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Abstract—Power management is an essential tool for microgrid 

(MG) safe and economic operation, particularly in the islanded 

operation mode. In this study, a multi-timescale cost-effective 

power management algorithm is proposed for islanded MG 

operation targeting generation, storage, and demand 

management. Comprehensive modeling, cost, and emission 

calculations of the MG components are developed in this study to 

facilitate high accuracy management. While the MG’s overall 

power management and operation is carried out every several 

minutes to hours, depending on the availability of the required 

data, simulation for highly dynamic devices (such as batteries and 

electric water heaters (EWHs) used for demand response (DR)) 

are performed every minute. This structure allows accurate, 

scalable, and practical power management taking into 

consideration the intra-interval dynamics of battery and EWHs. 

Two different ON/OFF strategies for EWH control are also 

proposed for DR application. Then, the power management 

algorithm is implemented using the two different DR strategies 

and the results are compared with the no-DR case. Actual solar 

irradiation, ambient temperature, non-EWH load demand, and 

hot water consumption data are employed in the simulation 

studies. The simulation results for the MG studied show the 

effectiveness of the proposed algorithm to reduce both MG’s cost 

and emission.  

 
Index Terms—Demand response, diesel generator efficiency 

and emission model, battery dynamic modeling, power 

management, electric water heater dynamic model.  

 

I. INTRODUCTION 

CCORDING to the U.S. department of Energy’s (DOE’s) 

list of five fundamental technologies that will drive the 

smart grid ‎[1], “advanced control methods to observe essential 

components for rapid diagnosis and precise solutions to 

events” is envisioned as one of the most critical apparatus for 

successful implementation of smart grid. Given the complexity 

of the smart grid implementation, MGs have emerged as a 
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bridging technology to pave the way to the smart grid ‎[2]. The 

key to wider recognition and employment of MGs is 

innovative power management strategy ‎[3].  

In general, real-time MG management is classified into 

energy and power management. The energy management 

algorithms deal with monitoring and operation of a complex 

system of electrical, thermal, and mechanical components with 

emphasis on desired and longer term outcomes. However, the 

objective of power management is to affect the instantaneous 

operational conditions towards certain desired performance 

‎[4]-‎[11]. From a general perspective, both power and energy 

management refer to control actions that are based on 

particular objectives.  

MG management algorithms can be divided into centralized 

‎[4]-‎[9] and decentralized architecture ‎[10], ‎[11]. Structurally, 

MGs can be operated in grid-tied ‎[4], ‎[7], ‎[9]-‎[11], islanded 

‎[5], ‎[6], or a combination of both modes, e.g., ‎[8]; each of the 

above modes has certain requirements to be fulfilled. This 

paper focuses on the design, modeling, and proposing a 

comprehensive cost-effective rule-based and multi-timescale 

power management algorithm for an islanded MG that 

operates independently in a remote area. Although rule-based 

algorithms may not be ideal for grid-tied and plug-and-play 

operation of MGs, they are ideal in real-world applications 

with minimum computational burden, in particular for rural 

areas. In this study, the MG components include a diesel 

generator (DiG), solar PV panels, and storage batteries, which 

are commonly available for residential applications. 

In islanded MGs, ancillary services is provided using 

storage and DR to compensate for renewable generation and 

load demand variability.  Although the DR is foreseen to be an 

essential part of MGs’ cost-effective operation, some literature 

on power management do not include the DR in their proposed 

algorithm, e.g. ‎[6]-‎[8], and others consider generic load for 

DR, e.g. ‎[5], ‎[10], ‎[11]. However, in this study, DR is 

implemented with EWHs for which a dynamic model with 

actual hot water consumption data is used. Although EWH is 

used as an example to show the effectiveness of DR in the 

proposed management algorithm, it can be replaced with any 

other responsive load that has energy storage capability, such 

as electric space heating and cooling. Two different ON/OFF 

control algorithms (called DR.A and DR.B) are introduced and 
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implemented to provide the required increase or decrease in 

load at the time needed.  

Moreover, the multi-timescale structure of the proposed 

algorithm allows two different simulation intervals for MG 

components based on their dynamic behavior and the available 

data. This way, simulation interval of highly dynamic 

components (e.g., battery and EWHs) will be decoupled from 

those of the available load and generation data, which might be 

available with different intervals (e.g., 20 minutes or 1 hour). 

