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Abstract—Energy sustainability of hybrid energy systems is
essentially a multi-objective, multi-constraint problem, where the
energy system requires the capability to make rapid and robust
decisions regarding the dispatch of electrical power produced by
generation assets. This process of control for energy system
components is known as energy management. In this paper, the
application of particle swarm optimization (PSO), which is a
biologically-inspired direct search method, to find real-time
optimal energy management solutions for a stand-alone hybrid
wind-microturbine energy system is presented. Results
demonstrate that the proposed PSO-based energy management
algorithm can solve an extensive solution space while
incorporating many objectives such as: minimizing the cost of
generated electricity, maximizing microturbine operational
efficiency, and reducing environmental emissions. Actual wind
and end-use load data were used for simulation studies and the
well-established sequential quadratic programming (SQP)
optimization technique was used to validate the results obtained
from PSO. Promising simulation results indicate the suitability
of PSO for real-time energy management of hybrid energy
systems.

Index Terms—battery bank, microturbine, optimization
methods, real-time energy management, wind power generation.

I. INTRODUCTION

Increasingly, forces such as cost, environmental concerns,
and technological availability are exerting influence on
power system design and implementation. Localized
frameworks that combine diverse generation and storage
components in a microgrid architecture, known as energy
systems, are emerging to offer electrical consumers the
opportunity to tailor their installed assets to meet local
requirements. Renewable energy power generation sources
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such as wind and solar photovoltaic (PV), and emerging low-
or zero-emission power generation devices, such as
microturbine (MT) and fuel cells (FC), fall in this category.
These energy sources can complement each other to overcome
the variable nature of the renewable energy sources, and
together with energy storage (ES), improve system reliability
and energy sustainability to the maximum extent possible.
Such systems can be used stand-alone as independent
microgrids for electrifying remote areas far from the grid, e.g.
[1]-[4], or to serve a collection of loads in the urban areas, in
grid—connected or island mode, e.g. [5], [6]. In either case,
proper unit sizing of the available energy sources is necessary
to ensure that proper generation capacity is available for a
particular application. Extensive work has been done in this
area, e.g. [7]-[12]; many dependable computer-based
programs are also available for this purpose, e.g. [13]-[15].

Effective energy management of hybrid energy systems is
necessary to ensure optimal energy utilization and energy
sustainability to the maximum extent. Furthermore, given the
intermittent nature of the renewable energy resources involved
and the multiple objectives that need to be satisfied (some of
which may be conflicting), the energy management system
(EMS) is complex and needs to find solutions quickly and
continuously, e.g. every minute or few minutes. In general,
conventional optimization techniques are too slow to be used
for real-time optimization of the subject multi-objective,
multi-constraint energy management problem. As a result,
recently, research in this area has been focused on the
application of intelligent control for unit sizing and energy
utilization of hybrid energy systems, e.g. [16]-[20]. However,
most of the reported work is on off-line applications such as
generation unit sizing and optimal power dispatch, and little
work has been reported on real-time management of energy
systems using multi-objective optimization [5], [21].

This paper targets the real-time application of a heuristic
multi-objective  optimization technique, particle swarm
optimization (PSO) [22], [23], for energy management of a
hybrid energy system, which is achieved in a small fraction of
a second. A hybrid stand-alone wind-MT-ES system is
considered to supply the equivalent load requirements of a
120-home residential neighborhood, shown in Fig. 1. The
primary components of the system are a wind energy
conversion system (WECS) that utilizes a self-excited
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induction generator (SEIG) [1],[4], a single-shaft microturbine
generator (MTG) that incorporates a SEIG as well [1], and a
battery bank. The ratings of these components used in this
study are given in the Fig. 1. However, the proposed
intelligent energy management system (EMS) described in the
paper can be applied to other WECS and MT configurations,
such as a WECS or a MT which utilize a permanent magnet
synchronous generator, and to other hybrid systems.

