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 

Abstract—Energy sustainability of hybrid energy systems is 

essentially a multi-objective, multi-constraint problem, where the 

energy system requires the capability to make rapid and robust 

decisions regarding the dispatch of electrical power produced by 

generation assets.  This process of control for energy system 

components is known as energy management. In this paper, the 

application of particle swarm optimization (PSO), which is a 

biologically-inspired direct search method, to find real-time 

optimal energy management solutions for a stand-alone hybrid 

wind–microturbine energy system is presented. Results 

demonstrate that the proposed PSO-based energy management 

algorithm can solve an extensive solution space while 

incorporating many objectives such as: minimizing the cost of 

generated electricity, maximizing microturbine operational 

efficiency, and reducing environmental emissions.  Actual wind 

and end-use load data were used for simulation studies and the 

well-established sequential quadratic programming (SQP) 

optimization technique was used to validate the results obtained 

from PSO.  Promising simulation results indicate the suitability 

of PSO for real-time energy management of hybrid energy 

systems. 

 

Index Terms—battery bank, microturbine, optimization 

methods, real-time energy management, wind power generation.  

 

I. INTRODUCTION 

ncreasingly, forces such as cost, environmental concerns, 

and technological availability are exerting influence on 

power system design and implementation.  Localized 

frameworks that combine diverse generation and storage 

components in a microgrid architecture, known as energy 

systems, are emerging to offer electrical consumers the 

opportunity to tailor their installed assets to meet local 

requirements.  Renewable energy power generation sources 

 
This work was supported by Pacific Northwest National Laboratory, which 

is operated for the U.S. Department of Energy by Battelle under Contract DE-

AC05-76RL01830. 

S.A. Pourmousavi (e-mail: s.pourmousavikani@msu.montana.edu), M.H. 
Nehrir (e-mail: hnehrir@ece.montana.edu), and C.M. Colson (e-mail: 

christopher.colson@msu.montana.edu) are with the Electrical and Computer 

Engineering Department, Montana State University, Bozeman, MT 59717 
USA.  

C. Wang is with the Division of Engineering Technology and the 

Department of Electrical and Computer Engineering, Wayne State University, 
Detroit, MI 48202 USA (e-mail: cwang@wayne.edu). 

such as wind and solar photovoltaic (PV), and emerging low- 

or zero-emission power generation devices, such as 

microturbine (MT) and fuel cells (FC), fall in this category.  

These energy sources can complement each other to overcome 

the variable nature of the renewable energy sources, and 

together with energy storage (ES), improve system reliability 

and energy sustainability to the maximum extent possible. 

Such systems can be used stand-alone as independent 

microgrids for electrifying remote areas far from the grid, e.g. 

‎[1]-‎[4], or to serve a collection of loads in the urban areas, in 

grid–connected or island mode, e.g. ‎[5], ‎[6].  In either case, 

proper unit sizing of the available energy sources is necessary 

to ensure that proper generation capacity is available for a 

particular application.  Extensive work has been done in this 

area, e.g. ‎[7]-‎[12]; many dependable computer-based 

programs are also available for this purpose, e.g. ‎[13]-‎[15]. 

Effective energy management of hybrid energy systems is 

necessary to ensure optimal energy utilization and energy 

sustainability to the maximum extent.  Furthermore, given the 

intermittent nature of the renewable energy resources involved 

and the multiple objectives that need to be satisfied (some of 

which may be conflicting), the energy management system 

(EMS) is complex and needs to find solutions quickly and 

continuously, e.g. every minute or few minutes.  In general, 

conventional optimization techniques are too slow to be used 

for real-time optimization of the subject multi-objective, 

multi-constraint energy management problem.  As a result, 

recently, research in this area has been focused on the 

application of intelligent control for unit sizing and energy 

utilization of hybrid energy systems, e.g. ‎[16]-‎[20].  However, 

most of the reported work is on off-line applications such as 

generation unit sizing and optimal power dispatch, and little 

work has been reported on real-time management of energy 

systems using multi-objective optimization ‎[5], ‎[21].  

This paper targets the real-time application of a heuristic 

multi-objective optimization technique, particle swarm 

optimization (PSO) ‎[22], ‎[23], for energy management of a 

hybrid energy system, which is achieved in a small fraction of 

a second. A hybrid stand-alone wind-MT-ES system is 

considered to supply the equivalent load requirements of a 

120-home residential neighborhood, shown in Fig. 1. The 

primary components of the system are a wind energy 

conversion system (WECS) that utilizes a self-excited 
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induction generator (SEIG) ‎[1],‎[4], a single-shaft microturbine 

generator (MTG) that incorporates a SEIG as well ‎[1], and a 

battery bank. The ratings of these components used in this 

study are given in the Fig. 1.  However, the proposed 

intelligent energy management system (EMS) described in the 

paper can be applied to other WECS and MT configurations, 

such as a WECS or a MT which utilize a permanent magnet 

synchronous generator, and to other hybrid systems. 