This way, the flexibility and accuracy of the algorithm will be 

increased, which can result in faster and more accurate control 

of MGs.  

The major contributions of this paper are: The multi-

timescale structure, the cost-effective operation in rule-based 

power management structure, and the DR application. We also 

included detailed dynamic models of the battery and EWH 

(that we have developed previously), ‎[12], ‎[13]-‎[15], in our 

proposed multi-timescale power management algorithm. 

MATLAB
®
 GUIs have been developed to easily scale and 

modify the proposed MG structure and simulation time 

interval as well as to observe the MG performance through a 

monitoring GUI during the simulation.  

The rest of the paper is organized as follows. MG design 

and modeling are briefly explained in Section II, including an 

overall view of the proposed simulation environment. Section 

III presents the proposed power management algorithm and 

two different DR strategies for EWHs. Simulation results and 

discussion are presented in Section IV, and the paper is 

concluded in Section V.  

II. MG DESIGN AND MODELLING 

In the following sub-sections, MG design and 

comprehensive modeling are presented for the MG’s 

components, including solar PV, DiG, storage, and EWH 

loads.   

A. MG Design: 

The proposed islanded MG (Fig. 1) is designed for a 

residential neighborhood including 100 houses. The residential 

units are assumed to have EWHs, which are used for the DR 

(when needed) to provide ancillary services for the MG. MG 

design (unit sizing) is carried out using HOMER
® 
‎[16]. Actual 

minute-by-minute residential load data, recorded for a single 

house between 2006 to 2010, has been used ‎[17]. The load 

demand data for 100 houses is generated by a series of random 

numbers with an average of 0.1 kW and standard deviation of 

0.2, added to the one-house data available to us. Actual solar 

irradiation and ambient temperature have also been used ‎[9]. It 

is assumed that all PV arrays experience similar solar 

irradiation and ambient temperature. The component sizes for 

the application obtained from HOMER are: 570 kW of PV, 

350 kW of DiG, and 840 kWh of battery.  

 

 
Fig. 1. Schematic diagram of the MG configuration. 

B. MG modeling: 

Comprehensive modeling of the MG components is an 

essential part of the proposed multi-timescale structure to 

perform accurate simulation and decisions making. In this sub-

section, model of each component will be briefly explained in 

addition to the cost and emission calculations that were 

applied for the relevant components.  

PV Model 

In this study, a comprehensive mathematical model of PV, 

‎[18], is used where the PV operating point is calculated based 

on solar irradiation and ambient temperature. An actual grid 

wattage PV module from SunPower Corporation (SPR-200-

BLK), which is suitable for residential applications, was 

selected for modeling ‎[19]. The maximum power point (MMP) 

of the PV module at different solar irradiation and ambient 

temperatures is calculated using the first derivative of the 

module instantaneous power with respect to the module’s 

voltage. In order to avoid solving numerical nonlinear 

equation in each iteration, the MPP corresponding to different 

common solar irradiation levels and ambient temperature were 

calculated and stored in a 2-D lookup table for future use in 

the power management algorithm (PMA). This procedure 

simplifies the implementation of the proposed PMA for real-

world application. A 100-W/m
2
 solar irradiation interval and 

3ºC temperature interval is used in the 2-D lookup table. These 

intervals are small enough for precise linear approximation 

between two neighboring sample points. This has been verified 

through sensitivity analyses for different solar irradiation 

values and ambient temperatures, which are not given in this 

paper because of page limit.  

Since the PV system is connected to the MG through 

DC/DC and DC/AC converters, the efficiency of converters 

has also been modeled as a function of the normalized input 

power ‎[7]. Since converters’ efficiency drops rapidly for small 

loading, a deadband of 5% of the module nominal power (i.e., 

200 W) was considered for PV operation.  

In addition to the model of the MG components, their 

accurate operational cost calculation is also essential for an 

accurate PMA. The operational cost is commonly divided into 

ownership and operating costs ‎[20]. In order to calculate the 

ownership cost of MG components, a general framework 

considering uncertainty and risk analyses was used, which has 

been proposed by the authors in ‎[21]. However, no ownership 

cost is considered for the PV system because PV modules 

usually last for 20-25 years, equal or more than the 20-year 

project lifetime assumed. Therefore, no replacement cost is 

required throughout the project lifetime. Also, PV operating 
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cost (which only comprises maintenance cost) is very cheap, 

less than 0.005 $/kWh ‎[22]. Therefore, it is reasonable to 

consider PV power as negative load to extract its maximum 

available power at any time.  

