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Abstract—Battery cell temperature is an important factor in
battery capacity degradation, performance, and safety. Elevated
battery cell temperature, due to intense battery operation with
high charging-discharging current and ambient temperature,
accelerates battery capacity degradation as well as causing
extra cooling cost. Therefore, it is indispensable to estimate
battery cell temperature accurately for optimal BESS operation
considering capacity degradation and its associated costs. The
main objectives of this paper are to propose a linear model to
estimate battery cell temperature using Autoregressive Integrated
Moving Average with eXogenous variables (ARIMAX) consid-
ering strongly correlated independent variables and propose a
cost function of PV plant with and without battery operation.
The simulation results using field data show high accuracy of
the proposed temperature estimation model without considering
the complex thermal dynamics of the entire system. In addition,
comprehensive cost functions are developed to show the benefit
of integrating battery storage into a PV plant and determine
influential factors to consider in any optimal battery operation
systems.

Index Terms—Battery cell temperature, degradation, ARI-
MAX, cost analysis, PV plant, BESS

I.INTRODUCTION

With the growth of large-scale photovoltaic (PV) and wind
plants all over the world, the battery energy storage system
(BESS) has become popular. BESS is essential for storing
excess renewable generation when it is available and utilising it
efficiently and economically during peak hours. It also plays a
vital role in compensating the variability of renewable genera-
tion [1]. While technological improvement and cost reduction
of electrochemical storage devices are taking place, battery
degradation remains a big concern for the wide application
of BESS [2]. To that end, an effective energy management
system (EMS) is needed to operate battery in an optimal way
by considering degradation and its associated costs. This can
reduce unnecessary battery operation, which is responsible for
higher degradation. To design a reliable EMS, it is important
to derive a cost function for BESS operation considering all
associated costs such as degradation and cooling costs. It helps
to extend battery lifetime, which will economically benefit the
entire system operation.

Battery capacity degrades due to charging-discharging op-
erations as well as during idle condition [3], [4]. Among
various responsible factors for battery capacity degradation,
battery cell temperature has a crucial impact on accelerat-
ing battery capacity reduction [5]. In [6], it is shown that

every 10°C battery cell temperature rise doubles the battery
degradation. Accumulated heat generated by large-scale BESS
placed in a confined container increases room temperature,
which accelerates cooling system operation to keep the room
temperature at an acceptable range. As a result, the elevated
battery temperature increases operational cost for renewable
plants with BESS. This way, it is essential to estimate battery
temperature evolution with respect to battery operation and
ambient temperature to have a better understanding of the
incurred cost.

While a significant number of research studies has been
conducted on thermal management of battery in electric ve-
hicles (EVs) and plug-in hybrid electric vehicles (PHEVs) by
proposing general models of battery thermal behaviour [7],
[8], no such research has been conducted using linear mod-
elling approach to estimate thermal behaviour of utility-scale
BESS in connection with a grid-integrated renewable power
plant. Detailed thermodynamic modelling to determine thermal
behaviour of a single battery module is not feasible for large-
scale BESS, where complex thermal interactions between
thousands of battery cells are involved. This type of thermal
modelling with intensive measurements and computational
efforts, as suggested in [9], is not practicable for the EMS in
utility-scale BESS because of the cost and scalability issues.
Moreover, to the best of our knowledge, a comprehensive cost
function for utility-scale BESS, including influential factors
such as battery capacity degradation, cooling system operation
and battery operational costs related to BESS operation, has
not been reported in the literature.

In this paper, a data-driven battery cell temperature esti-
mation model is proposed for a 600kW/760kWh BESS in a
3.275 MWp PV plant, located at the University of Queensland
(UQ) Gatton campus, using a widely accepted linear statistical
forecasting method, ARIMAX [10], [11], [12], which can
be conveniently integrated with EMSs. A data-driven method
does not require the physical dynamics of the BESS and
thermal interactions between effective parameters. Instead,
only historical data is needed to estimate future battery cell
temperature. In addition, the proposed cost function in this
study estimates total plant cost/benefit by considering battery
capacity degradation, cooling cost, imported/exported energy
from/to the grid, exported PV energy to the grid based in
Feed-in-Tariff (FiT), and demand charge. A linear degradation
model is adapted to calculate battery ageing. A comparison
study has also been presented in this study to evaluate the total



cost of plant operation with and without BESS in a grid-tied
PV plant. Actual field data from the UQ PV-BESS plant is used
for modelling and evaluating the proposed methodologies.
Extensive simulation results show the high accuracy of the
proposed temperature model and prove the necessity of such
models for optimal BESS operation.