The study reported in this paper is the continuation of a
previous work by the authors [1], where the design of an EMS
for a hybrid wind-MT energy system is reported; however, no
optimization was used in that reference. In the current paper, a
real-time PSO-based EMS for the hybrid wind-MT-ES system
is proposed. In addition, the well-established analytical
optimization technique, sequential quadratic programming
(SQP) [25], was also used to validate the results obtained
using PSO. Actual wind and end-use load data were used in
the simulation studies, conducted in the MATLAB/Simulink®
environment.
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Fig. 1. Configuration of the proposed system.

The objective function for both optimization algorithms
(PSO and SQP) used is updated every three minutes, during
which load and generation are considered constant. The choice
to update the optimization at a smaller interval is possible, but
at the expense of longer simulation time. The storage battery
bank was used to ensure long-term energy sustainability and to
supply the power needed during each interval to cover short-
duration transients caused by sudden changes in load or wind
speed. The extremely fast convergence speed of PSO [33] and
the promising simulation results obtained show the potential
of this multi-objective optimization technique for real-time
energy management of multi-source energy systems. It should
be noted that the focus of the reported work is on energy
management, where 24-hour simulation studies were
conducted. Unit sizing and system voltage and frequency
characteristics and stabilization are not discussed in this paper
and will be reported in a future work.

This paper is organized as follows. Formulation of the
optimization problem is discussed in Section Il. Section IlI
gives a description of the proposed EMS. In Section IV, PSO
is briefly discussed and, PSO-based energy management is
presented. Simulation results are given in Section V. A
discussion is presented in Section VI and concluding remarks
are given in Section VII.

I1. FORMULATION OF THE OPTIMIZATION PROBLEM

The objective function developed for the EMS for the
hybrid system presented here takes into account a number of
factors including: the cost of energy produced by the WECS
and MT, as well as the technical constraints of the
optimization procedure. In this section, the cost functions for
the MT and WECS and the required constraints are developed.

a. MT Cost Function and Constraints
The MT cost function can be expressed as follows [5]:

Fomr =Cur -Fur -Pour AT +OM yr +SC iyt @

where,
e Fyur is the total operating cost of the MT ($).
e Cyr is the fuel cost of the MT unit ($/m3). Natural gas
was used as fuel at a cost of 0.3571 $/m* [26].
e Fyr is the fuel consumption rate (m*/kWh). Fyr =0.85

m*/kWh was used in this study [21].

e Py iS a decision variable representing the real power
output from the MT unit (KW).

e AT is the energy management time step which is set at 3
minutes in this study (h), i.e. the optimization is updated
every 3 minutes.

e OM; v is the operation and maintenance (O & M) cost of
the MT unit ($).

e SCywr is the start up cost of the MT unit ($).

The O & M cost of the MT is assumed to be proportional

with the produced energy [5], [27]:

OM 1 =Koe Py AT =0.00587xP, yp AT )

where, the proportionality constant, Koc is taken as 0.00587
$/kWh for MT [5]. The start-up cost of the MT depends on the
length of time the unit has been turned off before start-up once
again [5], [28]:

SCy mr :{O-MT + 0t [1_9 ) ’M%AT J]'(l_u(t—l),MT ) 3

where, oy and dyr are the hot start-up and cold start-up costs
for the MT, respectively. 7y is the MT cooling time constant,
Torimt 1S the time the MT has been off, and ug.qmr shows the
status of the MT (being on or off) at time step t-1. If cold start-
up of the MT requires power to run the MT’s auxiliary
systems [29], then the WECS or battery is required to provide
this cold start-up power. In this study, the MT’s hot start-up
time is 30 sec, cold start-up time is 200 sec, and its cooling
time constant is 520 sec [29]. In general, for optimization
studies that include MT, hot and cold start-up costs should be
included, however in this particular case the value of these
parameters do not affect the optimization results, because the
fuel cost of the MT {i.e., the first term on the right side of (1)}
is always higher than the total cost of operating the WECS.
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Emissions cost has not been considered in this work
because of unavailability of data or function [29]; however, if
such data or function is available, an expression for this cost
can be added to the objective function (1) .