DiG Model 

Since DiGs are equipped with electronic speed governor 

and automatic voltage regulator (AVR), their dynamic 

behavior is not a concern as long as the simulation interval 

does not go below one minute. The DiG selected for this study 

is rated at 350 kW (CumminsOnan Commercial DFEG-

C350D6 diesel genset) with 1.5 and 2.1 seconds recovery time 

for voltage and frequency, respectively, after 100% change in 

load ‎[23]. In addition, DiGs have incredibly fast cold startup 

time (about 10 seconds for DiGs smaller than 1000 kW) ‎[24]. 

Therefore, the DiG modeling for this study is limited to its cost 

and emission. Fuel consumption data for the DiG used in this 

study are given in Table I. It should be noted that DiGs are 

usually responsible to establish frequency in an islanded MG, 

which requires the DiG to operate in standby mode at all 

times. Therefore, the DiG will consume a minimum amount of 

fuel (15 L/hour) at no load.  
TABLE I 

ACTUAL FUEL CONSUMPTION FOR THE DiG STUDIED ‎[23]. 

Model C350D6 
No 

load 

25% 

load 

50% 

load 

75% 

load 

100% 

load 

Fuel Consumption (L/hour) 15 30.2 50.4 72 96 

Based on the approach reported in ‎[21], the ownership cost 

for the DiG under consideration is calculated as 1.6018 $/hour. 

The DiG operating cost consists of fuel cost, cost of other 

regularly replaceable components, and overhaul costs. Fuel 

consumption data for a variety of DiGs ranging from 6 to 2260 

kW are compiled and modeled in ‎[10], and is utilized in 

HOMER
® 
‎[16]. However, employing a similar linear model for 

the DiG studied does not show an acceptable fit to the data 

given in Table I. A quadratic polynomial curve fitting (1) is 

tried on the data using MATLAB/Curve Fitting toolbox ‎[25], 

and it gives an excellent fit to the data: 

      20.0001773P 0.1709P 14.67DiG DiG DiGF i i i     (1) 

where  PDiG i  is the DiG operating power level (kW) at 

interval i. The cost of diesel is considered to be $0.97/L in this 

study. Comparison of the two methods (i.e., linear vs. 

quadratic curves) yields substantial differences which can 

result in erroneous fuel and cost calculations which can result 

in a series of incorrect decisions for the MG operation.  

Maintenance cost is another component of the DiG’s 

operating cost which has been ignored in some studies, e.g. 

‎[26]. Since the non-fuel operating cost data was not available 

for the specific DiG studied, the non-fuel operating cost data 

for 1-10 MW DiGs reported by EPRI, ‎[27], is utilized. The 

total maintenance cost (i.e., operating cost minus fuel cost) is 

approximated as $75.44/kW-installed by looking at the 20-

year net present value of costs ‎[27]. Therefore, annual 

maintenance cost of the 350-kW DiG used in this study can be 

approximated as $1320/year. This cost is for all maintenance 

levels and overhaul of the DiG used.  

There is no emission data provided for this specific 350-kW 

DiG. However, an extensive emission measurement has been 

carried out for 10-kW DiGs used in residential applications 

and on military bases, reported in ‎[28] for 10 kW DiGs ‎[28]. 

In this reference, several experiments are carried out on three 

different 10-kW DiGs from the manufacturer of the DiG used 

in this study, and CO2, CO, Ethylene, NO2, NO, and 

hydrocarbon (HC) production are reported. Since CO and CO2 

typically account for more than 99% of the carbon emitted in 

engine exhaust ‎[28], the emission production (
DGEM ) is 

categorized into CO2 and non-CO2 emissions, i.e., non-CO2 

emissions are combined to simplify the overall emission 

equation. A fifth-order polynomial is found to be a good fit for 

the data as follows: 

 
       

   

5 4 3

1 2 3

2

4 5 6

. . .