The rest of the paper is organised as follows: Section II
presents ARIMAX modelling for battery cell temperature
estimation. Section III explains the cost formulations of PV
plant with and without BESS. Section IV presents simulation
study based on field data. Finally, the paper is concluded in
Section V and future work is outlined.

II. BATTERY CELL TEMPERATURE MODELLING

In this study, ARIMAX is used to estimate battery cell
temperature as a linear model. It is a powerful tool to outline
the dynamics of a time series. The ARIMAX concept is
proposed over ARIMA as a multivariate method that can
include independent variables, which are important in the
battery cell temperature model. In ARIMA, only dependent
variable is regressed on its own lagged values (i.e., AR terms),
error values generated in previous time steps by the model (i.e.,
MA terms) and the number of nonseasonal differences needed
for stationarity of time-series data. In addition to ARIMA,
ARIMAX model takes the impact of exogenous variables
into account. In this study, the charging-discharging current
of the battery and ambient temperature are considered as the
external variables to estimate dependent variable, i.e., battery
cell temperature, more accurately [3]. ARIMAX model can be
mathematically represented as,

G = Bre+ o191 + o+ OpYrp — br2e1 — - — Ogzg + 20 (1)
where g, represents dependent variable based on differencing
of time series data; y; is the dependent variable denoting actual
time series; x, represents exogenous inputs at time ¢ and 3 is
the coefficient of exogenous inputs; z; represents the forecast
errors; and ¢, and 6, are the estimated coefficients of the
respective variables. ¢ denotes the time-step of the series.

The proposed model is classified as ARIMAX(p,d,q) model.
There are three main parameters, namely p, d and g, to be set
to determine the model. p is the number of auto-regressive
terms, d is the number of nonseasonal differences needed for
converting the non-stationary time-series to a stationary one,
and ¢ denotes the number of lagged forecast errors.

The identification of the model is performed in three steps.
First step is to analyse the trend of time series to determine
whether transformation is needed. In order to check the sta-
tionarity of the time series, statistical analysis will be carried
out. Two tests are used in this study to check the stationarity
of the time series:

o Augmented dickey fuller (ADF) unit root testing is cho-
sen to examines the null hypothesis of a unit root [13].
o KwiatkowskiPhillips-Schmidt-Shin (KPSS) test is uti-
lized to determine the stationarity of a time series around
a mean or a linear trend [14].
Both tests collectively indicate the stationarity of a time series
when existence of a unit root is rejected by ADF test and the

mean/trend-stationarity of the time series is not rejected by
KPSS test.

Second step is to find the best order of the auto-regressive
model for estimating the battery cell temperature. An auto-
regressive model predicts the dependent variable (i.e., battery
cell temperature), where specific lagged values of the depen-
dent variables are used as predictor variables. Partial autocor-
relation function (PACF) is used to identify the order of the
autorcorrelation or AR(p) model [15]. The other component
of ARIMAX is the moving average (MA) with the order of gq.
In a time series model, a moving average term is a past error
multiplied by a coefficient. Autocorrelation function (ACF)
is used to determine the order (q) of MA model [15]. These
methods will be used in Section IV for modelling using actual
data.

Third step is to build the model using training dataset after
identifying the p, d and g order. The coefficients of the model
are identified during the training process. The trained model
is then tested with a completely separate set of independent
data (called test data), which has not being used during the
training process, to evaluate the performance of the model. In
order to quantify the accuracy of the battery cell temperature
prediction, Root Mean Squared Error (RMSE), given in (2),
is used as a standard measure.
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where Ty, T),, and N represent time series of actual battery
cell temperature, predicted battery cell temperature using ARI-
MAX model, and the total number of samples, respectively.

