hour. Therefore, we generate
1000 random delta price sets with uniform distribution,
assuming that λbase is equal to 2.25 DKK/kWh and that
the dynamic price set component varies within ∆λαj = 0.2

DKK/kWh and ∆λ
α

j = 0.75 DKK/kWh.

Although aαt,j is represented only as function of the price
in Eq. (4), it is possible to extend its modelling and
include the effect of the outdoor temperature. In fact,
the temperature can have a close relationship to the
electricity consumption (see Beccali et al. (2008)). For
example, in summer, extreme temperatures require higher
electricity consumption for cooling, as shown in Fig. 6.
Therefore, there might be higher chances for the operator
that consumers are willing to provide DR under the
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Fig. 6. Relationship between temperature and willingness parame-
ter aαt,j .

Table 1. Average values of the flexibility pro-
vided and of the overall electricity cost.

RE Case Flexibility Electricity
model provided cost

[MWh] [million DKK]

A I 600.31 380.47
B I 874.59 380.11
A II 714.67 380.33
B II 1032.10 379.92
A III 482.89 380.60
B III 714.50 380.30

condition that their comfort is guaranteed. To include the
outdoor temperature in the aαt,j formulation, we multiply
aαj of Eq. 4 by a correcting parameter, ν. We consider
three cases of outdoor temperatures: Case I deals with a
base-line temperature and refers to the initial mean value
of aαj (i.e., ν=1); Case II considers aαj for higher outdoor
temperature (i.e., ν=1.1); Case III models aαj for lower
outdoor temperature (i.e., ν=0.9).

We modelled both MILPs in GAMS 24.9.1 using Gurobi
8.1.0 as solver. The experiments where carried out on
Intel(R) Core(TM) i7-2600 CPU 3.40GHz processor with
16 GB of RAM.

3.1 Socioeconomic analysis

In this subsection, we investigate the overall benefits
achieved by the operator (by procuring flexibility) and the
consumers (by minimising their electricity cost) through
the proposed DR program with different RE models. The
overall electricity cost for the consumers and the aggregate
amount of flexibility achieved are given in Table 1. From
the table, it can be seen that model A achieves a lower
amount of flexibility than model B (about 31.3%). This is
due to the fact that consumers in model A are more con-
strained by the RE formulation. Consequently, consumers
in model A pay a higher cost for procuring electricity (i.e.,
0.1%, 360,000 DKK). However, the difference in electricity
cost depends on the price formulation (which in this case
are capped and, therefore, limiting the cost reduction).
From Table 1, it can be further seen that the temperature
affects the overall flexibility and cost, where Case II leads
to an amount of flexibility that is around +45% more
than Case III, and consequently, to an overall electricity
cost that is around 320,000 DKK lower. In Figs. 7 and 8,
the ranges of the overall flexibility that can be achieved
for the two different types of RE are plotted. The results
are obtained by running the simulations for 1000 different
price sets considering Case I for the temperature setting.

From Figs. 7 and 8, we can see differences in the daily
electricity consumption. This is due to the choice of the

Fig. 7. Range of consumption achieved when considering static RE
(i.e., model A). Base-line consumption (in black); Sample daily
price response (in red).

Fig. 8. Range of consumption achieved when considering dynamic
RE (i.e., model B). Base-line consumption (in black); Sample
daily price response (in red).

type of days represented, which are Sunday and Monday.
The plots confirm the results given in Table 1, because
Fig. 7 shows less flexibility in comparison with Fig. 8. For
example, model A achieves a range of flexibility between
4.5 and 4.7 MW for hour 37, while this range is between
4.4 and 4.7 MW for model B (i.e., +50% than model
A). Furthermore, when referring to the sample daily price
response plotted in red, we can see that the total amount
of flexibility provided by model A for up-regulation (or
down-regulation, as the amount of regulation flexibility is
the same for each flexibility direction α) is only 436 MWh,
while model B provides 700 MWh. It also confirms that
model B is able to achieve a higher amount of flexibility
throughout the day.

In summary, it can be concluded that, when approaching
model A for the entire pool of heterogeneous consumers,
the operator might behave rather conservative in setting
the dynamic prices. In fact, such a model overlooks a
significant amount of the flexibility potential, which could
be delivered between different Rj periods. Therefore, it
is crucial for the operator to understand the dynamics
of the flexible loads and combine the two RE models
to be able to quantify the aggregate flexibility potential.
Moreover, the operator needs to take into account the
effect of the temperature on the overall price response
of consumers, as this factor influences the overall results.
If the dynamic prices submitted to the consumers are



capped, the overall cost reduction might not be that
significant for the consumers.

3.2 Modelling benchmark

Beside the different results in electricity cost and amount
of flexibility provided, it is also interesting to investigate
the computational performance of the two modelling ap-
proaches. In Table 2, we report the solution time, number
of binary variables, MIP gap, number of equations and
number of discrete variables for model A and B. From the
table, we can conclude that model B takes longer to solve
than model A. In our experimental setup, model A could
be solved in less than 1 second on average, while model B
required more then 82 seconds. The longer solution time
can be explained by the larger amount of variables and
equations in model B, in particular, the additional binary
variables related to Eqs. (2a)-(2d). However, both models
can be solved to optimality within a reasonable amount
of time, which is indicated by the remaining MIP gap of
0.00 (i.e. less than the MIP gap tolerance of 10−5 set in the
solver). We can conclude that the more flexible formulation
of the RE requires some additional computational effort.

Table 2. Computational results of the two RE
models (solution time (t); MIP gap (Gap);
number of variables (#Var), number of bi-
nary variables (#Bin.V), number of equations

(#Eq)

RE t[s] Gap[%] #Var. #Bin.V. #Eq.

A 0.61 0.00 15402 8352 28451
B 82.41 0.00 19578 12528 33573

4. CONCLUSION

This paper investigates different approaches for modelling
the RE of electrical consumers that respond to price-based
DR programs. Two RE models are formulated as MILPs
and applied to quantify the aggregate amount of flexibility
that can be achieved when time-varying electricity prices
are submitted to flexible consumers. In this study, the
stochastic nature of consumers’ behaviour toward prices
is considered by approaching CC programming. The effect
of the temperature is also investigated on the overall
consumers’ price response. Moreover, a computational
study is provided for both models’ performance, where
the overall electricity cost of consumers and the amount
of flexibility achieved by the operator are highlighted and
compared for different RE models.

From the numerical results, it can be concluded that
different RE models lead to significant changes in the
overall flexibility potential. Therefore, it is crucial for the
operators to have a deep understanding of the types of
loads they deal with so that they can estimate the amount
of flexibility more accurately. Introducing a specialised
operator for the collection of off-line aggregate data can
facilitate the understanding of consumers’ dynamics. Al-
ternatively, static RE can be considered for a more conser-
vative study of RE. This approach avoids over-estimation
of flexibility when loads’ dynamics are difficult to estimate
from aggregate measurements.

Due to the field data scarcity, we assume the condition
of perfect RE in this study (i.e., where increase and

decrease in consumption perfectly compensate each other).
However, in future studies, an imperfect RE condition will
be investigated for different consumers’ categories.
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