The output power of the MT unit in stable operation is
restricted by its lower and upper limits as follows:

P < Pt <Pur: (4)

In our case, the maximum available power from the MT is
220 kW and the lower limit is zero, i.e. the MT can be turned
off when the output power from the WECS is enough to meet
the demanded power. Once the MT is switched on (Ugmr=1), it
has to operate continuously for a certain length of time before
being switched off (u,wr=0). Also, a certain off-time period
has to be achieved, meaning that the MT must be off for a
certain period before being restarted. Violation of such
constraints can shorten the unit’s life time. These constraints
are formulated as continuous run/stop time constraints as
follows:

e Evaluate whether the MT may be shut off by comparing
the on-time of the MT in the previous steps of the energy
management with the MT’s minimum up-time (MUTyr):

if (TISIHT ~MUT yr )ZO,Then Tur =0,uy yr =0 (5)

o Evaluate whether the MT may be started up by comparing
the off-time of the MT in the previous time steps with the
MT’s minimum down-time (MDTyr):

if (T —MDTy; )ZO,Then T =0u yr =1 (6)
on

where Ty , T,Slf{ (sec.) are the time length the MT has been

on or off, respectively. In this study MUTyr = 600 sec. and
MDTyr = 300 sec. [29]. Also, the number of starts and stops
should not exceed a certain maximum depending on the MT
specifications [5]:

Estart —stop = N max (7)

Where &garstop, 1S the number of start-stops during simulation,
and Ny is the maximum number of start-stops. In this study,
Nmax =30, which is never reached.

b. WECS Cost Function and Constraints
The following cost function is used for the WECS [20]:

Ft,WT :CWT 'PtWT AT (8)

where Fywr is the cost of wind-generated energy, Pywr and Cyr
are the WECS” wind power (kW) and its cost coefficient for
the generated energy at each time step ($/kWh), respectively.
In this study Fywr is always less than Fyr. The value of Cyr

depends on the actual cost of the wind-generated energy,
which, in this case, is taken as $0.1/kWh. Again, this factor
will not affect the results since Fywr < Fywr.

The output power of the WECS is restricted based on its
power curve and parameters. The following parameters are
used in this study [1]:

e Cut-in speed, Vey.in =3 m/s,
o Rated speed, Viaeq =14 M/s,
o Cut-out speed, Veyp.out =25 m/s.

The WECS does not generate any power for Vying < Veyt.in-
Pitch control is used to limit the output power of the WECS to
its rated value (370 kW) when Viateq < Vaind < Veutout» @and the
WECS output power is zero for Vying > Veurou- The details of
the WECS modeling are given in [30]. The WECS output
power is calculated at each time step using the wind speed at
that instant. The power balance (equality constraint) for the
WECS and MT to meet the load demand is:

Bvr +Rwr =R Lo )

0<Pyr <R (10)

where, Piloag IS the load demand at each time step. Proper
optimization techniques can then be used to best share power
amongst the generation sources of the hybrid system to
minimize the cost of electricity while satisfying the equality
and inequality constraints given above. According to the

following objective function, total operational cost is
minimized:
Min. Objective Func. = F, yr +Rwr (11)

I1l. THE PROPOSED REAL-TIME EMS

The flowchart for the proposed energy management, which
accounts for multiple simultaneous objectives for the hybrid
energy system, is annotated in Fig. 2. As shown in this figure,
the battery has three states; charging, discharging and inactive.
The battery is in the inactive or charging mode in scenarios 1
and 2, and in discharging mode in scenario 3. The primary
objectives of the EMS are as follows:

- Minimize the cost of energy generation,

- Maximize battery life by monitoring and controlling its

state of charge (SOC) and charge/discharge process,

- Maximize the use of excess available wind power in a
useful dump load when the battery is fully charged in an
attempt to increase system utilization [34],

- When the MT is in operation, adjust its operating point to
near its rated power to increase its operation efficiency
and reduce its environmental impact, [29],

- Maximize the average available stored energy in the
battery (i.e., higher battery SOC), hence improving
system reliability.