II1. COoST FUNCTION DEVELOPMENT

A comprehensive cost assessment considering the most
effective parameters is able to render an opportunity to de-
velop a cost function for the entire plant. Dominant factors
such as battery degradation cost due to cycling and calendar
ageing, cost of the cooling system, and the cost associated
with charging-discharging operations of BESS have taken into
account to develop a complete cost function for the plant.
Appropriate formulation is derived for plant operation cost
with and without BESS for comparison purposes, which helps
to identify the effectiveness of the BESS integration in the
plant. Such a comparison using simulation results will show
the necessity of optimally operating battery to avoid the
unnecessary cost. In this study, we run our study on a PV
plant. However, the same methodology can be used for other
renewable-based plants.

A. PV plant cost with and without BESS

In this section, the plant operation costs with and without the
BESS will be formulated step-by-step. The cost functions are
developed based on the UQ Gatton plant in Australia, which
has a local grid-connected BESS of Li-Polymer batteries [16].
The primary objectives of the plant are to fulfil campus
electricity requirements and reduce demand charge.



1)Total cost function with BESS: Although BESS is pri-
marily integrated into the PV plant to store excess PV energy
and utilise the energy when grid price is high, its continuous
operation in the plant causes extra cost. The dominant cost
factors for operating a BESS are the cost associated with
battery degradation, cooling system operation, and importing
power from the grid to charge the BESS.
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Fig. 1: Cost-benefit of the entire PV-BESS plant

Fig. 1 shows the daily cost-benefit associated with BESS
operation in the plant. Continuous battery operation in charg-
ing and discharging modes as well as idle situation are
responsible for battery degradation. Moreover, elevated tem-
perature created by battery cell and ambient temperature in the
confined BESS room accelerates the cooling system operation
to maintain the room temperature within an acceptable range.
Although a significant benefit is experienced by discharging
operation of the BESS during peak hours, battery charging by
the grid and avoiding selling excess PV generation to the grid
at FiT price (yellow area in Fig. 1) will add to the overall cost
of the system. As per operational rules, the BESS charging
from the grid only takes place during the off-peak time,
when the price is relatively lower. In addition, BESS will be
charged by the excess PV power, if available. Therefore, this
is considered as a cost in PV plant operation with BESS. The
total PV plant cost, i.e., C'ostwg, on a daily basis is calculated
using Eq. (3), where the cost associated with dominant factors

are considered.
Costwg = COStDailyDeg + Costprc + Costpr + Costerr (3)

where Costp,iiypeg refers to the total cost associated with
degradation; C'ostprc and Costpy represent the cost of cooling
system operation and imported grid-energy to charge the
BESS, respectively. Costcgr is the cost of charging the BESS
with excess PV energy in terms of opportunity loss to export
energy to the grid at FiT rate.
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Fig. 2: Cost-benefit of the PV plant without BESS
2)Total Cost of PV Plant Without BESS: PV plant without
BESS is only able to export energy to the grid at FiT.

Due to unavailability of PV generation or storage during
evening peak, the plant is unable to reduce the peak demand.
Consequently, the demand charge cost! (shown in Fig. 2).
Therefore, extra cost occurs for the PV plant without BESS.
The total daily cost for PV plant without BESS, i.e., Costwog,
is estimated using Eq. (4).

Costwor = Costpg + Costpc — F'iTgenefit 4)
where Costpg and Costpc are the cost of energy and demand
charge during peak hours, respectively. F'iTgepesir refers to the
benefit from exporting PV energy to the grid.

B. Battery Degradation Cost

Degradation of a battery is a continuous process, where
several factors affect degradation at the same time. A battery
undergoes charge and discharge as well as idle situation
throughout its lifetime. Therefore, both processes (i.e., cycling
and calendar ageing processes) continuously drive battery
ageing. A simplified linear cyclic and calendar ageing models
are formulated in this study to quantify the degradation of the
BESS. Accordingly, a cost function is developed to quantify
the cost of degradation on a daily basis. The hourly degrada-
tion cost is calculated using Eq. (5).

Costpeg = Costpess % (DEGCyclic + DEGCalendar) (5

where Costpgg presents the total
DEGcyctic and DEGcaendar tepresent the degradation
of BESS because of cyclic and calendar ageing
mechanisms, respectively. The total cost of BESS is
calculated considering energy and power costs, i.e.,
Costpgss = CkWh($) X Ecap(kWh) + Ckw($) X Pcap(kW).
Here, the BESS rated power and energy capacity is represented
by Eepewn) and Peyp(kW), respectively and prices per
kWh and kW are denoted by Cywn and Ciw.