The study reported in this paper is the continuation of a 

previous work by the authors ‎[1], where the design of an EMS 

for a hybrid wind-MT energy system is reported; however, no 

optimization was used in that reference. In the current paper, a 

real-time PSO-based EMS for the hybrid wind-MT-ES system 

is proposed. In addition, the well-established analytical 

optimization technique, sequential quadratic programming 

(SQP) ‎[25], was also used to validate the results obtained 

using PSO.  Actual wind and end-use load data were used in 

the simulation studies, conducted in the MATLAB/Simulink
®
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Fig. 1. Configuration of the proposed system. 

 

The objective function for both optimization algorithms 

(PSO and SQP) used is updated every three minutes, during 

which load and generation are considered constant. The choice 

to update the optimization at a smaller interval is possible, but 

at the expense of longer simulation time. The storage battery 

bank was used to ensure long-term energy sustainability and to 

supply the power needed during each interval to cover short-

duration transients caused by sudden changes in load or wind 

speed.  The extremely fast convergence speed of PSO ‎[33] and 

the promising simulation results obtained show the potential 

of this multi-objective optimization technique for real-time 

energy management of multi-source energy systems.  It should 

be noted that the focus of the reported work is on energy 

management, where 24-hour simulation studies were 

conducted. Unit sizing and system voltage and frequency 

characteristics and stabilization are not discussed in this paper 

and will be reported in a future work. 

This paper is organized as follows. Formulation of the 

optimization problem is discussed in Section II. Section III 

gives a description of the proposed EMS. In Section IV, PSO 

is briefly discussed and, PSO-based energy management is 

presented. Simulation results are given in Section V. A 

discussion is presented in Section VI and concluding remarks 

are given in Section VII. 

II.  FORMULATION OF THE OPTIMIZATION PROBLEM 

The objective function developed for the EMS for the 

hybrid system presented here takes into account a number of 

factors including: the cost of energy produced by the WECS 

and MT, as well as the technical constraints of the 

optimization procedure. In this section, the cost functions for 

the MT and WECS and the required constraints are developed. 

a. MT Cost Function and Constraints 

The MT cost function can be expressed as follows ‎[5]: 

 

, , , ,. . .t MT MT MT t MT t MT t MTF C F P T OM SC                 (1) 

 

where, 

 Ft,MT is the total operating cost of the MT ($). 

 CMT is the fuel cost of the MT unit ($/m
3
). Natural gas 

was used as fuel at a cost of 0.3571 $/m
3 
‎[26]. 

 FMT is the fuel consumption rate (m
3
/kWh). MTF  0.85 

m
3
/kWh was used in this study ‎[21]. 

 Pt,MT is a decision variable representing the real power 

output from the MT unit (kW). 

 ΔT is the energy management time step which is set at 3 

minutes in this study (h), i.e. the optimization is updated 

every 3 minutes. 

 OMt,MT is the operation and maintenance (O & M) cost of 

the MT unit ($). 

 SCt,MT is the start up cost of the MT unit ($). 

The O & M cost of the MT is assumed to be proportional 

with the produced energy ‎[5], ‎[27]: 

 

, , ,. . 0.00587 .t MT OC t MT t MTOM K P T P T            (2) 

 

where, the proportionality constant, KOC is taken as 0.00587 

$/kWh for MT ‎[5]. The start-up cost of the MT depends on the 

length of time the unit has been turned off before start-up once 

again ‎[5], ‎[28]: 

 

  
,

, 1 ,
1 . 1

off MT

MT
t MT MT MT t MT

SC e u


 





  
     

  
  

   (3) 

 

where, σMT and δMT are the hot start-up and cold start-up costs 

for the MT, respectively. τMT is the MT cooling time constant, 

τoff,MT is the time the MT has been off, and u(t-1),MT shows the 

status of the MT (being on or off) at time step t-1. If cold start-

up of the MT requires power to‎ run‎ the‎ MT’s‎ auxiliary‎

systems ‎[29], then the WECS or battery is required to provide 

this cold start-up power. In this study, the MT’s‎ hot start-up 

time is 30 sec, cold start-up time is 200 sec, and its cooling 

time constant is 520 sec ‎[29]. In general, for optimization 

studies that include MT, hot and cold start-up costs should be 

included, however in this particular case the value of these 

parameters do not affect the optimization results, because the 

fuel cost of the MT {i.e., the first term on the right side of (1)} 

is always higher than the total cost of operating the WECS. 
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Emissions cost has not been considered in this work 

because of unavailability of data or function ‎[29]; however, if 

such data or function is available, an expression for this cost 

can be added to the objective function (1) . 