At the start of the proposed energy management algorithm,

the boundary equations for the energy sources involved and
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the equality constraints are defined as follows:

Set constraints for
optimization, Eq. (12)
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Fig. 2. Proposed energy management strategies for the WECS-MT-ES-EWH
system.
max _ pavalil min _ .
Pt WT — Pt WT » |:>WT =0;

Pyaed =220 kW , R =0,

_ _ poptim optim
Pt,sup ply — Demandt ' Pt,sup ply — PtWT + Pt,MT * Pt,ban

(12)

where Hn\)\% and F’tn\)\;r} are the maximum and minimum

wind power limitations for the WECS, respectively;

o Py andP,"\ir are the maximum (rated) and minimum

power limitation for the MT;

o Pyiappyy is the overall power demand of the hybrid system,
including power supplied to the load, dump load, and to the
battery;

e Demand; is the power demanded by the load at time t;

o PET and R%T are the optimized share of the WECS and

the MT after optimization;
o Pipat IS the amount of charge/discharge power to/from the
battery.

Scenario 1: As shown in Fig. 2, if the maximum available
power from the WECS is greater than demand, there is excess
power available from the WECS which can be used to charge
the battery, if needed. Otherwise, the excess power is supplied
to a useful dump load, e.g. an auxiliary electric water heater
(EWH) to preheat water, as proposed in [34]. Therefore, the
actual demand is set to the available power from the WECS,
i.e. the equality constraint (eq. 9) of the optimization will
change to:

avail
IDt,sup ply = Ftwr (13)

After performing optimization, the excess available power
is the difference between the total generation and demand as
follows:

P

t excess — Pt?\l?ltle + Ptoﬁlltq'n _Demandt (14)

As shown in Fig. 2, the excess power is used to charge the
battery, if the battery is not fully charged. Otherwise, the
battery will remain inactive and the excess power is directed
to the useful dump load. In this operation mode, the
mechanical stress on the wind turbine is reduced because the
WECS output power is not limited by pitch control.

Scenario 2: In cases where power from the WECS is not
enough to meet the demand, the MT will be turned on. In this
case, if the total power from the WECS and MT is greater than
demand and the battery SOC is higher than 80%, the battery
remains inactive and the optimization procedure will be
performed to determine the generation dispatch of the WECS
and MT. If the battery SOC is lower than 80%, the
optimization constraints will be changed as follows:

tr,Tk]Jiar;t =1kwW (15)
R

sup ply = Ptrvvaé + Ptr%er
This way, the excess power will be used to charge the battery
bank, which can increase the reliability of the whole system,
resulting in improved energy sustainability. According to [35],
recharging lead-acid batteries immediately after discharging
will extend battery life significantly. In order to avoid
charging the battery at very low currents, which can reduce the
battery lifespan, the lower limit of the battery charging power
is arbitrarily set to 1 kW (about 3 A). Also, the upper battery
charge power is limited to 62.4 kW (about 200 A) to keep the
battery in safe condition. Note that this strategy is only applied
when the MT is already turned on to meet a part of the
demand, because turning on the MT only for charging the
battery will add hot start-up cost to the energy production cost.
Moreover, the number of starts and stops of the MTG can
affect its life and efficiency. Cost analysis of MT operation is
beyond the scope of this paper and has not been carried out.
Scenario 3: If the total power from the WECS and MTG is
less than demand, the battery needs to be discharged to meet
demand. In this condition, optimization is not necessary and
the output power from the WT, MT, and battery is as follows:

Poptim _ pavail
WT —TWT
PoR™ = Pyaed = 220 kW

_ optim optim
Poar =Demand —RyT " —Pyr

(16)

In this study, two optimization techniques are used: the
evolutionary algorithm, PSO, and the conventional technique,
SQP. PSO is the main optimization algorithm used; it is
described in Section 1V. The PSO-based EMS developed for
this study, is described in Subsection IV-a. SQP-based EMS
is used to verify the results of the PSO-based strategy.
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IV. PARTICLE SWARM OPTIMIZATION

The PSO algorithm is performed at each time step (every 3
minutes) to determine the optimum balance of WECS and MT
to meet demand. Wind speed data, demand data, status of the
MT, and the battery SOC are the input values to the
optimization block. The battery model used and the method of
calculating battery SOC are available in MATLAB/Simulink
SimPowerSystems toolbox [31]. Since the proposed
optimization system operates in real-time, fast and accurate
optimization methods should be employed. If any changes in
demand or wind speed occur during the optimization intervals,
the storage battery will respond to the power transients.