1) Cyclic Ageing: Degradation of a battery for cyclic ageing
mechanism during a specific time is quantified with respect to
the energy throughput for that time interval, and the entire
energy throughput of the BESS throughout its lifetime, given
in DEGcyelic = Ern /Bir. Here, Ery, and By are represent-
ing the total energy throughput for a given time interval and
the total BESS energy throughput until it reaches its end of
life (EoL), respectively. Charging and discharging activities
of BESS are observed using Eq. (6) for each time-interval to
quantify the energy throughput.

degradation cost;

t t
Ern = ncu ZPj,CH X h + npcu Z | Pjpcu | xh  (6)
j=1

where Ery is the total energy throughput; ncy and npcy rep-
resent the efficiency of charging and discharging operations,
respectively; and Pjcy and Pjpcy are the real power in kW
for charging and discharging operations, respectively. Total
energy throughput of the BESS is calculated using Eq. (7),
which considers the battery’s EoL, total rated cycle number

Jj=1

't is the cost of a single monthly peak demand that should be paid alongside
energy cost. It is calculated by averaging the measured instantaneous power
in pre-defined intervals.



at the rated depth of discharge (DoD), and the rated energy
capacity of the BESS. N
TIDCH R Nr

j=0
where By is the total kWh througflput energy of the battery
over its lifetime. DoDg represents the rated DoD for the
BESS; Ei,p is the actual energy capacity of the BESS at the
beginning of its operation in the field; and Ny is the rated
battery cycles.

2)Calendar Ageing: Calendar ageing is estimated by count-
ing the number of idle hours experienced by the BESS and the
total calendar life of the battery, as given in DEGcyendar =
Tldle/TLife~ Here, Tldle and TLife are the time in which battery
is idle within a specific period of time and the entire calendar
life of the BESS, respectively. Hourly idle time during a day
is calculated using, Tige = 22:1 S; x h. Here, Sj is the
ON/OFF status of the battery; Tyq. represents the accumulated
idle time of the battery until time ¢. The status of the battery
is counted and accumulated for a certain period of time as per
requirement. The battery is considered OFF when Pcy = 0
and P pcy = 0 at a given time. Otherwise, battery is under
operation, i.e., ON.

The total battery calendar life is calculated using Tpi =
365 x 24 x Tratep, where Trarep is the rated calendar
life of the battery in year. Hourly quantified degradation
achieved from the aforementioned equations is calculated on
a daily basis by observing degradation for 24 hours. The
total degradation cost on daily basis can be calculated as:
COStDailyDeg(t) = 234:1 COStDEG,j.

C. Cooling Cost

The active cooling system at the UQ Gatton plant consists
of rack fans and air-conditioning unit with 7.7kW cooling
capacity, which is dedicated to keeping the confined storage
room temperature at an acceptable range. 85% of power is
consumed by compressor unit rated at 2.3kW, compared to
the condenser-evaporator fans rated at 0.43kW. The power
consumption by rack fans is 0.36kW.

Operation of each cooling unit is controlled by certain
rules, given in Eq. (8), which shows the type of operation
in different thermal conditions. Minute-by-minute temperature
values are considered to calculate the total energy consumption
and associated cost by the cooling systems.

BLT = 2XDODR X

xj) (1)

Crp, Tr < 23°C

Ceon(T) = Ccom + CF, Tr > 23°C
CYC'OM“‘C‘F-FC’RF7 (TC 22900)/\(TR22300)
Cr + Cgrp, (Te > 29°C) A (Tr < 23°C)

®)
where Ccoo represents the hourly cooling cost; T and T
refer to the battery room temperature and average battery cell
temperature, respectively. Ccom, Cr and Crg are the cost
function of each cooling systems’ component, namely com-
pressor, fan of air-conditioning unit, and rack fans on top of
each battery bank, respectively. Daily cooling cost is calculated
using Costprc = 22:2214 Ccool(n), where Costprc refers to
the total daily energy cost of cooling system operation. Due to

different energy tariff during a day, shown in (9), hourly cost
is calculated using hourly energy consumption, by different
cooling system units.