The output power of the MT unit in stable operation is 

restricted by its lower and upper limits as follows: 
min max

,MT t MT MTP P P                     (4) 

 

In our case, the maximum available power from the MT is 

220 kW and the lower limit is zero, i.e. the MT can be turned 

off when the output power from the WECS is enough to meet 

the demanded power. Once the MT is switched on (ut,MT=1), it 

has to operate continuously for a certain length of time before 

being switched off (ut,MT=0). Also, a certain off-time period 

has to be achieved, meaning that the MT must be off for a 

certain period before being restarted. Violation of such 

constraints can shorten the‎ unit’s‎ life‎ time. These constraints 

are formulated as continuous run/stop time constraints as 

follows: 

 Evaluate whether the MT may be shut off by comparing 

the on-time of the MT in the previous steps of the energy 

management‎with‎the‎MT’s‎minimum‎up-time (MUTMT): 

 

  ,0, 0, 0on on
MT MT MT t MTif T MUT Then T u           (5) 

 

 Evaluate whether the MT may be started up by comparing 

the off-time of the MT in the previous time steps with the 

MT’s‎minimum‎down-time (MDTMT): 

 

  ,0, 0, 1off off
MT MT MT t MTif T MDT Then T u             (6) 

 

where 
on

MTT , 
off

MTT (sec.) are the time length the MT has been 

on or off, respectively. In this study MUTMT = 600 sec. and 

MDTMT = 300 sec. ‎[29]. Also, the number of starts and stops 

should not exceed a certain maximum depending on the MT 

specifications ‎[5]: 

 

maxstart stop N                                (7) 

 

where εstart-stop, is the number of start-stops during simulation, 

and Nmax is the maximum number of start-stops. In this study, 

Nmax =30, which is never reached. 

 

b. WECS Cost Function and Constraints 

The following cost function is used for the WECS ‎[20]: 

 

, ,. .t WT WT t WTF C P T                            (8) 

 

where Ft,WT is the cost of wind-generated energy, Pt,WT and CWT 

are‎ the‎WECS’‎wind power (kW) and its cost coefficient for 

the generated energy at each time step ($/kWh), respectively. 

In this study Ft,WT is always less than Ft,MT. The value of CWT 

depends on the actual cost of the wind-generated energy, 

which, in this case, is taken as $0.1/kWh. Again, this factor 

will not affect the results since Ft,WT < Ft,MT.  

The output power of the WECS is restricted based on its 

power curve and parameters. The following parameters are 

used in this study ‎[1]: 

 

 Cut-in speed, vcut-in =3 m/s,  

 Rated speed, vrated =14 m/s,  

 Cut-out speed, vcut-out =25 m/s.  

 

The WECS does not generate any power for vwind < vcut-in. 

Pitch control is used to limit the output power of the WECS to 

its rated value (370 kW) when vrated < vwind < vcut-out, and the 

WECS output power is zero for vwind > vcut-out. The details of 

the WECS modeling are given in ‎[30]. The WECS output 

power is calculated at each time step using the wind speed at 

that instant. The power balance (equality constraint) for the 

WECS and MT to meet the load demand is:  

 

, , ,t MT t WT t LoadP P P                     (9) 

max
, ,0 t WT t WTP P                   (10) 

 

where, Pt,Load is the load demand at each time step. Proper 

optimization techniques can then be used to best share power 

amongst the generation sources of the hybrid system to 

minimize the cost of electricity while satisfying the equality 

and inequality constraints given above. According to the 

following objective function, total operational cost is 

minimized: 

 

 , ,. . t MT t WTMin Objective Func F F                 (11) 

III. THE PROPOSED REAL-TIME EMS 

The flowchart for the proposed energy management, which 

accounts for multiple simultaneous objectives for the hybrid 

energy system, is annotated in Fig. 2. As shown in this figure, 

the battery has three states; charging, discharging and inactive. 

The battery is in the inactive or charging mode in scenarios 1 

and 2, and in discharging mode in scenario 3. The primary 

objectives of the EMS are as follows: 

- Minimize the cost of energy generation,  

- Maximize battery life by monitoring and controlling its 

state of charge (SOC) and charge/discharge process, 

- Maximize the use of excess available wind power in a 

useful dump load when the battery is fully charged in an 

attempt to increase system utilization ‎[34], 

- When the MT is in operation, adjust its operating point to 

near its rated power to increase its operation efficiency 

and reduce its environmental impact, ‎[29], 

-  Maximize the average available stored energy in the 

battery (i.e., higher battery SOC), hence improving 

system reliability.  