PSO is a population based stochastic optimization technique
developed by Kennedy and Eberhart [32], inspired by social
behavior of bird flocking, fish schooling and swarm theory.
PSO shares many similarities with evolutionary computation
techniques such as genetic algorithms (GA). The system is
initialized with a population of random solutions and searches
for optima by updating generations. However, unlike GA,
PSO has no evolution operators such as crossover and
mutation. In PSO, the potential solutions, named as particles,
‘fly” through the problem space following the -current
optimum particles. Each particle is regarded as a point in a d-
dimensional space that adjusts ‘flying’ according to its own
flying experience and flying experience of other particles.

PSO is simple in concept. It has few parameters to adjust
and is easy to implement. In the past several years, PSO has
been successfully applied in many research and application
areas. In general, all the application areas that the other
evolutionary application techniques are good at are the
application areas for PSO. Reference [33] gives a
comprehensive overview of PSO and its applications in power
systems, and discusses its fast convergence speed and
advantage over stochastic methods.

The original PSO maintains a population of particles (X1, X,
-+, Xp) which are initially distributed uniformly around the
search space. Each particle represents a potential solution to
the optimization problem. Let p be the size of the swarm. For
each particle i, the position x; is updated as follows [22], [32]:

Xli<+1=XIi< +Vli<+1 7)

Each particle in PSO is associated with a pseudo-velocity
Vi (—vr'nax Vi SVl ) which represents the rate of the
position change for the particle [22], [32]:
Vi = @Vi +Ci (p,'( —XL)JFCzrz,k(pEi _Xli) (18)
Equation (18) is used to calculate each particle’s new velocity
v ., based on its previous velocity v} and the distances of its
current position x from its own best experience (position) and
the best experienced position of its own informants, pI?i :
according to Fig. 2(a). Here, subscript k and i indicate a

pseudo-time increment and the number of particles,
respectively; r; and r, represent uniform random numbers
between 0 and 1, which will be regenerated at each iteration.
¢, and ¢, are two positive constants, called the cognitive and
social parameter, respectively (in this study, they are chosen as
c;=1.5 and ¢,=1.5) [22], [32].

Initially (at time step t=0), the particles’ VClOCitieS,V(i), are

random numbers within the boundaryOgvé Svrinax. The

maximum velocity v" allowed actually serves as a constraint
that controls the maximum global exploration ability PSO can
have. Then, each particle flies toward a new position
according to (17) and (18). The inertia weight wy in (18)
should be neither too large, which could result in premature
convergence, nor too small, which can slow down
convergence excessively (they are chosen as wp,j,=0.6 and
oma=1.2; @ holds the wp;, value at the beginning of each
simulation cycle and increases linearly to wmy at the end) [22].
Therefore, the particles have a tendency to fly towards better
and better search areas over the course of the search process.
As a result, the search can always reach an optimum or a
solution very close to the optimum using fewer fitness
evaluations [22].

The performance of each particle is measured according to a
predefined fitness function, which is related to the problem to
be solved. Each particle moves around the search space
updating its velocity and position based on the best positions
(Ppest) thus far discovered by itself and by its informants. If all
the particles are informed by each other, all the information
acquired is disseminated immediately. This is a favorable
scenario; however, it is highly risky to have a behavior that is
too uniform, i.e. when all the particles will act uniformly [22].
Conversely, if each particle has too few informants, more
diversified behaviors will be obtained. This scenario carries
the risk that poor information can be transmitted.

In this study, the information links between the particles
were defined once (and kept unchanged throughout the
simulation), generally according to the “circular” diagram
shown in Fig. 2(b) [22].

The N particles of the swarm are laid out virtually on a
circle, and numbered sequentially from 1 by traversing the
circle. Each particle has a set of informants of fixed size K.