® {6.545¢/kWh, t € [11PM,12AM), (12AM, 7TAM)
T =

11.78¢/kWh, t € [TAM,11PM)]
©)

where T7(t) represents the local time-of-use (TOU) tariff
throughout a day.

D. Demand Charge

The demand charge is calculated based on the maxi-
mum apparent power (kVA). kVA is calculated for each
30 minutes period using, kVA = /(kW)2 + (kVAr)2. The
maximum kVA demand is estimated for each billing period
(30 days). Therefore, the recorded peak value is used for
the entire month’s demand charge calculation, Costypc =
kVAMaximum X (0DUes + 0 Tuos )s Where Costypc represents the
demand charge for monthly billing period; opuos and oryos
denote distribution use of system (DUoS) and transmission use
of system (TUoS) charges (opyos = $12.49/kV A/month and
oTUos = $1.169/kV A/month) per month, respectively.

As demand charge is calculated based on 30-day period,
daily demand charge cost, i.e., Cosipc, is calculated by
multiplying the cost of demand charge per kVA per month
by the peak monthly power demand.

E. Cost of imported energy from the grid and demand charge

Costp; = Zizl Ec(t) x 7(t) is utilised to calculate
the daily cost associated with the grid imported energy for
charging the BESS. Here, Costp; is the total daily cost of
imported energy from the grid. Hourly imported grid energy is
represented by Ec. The BESS is charged by the grid between
1% and 5" hours of each day.

The BESS is playing a vital role by reducing peak load
during discharging. In the absence of the BESS, PV plant will
need to buy the energy from the grid with the peak-period
tariff. The cost associated with the energy is calculated using
Costpg = Zi?):w Ep(t) x 7(t), where Costpg represents the
total daily cost of energy that is purchased from the grid during
peak demand. The BESS is discharged between 18! and 23"
hours of each day for peak shaving, when the grid energy cost
is more and peak demand is more prone to happen. The hourly
energy by discharging the BESS is represented by Ep.

FE FiT Benefit

The benefit obtained by the FiT scheme is calculated based
on the PV generated energy that is exported to the grid.
The cost of charging the BESS with PV energy, Costcri
is calculated using Costcrr(t) = Pepy(t) X h X mr and
FiTgenerit(t) = Pepv(t) X h X &mr is used to find out the
cost of the exported PV energy. Here, Pcpy and Fgpy are the
PV generated power for charging and exporting to the grid,
respectively; and g = 2.356¢/kW h refers to FiT rate.

IV.SIMULATION STUDY

In this study, a significant number of data, that covers
numerous plausible combinations of charging-discharging and



ambient temperature operations, is used to establish the battery
cell temperature model and cost analysis for the PV plant.
o Data Selection for ARIMAX Model:

o To train the ARIMAX model, 12 months equivalent data
with I-minute sampling rate from 1% April 2016 to
318t March 2017 have been selected, which consists of
516,960 samples (359 days).

o To evaluate the ARIMAX model, a separate 30 days of
test data is used from 1% April 2017 to 31 October 2017.

o Data Selection for Cost Analysis:

o 13 months data, sampled every 1 minute, from 1% April
2016 to 30" September 2017 have been selected for this
purpose. Also, 13 days of data with seasonal differences
are selected to assess seasonality impact on the PV plant.

o 1 day with the highest peak demand from each billing
period is selected for demand charge calculation for the
entire billing period.

A.ARIMAX Estimation Model Outcomes

As mentioned in section II, PACF, ADF-KPSS and ACF
tests are used to find the best order of p, d and ¢, respectively,
prior to modelling.

Stationarity of the time series is checked using ADF and
KPSS tests. The p-value was about zero, which is far below
0.05 (for 95% confidence interval). It gives the indication of
rejecting the null hypothesis, that is not having a unit root in
the time series. In addition, KPSS test fails to reject the null
hypothesis with a p-value less than 0.01 and test critical values
of 0.347, 0.462 and 0.744 for 10%, 5% and 1% confidence
intervals, respectively. The test critical values are more than
the test statistic value, 0.0733. Therefore, it can be concluded
that the time series data is stationary; hence, differencing the
time series data is not required. Therefore, the order of I(d)
will be 0 or 1(0).
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Fig. 3: PACF plot for the training data set