At the start of the proposed energy management algorithm, 

the boundary equations for the energy sources involved and 
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the equality constraints are defined as follows: 
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Fig. 2. Proposed energy management strategies for the WECS-MT-ES-EWH 

system. 

 

0

220 0

max avail min
t ,WT t ,WT WT
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MT t ,MT
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t ,sup ply t t ,sup ply t ,battt ,WT t ,MT

P P , P ;

P kW , P ,
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  


 


   

 (12) 

 

 where
 

max
t ,WTP and

min
t ,WTP  are the maximum and minimum 

wind power limitations for the WECS, respectively; 

 
rated

MTP and
min

t ,MTP are the maximum (rated) and minimum 

power limitation for the MT; 

 Pt,supply is the overall power demand of the hybrid system, 

including power supplied to the load, dump load, and to the 

battery; 

 Demandt is the power demanded by the load at time t; 

 
optim

t ,WTP and
optim

t ,MTP are the optimized share of the WECS and 

the MT after optimization; 

 Pt,batt is the amount of charge/discharge power to/from the 

battery.  

 

Scenario 1: As shown in Fig. 2, if the maximum available 

power from the WECS is greater than demand, there is excess 

power available from the WECS which can be used to charge 

the battery, if needed. Otherwise, the excess power is supplied 

to a useful dump load, e.g. an auxiliary electric water heater 

(EWH) to preheat water, as proposed in ‎[34]. Therefore, the 

actual demand is set to the available power from the WECS, 

i.e. the equality constraint (eq. 9) of the optimization will 

change to: 

 
avail

t ,sup ply t ,WTP P                         (13) 

 

After performing optimization, the excess available power 

is the difference between the total generation and demand as 

follows: 

 
optim optim

t ,excess tt ,WT t ,MTP P P Demand                                (14) 

 

As shown in Fig. 2, the excess power is used to charge the 

battery, if the battery is not fully charged. Otherwise, the 

battery will remain inactive and the excess power is directed 

to the useful dump load. In this operation mode, the 

mechanical stress on the wind turbine is reduced because the 

WECS output power is not limited by pitch control.  

Scenario 2: In cases where power from the WECS is not 

enough to meet the demand, the MT will be turned on. In this 

case, if the total power from the WECS and MT is greater than 

demand and the battery SOC is higher than 80%, the battery 

remains inactive and the optimization procedure will be 

performed to determine the generation dispatch of the WECS 

and MT. If the battery SOC is lower than 80%, the 

optimization constraints will be changed as follows: 

 

1min
t ,batt

max rated
t ,sup ply t ,WT t ,MT

P kW

P P P

 


 

                        (15) 

 

This way, the excess power will be used to charge the battery 

bank, which can increase the reliability of the whole system, 

resulting in improved energy sustainability. According to ‎[35], 

recharging lead-acid batteries immediately after discharging 

will extend battery life significantly. In order to avoid 

charging the battery at very low currents, which can reduce the 

battery lifespan, the lower limit of the battery charging power 

is arbitrarily set to 1 kW (about 3 A). Also, the upper battery 

charge power is limited to 62.4 kW (about 200 A) to keep the 

battery in safe condition. Note that this strategy is only applied 

when the MT is already turned on to meet a part of the 

demand, because turning on the MT only for charging the 

battery will add hot start-up cost to the energy production cost. 

Moreover, the number of starts and stops of the MTG can 

affect its life and efficiency. Cost analysis of MT operation is 

beyond the scope of this paper and has not been carried out. 

Scenario 3: If the total power from the WECS and MTG is 

less than demand, the battery needs to be discharged to meet 

demand. In this condition, optimization is not necessary and 

the output power from the WT, MT, and battery is as follows: 

 

220

optim avail
WTWT

optim rated
MTMT

optim optim
batt WT MT

P P

P P kW

P Demand P P

 


 


  

                     (16) 

 

In this study, two optimization techniques are used: the 

evolutionary algorithm, PSO, and the conventional technique, 

SQP. PSO is the main optimization algorithm used; it is 

described in Section IV. The PSO-based EMS developed for 

this study, is described in Subsection IV-a.  SQP-based EMS 

is used to verify the results of the PSO-based strategy. 
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IV. PARTICLE SWARM OPTIMIZATION  

The PSO algorithm is performed at each time step (every 3 

minutes) to determine the optimum balance of WECS and MT 

to meet demand. Wind speed data, demand data, status of the 

MT, and the battery SOC are the input values to the 

optimization block. The battery model used and the method of 

calculating battery SOC are available in MATLAB/Simulink 

SimPowerSystems toolbox ‎[31]. Since the proposed 

optimization system operates in real-time, fast and accurate 

optimization methods should be employed. If any changes in 

demand or wind speed occur during the optimization intervals, 

the storage battery will respond to the power transients.  