Towards its best
performance

@) Towards the best
performance of it
best informant

panicleo\

proper velocity

Towards the accessible
Point by following
Its proper velocity

@) )
Fig. 3. (a) Three fundamental elements the particles position updating, (b)
graph of influence of a swarm of N particles in circular form with three

informants for each particle [22].
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The neighborhood of size K of a particle is obtained from
the virtual circle by recruiting alternately on the right and left
of its position, until a total of K—1 neighbors are obtained. The
particle itself is also included, i.e. K=3. In this study, a swarm
with 5 particles is used. Handling PSO by informant
configuration, shown in Fig. 2(b), leads us to differentiate
properly between the two functions provided by the particles:
exploring the search space and memorizing the best position,
Ppest, found during this search. These two functions are carried
by distinct particles [22].

a. PSO-based Energy Management

To apply PSO to the WECS-MT energy management
problem at hand, Pyt is selected as a decision variable to be
optimized by PSO. The variable, P,y is then computed using
the equality constraint given by (9). To optimize the problem
in each step, initial swarms are defined as follows:

Piwr =rand() X(Rﬁﬁl ~Ri" )"‘ RiT (19)

where rand() represents uniform random numbers between 0
avail

and 1, "WT s the maximum available power from the

WECS, which is calculated by the algorithm given in Fig. 2

using wind speed data. Then, the output power of the MT can
be calculated as follows:

Pt,MT :Pt,Load _PtWT (20)

Given that the energy resource (wind) for the WECS is free
and environmentally friendly, the overall objective of the
WECS-MT system is to operate the WECS to the full capacity
needed and operate the MT when the WECS cannot supply all
the demanded power by itself. Two energy management
scenarios are considered:

Case 1, no optimization, WECS-MT-ES. In this case, the
WECS power will supply the load and if excess power is
available, it will be used to charge the storage battery if it is
not fully charged (SOC=100%). Otherwise, the WECS output
power is limited to that required by the load. The MT will be
used when the combination of WECS and battery power is not
sufficient to supply the load. Therefore, the WECS maximum
power dispatch is governed by the following equation:

1 RE >R Lo & SOC, =100% = R =P, ox
. il
che - R =Py on

This case is similar to that presented in [1]. Its disadvantage is
that when the available wind power is greater than demand
and the battery is fully charged (i.e. when (21) is not satisfied),
then the WECS power must be limited.

Case 2, optimized, WECS-MT-ES-dump load: This is the
preferred energy management strategy, where the maximum
available power is extracted from the WECS at all times. If the
available wind power is more than load demand and the
storage battery is full, the excess available power of the
WECS is supplied to a useful dump load. In a previous study
by the second author, it has been shown that an auxiliary
EWH can be used as a useful dump load [34]. Any excess

available wind power will be supplied to the auxiliary EWH to
pre-heat the water before entering the main residential EWH.
It has been shown in [34] that the energy used by the main
residential EWH can be reduced considerably by using an
auxiliary EWH as a dump load. This scenario is adapted in the
Case 2 study.

In the PSO algorithm, the values of initial guesses used for
the objective functions are assigned by intuition (best guess).
The best possible answer will then be selected and the
swarms’ positions will be updated, for each decision variable
according to (17) and (18). The following equality constraints
are applied at each iteration to modify the swarms’ positions:

Pwr =Pwr —|P
it P r <O_>{tWT twT |t,MT|

Pt,MT =0 (22)
. Pomr =Rowr + Ptr\T/1va¥ -Powr
if Pwr >RWr ( L )
Pt,va =hwr (23)

The above equality constraints ensure that improper
selections for Pyt and Pyt values are adjusted into the space
of appropriate dispatch assignments. The flowchart for the
proposed PSO algorithm is illustrated in Fig. 4. For the initial
searching points, 5 swarms and 50 iterations are used. These
values are chosen by experience; caution must be taken to
ensure that the solution converges within the maximum
number of iterations. In this study, when the above values
were used, the optimal solution was reached within 0.012 sec.

As stated earlier, the well-established analytical
optimization algorithm, SQP, which is available in MATLAB,
is used to validate the results obtained using PSO. SQP is
applied to show the accuracy and fast convergence time of
PSO. SQP optimization is based on quadratic programming
which uses a Quasi-Newton method. Detailed description of
SQP is beyond the scope of this paper; interested readers are
referred to the comprehensive literature available on this
optimization technique, e.g. [25].