Fig. 3 shows the PACF values for different lags of data.
An approximate test that a given partial correlation is zero (at
a 95% significance level) is given by comparing the sample
partial autocorrelations against the critical region with upper
and lower limits given by 41.96/+/T, where T is the number
of samples of the time series. There is a cut-off experienced
after the lag 26, which suggests an AR model with order of
26, i.e. AR(26).
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Fig. 4: ACF plot for the training data set
Fig. 4 shows the autocorrelation values of different lags.
It shows that there is no cut-off, where the peak of the

autocorrelation value for lag falls below the critical region. The
value remains almost the same even after 60 lags. It, therefore,
indicates the order of the MA model at 0 or M A(0).

From the above analysis with trained data, the order of
model is found to be ARIMAX(26,0,0). This means that the
best model has 26 order of autoregressive model with 0 order
moving average and non-seasonality time-series data.

Training data is used for modelling, and the hourly-averaged
RMSE histogram of the 30 days of estimation using test data
is shown in Fig. 5. It shows that the majority of the hourly
estimation (63.61%) yields equal or below 1°C of RMSE.
Only 14.86% of hourly estimation renders RMSE beyond
2°C. It can be observed from the figure that 129 hours of
estimation yield only 0.21°C to 0.4°C RMSE. Most of the
hourly estimation errors are within 0.01°C and 1.19°C RMSE
range, which suggests an accurate estimation of the battery
cell temperature.

140 129
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Fig. 5: Histogram of hourly RMSE of battery cell temperature for 30
test days using ARIMAX model

B. Cost Analysis

Fig. 6 to Fig. 8 show the total operational cost of the plant
and comparison between PV plant with and without BESS for
13 selected days of the equivalent number of month.
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Fig. 6: Daily cost associated with BESS operation in the plant

Fig. 6 presents the daily cost of each dominant factor for
operating the BESS. It is clear from the figure that the cooling
cost has less impact on daily total cost compared to the battery
degradation and charging cost from the grid. The cooling cost
has 5.6% impact on the total cost on average, where the grid
charging and degradation costs are responsible for 20.3% and
74.1% of the total daily cost on average, respectively. Also,
the variation in the cooling cost is strongly correlated with the
BESS cell temperature and seasonality. There are five days in
which the degradation cost is more than 80% of the total daily
cost associated with the BESS in the plant because of higher
charge-discharge operations and temperature.



Fig. 7 shows the monthly demand charges in 13 months
with and without BESS. 80% of the time, the demand charge
for each billing period without BESS is around $30,000,
where only 20% yields demand charge between $50,000 and
$60,000. The number signifies the importance of demand
charge management in each billing period. It is noticeable that
the BESS is providing utmost efforts in reducing the charge
during each billing period. 46.1% of the time, the demand
charge is reduced by more than 10% with the help of BESS.
Except for only 0.48% cost reduction in 4 month, the demand
charge is reduced by more than 5% in more than 90% of the
times with the help of BESS in the plant.
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Fig. 7: Monthly demand charge with and without BESS

Monthly Demand Charge With BESS

data-set with 1-minute sampling rate is used to train the model
and a completely different set of data is chosen for evaluating
the developed model. Based on the simulation results, the
estimated battery cell temperature was below 2°C most of the
time, which is quite satisfactory for the EMS application. In
addition to the estimation model, a cost-benefit analysis is car-
ried out considering battery operational cost in the PV plant.
Cost functions are developed to render a comparison study
between PV plant with and without BESS. The cost-benefit
analyses show an untimely battery capacity loss (as a result
of drastic battery operation and excess battery cell temperature
incurred extra cost), which reduces the benefit from BESS in
the plant. It also proves that the BESS integration into the PV
plant increases the overall net benefits, which can be further
improved by alleviating temperature-dependent costs. In our
future works, the ARIMAX estimation model will be utilised
to develop an optimal battery operation algorithm in the EMS
considering battery degradation cost and thermal effects.
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battery degradation cost, is responsible for the reduction in
the BESS benefit. Therefore, it is important to establish an
operational algorithm for BESS to reduce battery degradation.
In addition, operating BESS during peak demand with higher
magnitude will increase the benefit.

V.CONCLUSION

In this study, a battery cell temperature estimation model is
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