PSO is a population based stochastic optimization technique 

developed by Kennedy and Eberhart ‎[32], inspired by social 

behavior of bird flocking, fish schooling and swarm theory. 

PSO shares many similarities with evolutionary computation 

techniques such as genetic algorithms (GA). The system is 

initialized with a population of random solutions and searches 

for optima by updating generations. However, unlike GA, 

PSO has no evolution operators such as crossover and 

mutation. In PSO, the potential solutions, named as particles, 

‘fly’‎ through‎ the‎ problem‎ space‎ following‎ the‎ current‎

optimum particles. Each particle is regarded as a point in a d-

dimensional‎ space‎ that‎ adjusts‎ ‘flying’‎ according‎ to‎ its‎ own‎

flying experience and flying experience of other particles. 

PSO is simple in concept. It has few parameters to adjust 

and is easy to implement. In the past several years, PSO has 

been successfully applied in many research and application 

areas. In general, all the application areas that the other 

evolutionary application techniques are good at are the 

application areas for PSO. Reference ‎[33] gives a 

comprehensive overview of PSO and its applications in power 

systems, and discusses its fast convergence speed and 

advantage over stochastic methods. 

The original PSO maintains a population of particles (x1, x2, 

⋯, xp) which are initially distributed uniformly around the 

search space. Each particle represents a potential solution to 

the optimization problem. Let p be the size of the swarm. For 

each particle i, the position xi is updated as follows ‎[22], ‎[32]:  

 

1 1
i i i
k k kx x v                     (17) 

 

Each particle in PSO is associated with a pseudo-velocity

 i i i i
k 1 max k 1 maxv   v v v    , which represents the rate of the 

position change for the particle ‎[22], ‎[32]:  

 

   1 1 1 2 2
gii i i i i

k k k ,k k k ,k kkv v c r p x c r p x               (18) 

 

Equation (18) is used to calculate each particle’s‎new‎velocity‎

1
i
kv  based on its previous velocity  𝑘

𝑖  and the distances of its 

current position  𝑘
𝑖  from its own best experience (position) and 

the best experienced position of its own informants, 
gi
kp , 

according to Fig. 2(a). Here, subscript k and i indicate a 

pseudo-time increment and the number of particles, 

respectively; 𝑟1 and 𝑟2 represent uniform random numbers 

between 0 and 1, which will be regenerated at each iteration. 

𝑐1 and 𝑐2 are two positive constants, called the cognitive and 

social parameter, respectively (in this study, they are chosen as 

c1=1.5 and c2=1.5) ‎[22], ‎[32]. 

Initially‎ (at‎ time‎ step‎ t=0),‎ the‎ particles’‎ velocities, 0
iv , are 

random numbers within the boundary 00 i i
maxv v  . The 

maximum velocity v
max

 allowed actually serves as a constraint 

that controls the maximum global exploration ability PSO can 

have. Then, each particle flies toward a new position 

according to (17) and (18). The inertia weight ωk in (18) 

should be neither too large, which could result in premature 

convergence, nor too small, which can slow down 

convergence excessively (they are chosen as ωmin=0.6 and 

ωmax=1.2; ω holds the ωmin value at the beginning of each 

simulation cycle and increases linearly to ωmax at the end) ‎[22]. 

Therefore, the particles have a tendency to fly towards better 

and better search areas over the course of the search process. 

As a result, the search can always reach an optimum or a 

solution very close to the optimum using fewer fitness 

evaluations ‎[22]. 

The performance of each particle is measured according to a 

predefined fitness function, which is related to the problem to 

be solved. Each particle moves around the search space 

updating its velocity and position based on the best positions 

(Pbest) thus far discovered by itself and by its informants. If all 

the particles are informed by each other, all the information 

acquired is disseminated immediately. This is a favorable 

scenario; however, it is highly risky to have a behavior that is 

too uniform, i.e. when all the particles will act uniformly ‎[22]. 

Conversely, if each particle has too few informants, more 

diversified behaviors will be obtained. This scenario carries 

the risk that poor information can be transmitted. 

In this study, the information links between the particles 

were defined once (and kept unchanged throughout the 

simulation), generally according to the “circular”‎ diagram 

shown in Fig. 2(b) ‎[22].  