Initial searching
points
Egs. (19)-(20)

Constraints Evaluation
Egs. (5) and (6)
Objective function
Evaluation Eq. (11)

Egs. (22) and (23)
equality constraint
handling

Egs. (17) and (18)

update swarm
position
Yes #of
( Iteration+l )-e—
No

Fig. 4. Flow chart for the proposed PSO algorithm.

V.SIMULATION RESULTS

The stand-alone wind-MT-ES system in this study is
designed to supply power to a residential neighborhood in the

6
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U. S. Pacific Northwest area consisting of 120 houses. The
typical average residential daily load demand profile used is
obtained from the Pacific Northwest regional information
reported in [36]. The total aggregate hourly average load
demand of the residential neighborhood is shown in Fig. 5.
Actual wind data is used in this case study, obtained from
the online records of the weather station at Deer Lodge,
Montana, affiliated with the Pacific Northwest Cooperative
Agricultural Weather Network (AgriMet) [37]. The hourly
average wind speed data, recorded on March 12, 2007 at a
height of 2 meters, was chosen for the 24-hour simulation
study. This date was chosen because its 24-hour average wind
speed closely matched the annual average wind speed for the
area. The wind data on this date was also used in the study (by
the authors) reported in [1], which would make the
comparison of the results obtained using the proposed EMS
with those reported in [1] easier. Data reported in [37] was
corrected for the proposed wind turbine hub height of 40
meters, shown in Fig. 6, using the following expression [38]:

H, )
V51 =Vso- H
0 (24)

where v, , v, (m/sec) are wind speeds at the hub height H;

and the height Hy (m) at which the data was collected. « is the
wind speed correction exponent; in this study, « sets to 0.13
[7], [38].

The energy management algorithm discussed in the
previous section is used with PSO and SQP optimization
techniques, and simulation results were compared with those
reported in [1], where no optimization was used (i.e., case 1-
no optimization- in this study).

Fig. 7 shows the output power of the WECS corresponding
to the wind speed profile shown in Fig. 6. It is noted that the
wind power profiles for the proposed EMS (PSO- and SQP-
based EMS) are exactly the same (PSO-based is shown as a
grey line; SQP-based is highlighted with circles), but the
power profile is slightly different under no optimization (i.e.,
during the periods 9:30-10:30, 12:30-15:00 and 16:00-16:30),
where the responses are shown with solid (dark) line. In the
first high-wind period (9:30-10:30 hr), the excess power from
the WECS is higher than the battery charging limit. Therefore,
the WECS power is limited (by pitch control) to the amount of
demand plus maximum battery charging power. Similarly, in
the next high-wind period (12:30-15:00 hr and 16:00-16:30
hr), the WECS output power is more than demand and the
battery is fully charged. Therefore, in the no optimization
scenario, the output power from the WECS is further limited
by pitch controller as described in [30], whereas, in the case of
the proposed EMS, the excess wind power available in the
same periods is delivered to the useful dump load, as shown
later in Fig. 11. During the periods 10:00-10:30 and 12:30-
15:00, the available wind power is higher than the WECS
rated power. Therefore, pitch control is applied to limit the
WECS power to its rated value.

Fig. 8 shows the MTG output power profile for the three
scenarios explored. In most cases, the MTG produces power

when the available wind power is not sufficient to meet the
demand. However, under the proposed EMS (using PSO or
SQP), when the MT is operating and the battery SOC is below
80%, the MT will operate at rated power to take advantage of
improved efficiency and reduced emission [29], and the excess
available power is used to charge the battery (Fig. 8, 2:30-
3:30, 19:30-21:00, and 23:30-24:00 hr).

Fig. 9 shows the SOC of the battery for the three scenarios
studied. The initial battery SOC is assumed to be 50% to
better show its charge/discharge pattern. From the results
shown, the superiority of the optimized energy management
scenarios (in keeping the battery SOC higher) over when no
optimization is used is clear. Because of its improved SOC
profile, the battery is in a better state of health, and has a
longer lifespan [35].

Fig. 10 shows the battery power profile for the three
scenarios. In the no optimization scenario, the battery will
charge when the WECS power is in excess of demand (0:00-
2:00, 9:00-11:00, 12:00-12:30 hr) and will discharge when the
WECS plus MTG cannot meet the power demand (17:00-
19:30, 22:00-23:30 hr). In the remainder of the hours, the
battery remains idle. Under the proposed EMS, in addition to
the above charging periods, the battery is also charged when
the WECS plus MTG power is in excess of demand (i.e. 2:00-
3:00, 19:30-21:00, and 23:30-24:00 hr). During these periods,
the battery is further charged by the MTG since the MTG s
operating near its rated power to further charge the battery
when the battery SOC is below 80%. As shown in Fig. 10, the
battery charging power is limited to 62.4 kW (about 200 A)
for safety reasons.
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Fig. 5. Hourly average demand of 120 typical residences in the Pacific
Northwest area [36].
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Fig. 6. Actual corrected wind speed data for Deer Lodge, MT on March 12,
2007 [37], corrected to hub height of 40 m.
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Fig. 7. Wind power output for different management algorithms and
optimization methods.
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Fig. 11. Auxiliary water heater power for a day in the proposed energy
management strategy.

Fig. 11 shows the periods when excess power is available
from the WECS or MT. This excess power is delivered to a
useful dump load (e.g., an auxiliary EWH) for the PSO and
SQP optimization strategies. No useful dump load was
considered under the “no optimization” case, reported in [1].

V1. DISCUSSION

A stand-alone hybrid wind-MT-ES system has been used
herein to explore the feasibility of a proposed PSO-based
energy management algorithm for real-time applications. In
this case, since priority is given to wind power production
because of obvious advantages, the objective functions
defined for the optimization problem are linear. As a result,
the simulation results obtained when using the PSO and SQP
algorithms are exactly the same. However, in more complex
systems, where the objective functions are non-linear, the

random nature of the PSO-based EMS can improve the final
results in comparison with the analytical-based optimization
techniques [33]. It is our plan to apply the proposed PSO-
based EMS to more complex multi-source systems in future
work.

Because the objective here is to explore the feasibility of
application of PSO for real-time EMS, the convergence time
of the PSO algorithm is highly important. Table | shows a
comparison of the computation time for the PSO- and SQP-
based EMS for the wind-MT-ES system. As noted in the table,
PSO convergence time is nearly 90 times faster than the
analytical SQP optimization. This fast response of the PSO is
critically important in its real-time application for energy
management of multi-source renewable energy-based systems.

TABLE |
COMPUTATION TIME FOR DIFFERENT OPTIMIZATION TECHNIQUES

Optimization Algorithm PSO SQP Optimization

Time (seconds) 0.012 0.957

VIl. CONCLUSIONS

Real-time PSO-based energy management of a stand-alone
hybrid wind-MT-ES system is presented in this paper. The
developed EMS promotes energy sustainability in two ways:
first, by ensuring an optimal balance between the attached
generation sources based on the multiple constraints, and
secondly, by incorporating desirable energy objectives into the
EMS decision-making process. Specifically, the following
factors are also considered:

e The use of a useful dump load (an auxiliary EWH) to

increase energy efficiency of the system,

o Keeping the operating point of the MT near its rated value
when feasible to increase its operation efficiency and
reduce its environmental impact,

e Maximizing the average available stored energy in the
battery by striving to keep its SOC at 80% or higher,
hence improving overall system reliability and increasing
the battery life.

Simulation results show the suitability and potential
benefits of the proposed PSO-based energy management
strategy for the hybrid system.

In order to verify the validity of the proposed approach,
simulation results were also obtained for the same system
using the well-established SQP optimization and when no
optimization was used. Simulation results compare well and
show the benefits of the proposed EMS in increasing the
overall system reliability and energy sustainability. In
particular, the main advantage of the PSO-based energy
management strategy is its extremely fast convergence time,
which is critically important for real-time energy management
applications.
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