The N particles of the swarm are laid out virtually on a 

circle, and numbered sequentially from 1 by traversing the 

circle. Each particle has a set of informants of fixed size K.  

 

particle

Towards its best 
performance

Towards the best 
performance of its

best informant

Towards the accessible
Point by following 
Its proper velocity

proper velocity

 

N

1

2

3

4

5
...

 

(a) (b) 

Fig. 3. (a) Three fundamental elements the particles position updating, (b) 

graph of influence of a swarm of N particles in circular form with three 

informants for each particle ‎[22]. 
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The neighborhood of size K of a particle is obtained from 

the virtual circle by recruiting alternately on the right and left 

of its position, until a total of K−1 neighbors are obtained. The 

particle itself is also included, i.e. K=3. In this study, a swarm 

with 5 particles is used. Handling PSO by informant 

configuration, shown in Fig. 2(b), leads us to differentiate 

properly between the two functions provided by the particles: 

exploring the search space and memorizing the best position, 

Pbest, found during this search. These two functions are carried 

by distinct particles ‎[22].  

a. PSO-based Energy Management 

To apply PSO to the WECS-MT energy management 

problem at hand, Pt,WT is selected as a decision variable to be 

optimized by PSO. The variable, Pt,MT is then computed using 

the equality constraint given by (9). To optimize the problem 

in each step, initial swarms are defined as follows: 

 avail min min
t ,WT t ,WT WT WTP rand () P P P               (19) 

where rand() represents uniform random numbers between 0 

and 1, 

avail
t ,WTP

is the maximum available power from the 

WECS, which is calculated by the algorithm given in Fig. 2 

using wind speed data. Then, the output power of the MT can 

be calculated as follows: 

t ,MT t ,Load t ,WTP P P 
                                 (20) 

Given that the energy resource (wind) for the WECS is free 

and environmentally friendly, the overall objective of the 

WECS-MT system is to operate the WECS to the full capacity 

needed and operate the MT when the WECS cannot supply all 

the demanded power by itself. Two energy management 

scenarios are considered: 

 

Case 1, no optimization, WECS-MT-ES. In this case, the 

WECS power will supply the load and if excess power is 

available, it will be used to charge the storage battery if it is 

not fully charged (SOC=100%). Otherwise, the WECS output 

power is limited to that required by the load. The MT will be 

used when the combination of WECS and battery power is not 

sufficient to supply the load. Therefore, the WECS maximum 

power dispatch is governed by the following equation: 

100avail max
t ,WT t ,Load t t ,WT t ,Load

max avail
t ,WT t ,WT

If P P & SOC % P P

else : P P

    


 (21) 

This case is similar to that presented in ‎[1]. Its disadvantage is 

that when the available wind power is greater than demand 

and the battery is fully charged (i.e. when (21) is not satisfied), 

then the WECS power must be limited.   

 

Case 2, optimized, WECS-MT-ES-dump load: This is the 

preferred energy management strategy, where the maximum 

available power is extracted from the WECS at all times. If the 

available wind power is more than load demand and the 

storage battery is full, the excess available power of the 

WECS is supplied to a useful dump load. In a previous study 

by the second author, it has been shown that an auxiliary 

EWH can be used as a useful dump load ‎[34]. Any excess 

available wind power will be supplied to the auxiliary EWH to 

pre-heat the water before entering the main residential EWH. 

It has been shown in ‎[34] that the energy used by the main 

residential EWH can be reduced considerably by using an 

auxiliary EWH as a dump load. This scenario is adapted in the 

Case 2 study. 

In the PSO algorithm, the values of initial guesses used for 

the objective functions are assigned by intuition (best guess). 

The best possible answer will then be selected and the 

swarms’‎positions will be updated, for each decision variable 

according to (17) and (18). The following equality constraints 

are applied at‎each‎iteration‎to‎modify‎the‎swarms’‎positions:  

0
0

t ,WT t ,WT t ,MT

t ,MT

t ,MT

P P P
if P

P

  
  

             (22) 

 max
t ,MT t ,MT t ,WT t ,WTmax

t ,WT t ,WT
max

t ,WT t ,WT

P P P P
if P P

P P

   
  

    (23) 

The above equality constraints ensure that improper 

selections for Pt,MT and Pt,WT values are adjusted into the space 

of appropriate dispatch assignments. The flowchart for the 

proposed PSO algorithm is illustrated in Fig. 4. For the initial 

searching points, 5 swarms and 50 iterations are used. These 

values are chosen by experience; caution must be taken to 

ensure that the solution converges within the maximum 

number of iterations. In this study, when the above values 

were used, the optimal solution was reached within 0.012 sec.  

As stated earlier, the well-established analytical 

optimization algorithm, SQP, which is available in MATLAB, 

is used to validate the results obtained using PSO. SQP is 

applied to show the accuracy and fast convergence time of 

PSO. SQP optimization is based on quadratic programming 

which uses a Quasi-Newton method. Detailed description of 

SQP is beyond the scope of this paper; interested readers are 

referred to the comprehensive literature available on this 

optimization technique, e.g. ‎[25].  

Initial searching 

points

Eqs. (19)-(20)

Objective function

Evaluation Eq. (11)

Find global best

# of 

Iteration<Epochmax
Iteration+1

Eqs. (17) and (18)

update swarm 

position

Eqs. (22) and  (23)

equality constraint 

handling

Finish

No

Yes

Constraints Evaluation 

Eqs. (5) and (6)

 
Fig. 4. Flow chart for the proposed PSO algorithm. 

V. SIMULATION RESULTS 

The stand-alone wind-MT-ES system in this study is 

designed to supply power to a residential neighborhood in the 
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U. S. Pacific Northwest area consisting of 120 houses. The 

typical average residential daily load demand profile used is 

obtained from the Pacific Northwest regional information 

reported in ‎[36]. The total aggregate hourly average load 

demand of the residential neighborhood is shown in Fig. 5. 

 Actual wind data is used in this case study, obtained from 

the online records of the weather station at Deer Lodge, 

Montana, affiliated with the Pacific Northwest Cooperative 

Agricultural Weather Network (AgriMet) ‎[37]. The hourly 

average wind speed data, recorded on March 12, 2007 at a 

height of 2 meters, was chosen for the 24-hour simulation 

study. This date was chosen because its 24-hour average wind 

speed closely matched the annual average wind speed for the 

area. The wind data on this date was also used in the study (by 

the authors) reported in ‎[1], which would make the 

comparison of the results obtained using the proposed EMS 

with those reported in ‎[1] easier. Data reported in ‎[37] was 

corrected for the proposed wind turbine hub height of 40 

meters, shown in Fig. 6, using the following expression ‎[38]:  

1
1 0

0
s s

H
v v .

H


 

  
                     (24) 

where 1sv ,
 0sv (m/sec) are wind speeds at the hub height H1 

and the height H0 (m) at which the data was collected. is the 

wind speed correction exponent; in this study,   sets to 0.13 

‎[7], ‎[38]. 

The energy management algorithm discussed in the 

previous section is used with PSO and SQP optimization 

techniques, and simulation results were compared with those 

reported in ‎[1], where no optimization was used (i.e., case 1-

no optimization- in this study). 

Fig. 7 shows the output power of the WECS corresponding 

to the wind speed profile shown in Fig. 6. It is noted that the 

wind power profiles for the proposed EMS (PSO- and SQP-

based EMS) are exactly the same (PSO-based is shown as a 

grey line; SQP-based is highlighted with circles), but the 

power profile is slightly different under no optimization (i.e., 

during the periods 9:30-10:30, 12:30-15:00 and 16:00-16:30), 

where the responses are shown with solid (dark) line. In the 

first high-wind period (9:30-10:30 hr), the excess power from 

the WECS is higher than the battery charging limit. Therefore, 

the WECS power is limited (by pitch control) to the amount of 

demand plus maximum battery charging power. Similarly, in 

the next high-wind period (12:30-15:00 hr and 16:00-16:30 

hr), the WECS output power is more than demand and the 

battery is fully charged. Therefore, in the no optimization 

scenario, the output power from the WECS is further limited 

by pitch controller as described in ‎[30], whereas, in the case of 

the proposed EMS, the excess wind power available in the 

same periods is delivered to the useful dump load, as shown 

later in Fig. 11.  During the periods 10:00-10:30 and 12:30-

15:00, the available wind power is higher than the WECS 

rated power. Therefore, pitch control is applied to limit the 

WECS power to its rated value.  

Fig. 8 shows the MTG output power profile for the three 

scenarios explored. In most cases, the MTG produces power 

when the available wind power is not sufficient to meet the 

demand. However, under the proposed EMS (using PSO or 

SQP), when the MT is operating and the battery SOC is below 

80%, the MT will operate at rated power to take advantage of 

improved efficiency and reduced emission ‎[29], and the excess 

available power is used to charge the battery (Fig. 8, 2:30-

3:30, 19:30-21:00, and 23:30-24:00 hr). 

Fig. 9 shows the SOC of the battery for the three scenarios 

studied. The initial battery SOC is assumed to be 50% to 

better show its charge/discharge pattern. From the results 

shown, the superiority of the optimized energy management 

scenarios (in keeping the battery SOC higher) over when no 

optimization is used is clear. Because of its improved SOC 

profile, the battery is in a better state of health, and has a 

longer lifespan ‎[35].  

Fig. 10 shows the battery power profile for the three 

scenarios. In the no optimization scenario, the battery will 

charge when the WECS power is in excess of demand (0:00-

2:00, 9:00-11:00, 12:00-12:30 hr) and will discharge when the 

WECS plus MTG cannot meet the power demand (17:00-

19:30, 22:00-23:30 hr). In the remainder of the hours, the 

battery remains idle. Under the proposed EMS, in addition to 

the above charging periods, the battery is also charged when 

the WECS plus MTG power is in excess of demand (i.e. 2:00-

3:00, 19:30-21:00, and 23:30-24:00 hr). During these periods, 

the battery is further charged by the MTG since the MTG is 

operating near its rated power to further charge the battery 

when the battery SOC is below 80%. As shown in Fig. 10, the 

battery charging power is limited to 62.4 kW (about 200 A) 

for safety reasons. 

 
Fig. 5. Hourly average demand of 120 typical residences in the Pacific 

Northwest area ‎[36]. 

 
Fig. 6. Actual corrected wind speed data for Deer Lodge, MT on March 12, 

2007 ‎[37], corrected to hub height of 40 m. 

 
Fig. 7. Wind power output for different management algorithms and 

optimization methods. 
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Fig. 8. MTG output power for different management algorithms and 

optimization methods. 

 
Fig. 9. SOC of battery for different algorithms and optimization methods. 

 
Fig. 10. Battery power for different power management algorithms in a day. 

 
Fig. 11. Auxiliary water heater power for a day in the proposed energy 

management strategy. 

 

Fig. 11 shows the periods when excess power is available 

from the WECS or MT. This excess power is delivered to a 

useful dump load (e.g., an auxiliary EWH) for the PSO and 

SQP optimization strategies. No useful dump load was 

considered‎under‎the‎“no‎optimization” case, reported in ‎[1]. 

VI. DISCUSSION 

A stand-alone hybrid wind-MT-ES system has been used 

herein to explore the feasibility of a proposed PSO-based 

energy management algorithm for real-time applications. In 

this case, since priority is given to wind power production 

because of obvious advantages, the objective functions 

defined for the optimization problem are linear. As a result, 

the simulation results obtained when using the PSO and SQP 

algorithms are exactly the same. However, in more complex 

systems, where the objective functions are non-linear, the 

random nature of the PSO-based EMS can improve the final 

results in comparison with the analytical-based optimization 

techniques ‎[33]. It is our plan to apply the proposed PSO-

based EMS to more complex multi-source systems in future 

work. 

Because the objective here is to explore the feasibility of 

application of PSO for real-time EMS, the convergence time 

of the PSO algorithm is highly important. Table I shows a 

comparison of the computation time for the PSO- and SQP-

based EMS for the wind-MT-ES system. As noted in the table, 

PSO convergence time is nearly 90 times faster than the 

analytical SQP optimization. This fast response of the PSO is 

critically important in its real-time application for energy 

management of multi-source renewable energy-based systems. 

 
TABLE I 

COMPUTATION TIME FOR DIFFERENT OPTIMIZATION TECHNIQUES 

Optimization Algorithm PSO SQP Optimization 

Time (seconds) 0.012 0.957 

VII.  CONCLUSIONS 

Real-time PSO-based energy management of a stand-alone 

hybrid wind-MT-ES system is presented in this paper. The 

developed EMS promotes energy sustainability in two ways: 

first, by ensuring an optimal balance between the attached 

generation sources based on the multiple constraints, and 

secondly, by incorporating desirable energy objectives into the 

EMS decision-making process. Specifically, the following 

factors are also considered: 

 The use of a useful dump load (an auxiliary EWH) to 

increase energy efficiency of the system, 

 Keeping the operating point of the MT near its rated value 

when feasible to increase its operation efficiency and 

reduce its environmental impact, 

 Maximizing the average available stored energy in the 

battery by striving to keep its SOC at 80% or higher, 

hence improving overall system reliability and increasing 

the battery life.  

Simulation results show the suitability and potential 

benefits of the proposed PSO-based energy management 

strategy for the hybrid system.  

In order to verify the validity of the proposed approach, 

simulation results were also obtained for the same system 

using the well-established SQP optimization and when no 

optimization was used.  Simulation results compare well and 

show the benefits of the proposed EMS in increasing the 

overall system reliability and energy sustainability.  In 

particular, the main advantage of the PSO-based energy 

management strategy is its extremely fast convergence time, 

which is critically important for real-time energy management 

applications. 
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