. .

j j j j

DiG DiG DiG DiG

j j j

DiG DiG

EM i a P i a P i a P i

a P i a P i a

  

  
  (2) 

where j is the type of emission at interval i. Coefficients for the 

emission types are given in Table II. The emission values for 

the 350-kW DiG used in this study is approximated by linearly 

scaling up all values from the 10-kW DiG by multiplying by 

35. This is only an approximation since no emission data for 

the 350-kW DiG used was not available. 
TABLE II 

CURVE-FITTED COEFFICIENTS OF THE FUNCTIONS FOR EMISSION PRODUCTION 

Type 
1

ja  
2

ja  
3

ja  
4

ja  
5

ja  
6

ja  

CO2 1.511 -35.47 290.1 -1011 1519 1422 

Non-CO2 -0.01859 0.4579 -4.128 17.959 -43.776 105.9 

The total cost of emission, which is a function of fuel 

consumption, can be calculated as follows: 

      
0.832

. .
1000

j j j

DiG DiG DiGC i C EM i F i    (3) 

where jC is the damage cost (externality cost) of pollutant j, 

and 0.832
1000

is the conversion factor for 
1kg of fuel gr

liter kg
 . The 

damage costs of CO2 is estimated as $0.014/kg in ‎[29]. The 

cost for non-CO2 pollutants is taken from ‎[30], which is 

estimated at $4.2/kg pollutant (total hydrocarbon) since they 

are the most dangerous pollutant for living organs’ health. The 

DiG’s efficiency can be calculated as follows ‎[10]: 

 
 

 

3600

.

DiGout

DiG

in DiG c

P iP

P F i E



    (4) 

where Ec is the diesel energy density (35000 kJ/L). The 

efficiency values for the linear and quadratic fuel consumption 

functions are shown in Fig. 2. The significant difference 

between the two curves can be due to the two different 

methods (i.e., linear and quadratic functions) used for fuel 

consumption calculation. 

Battery Model 

In this paper, a commonly used valve-regulated lead-acid 

(VRLA) battery dynamic model, described in ‎[31] (also used 

in our earlier work for power/energy management studies 

‎[12]), is used. The VRLA model is slightly modified for this 

paper to work based on its output power instead of voltage. 
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Instantaneous power, voltage, current, state of charge (SOC), 

internal temperature, and efficiency are important parameters 

of the battery which are monitored and calculated by the model 

developed in one minute interval.  
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Fig. 2. The overall efficiency of the DiG based on input and output energy. 

Battery operational cost, which consists of ownership and 

operating costs, is also considered in this study. The battery 

ownership cost (1.1815 $/Ampere-hour) is calculated based on 

uncertainty and risk analyses, reported in ‎[21]. Since the 

battery does not consume fuel and does not experience moving 

and mechanical parts, its operating cost is treated as a 

percentage of the total investment cost (1%-2.5%) ‎[32].  

Battery control is a complicated task in a MG and is 

essential for its safe operation. A thorough study of the battery 

chemical reactions is given in ‎[33], where, the general battery 

operation framework. A similar principle is utilized for the 

battery operation in this study, as shown in Fig. 3.  

100% 0%State of Charge (SOC)

Upper SOC limit, SOCmax=0.9

Lower marginal limit, SOCmin=0.3

Reserve limit = 0.2

Lower SOC limit = 0.15

 
Fig. 3. Classification and operational framework for battery SOC limits ‎[33]. 

EWH Model 

Residential EWHs are utilized as the DR medium in this 

study. The dynamic model of a single EWH is similar to the 

one in ‎[13]. Similar EWH model were also used in ‎[14], ‎[15], 

where the water temperature is allowed to rise to 160 ºF. The 

thermostatic-controlled valve is utilized in the model to assure 

safe hot water temperature for the household to avoid scalding 

and burning. No cost is considered for DR since customers’ 

hot water temperature will not go beyond a pre-defined limit 

(i.e., customers’ quality of service (QoS) is always considered 

as the highest priority and will not be violated). This procedure 

only utilizes any excess available energy in the residential 

EWHs, when available. 

Fig. 4 shows a flowchart diagram of the simulation 

environment developed for this study in MATLAB
®
. At each 

management interval, the following information (as shown in 

Fig. 4) are given as input to the simulation environment: hot 

water flow rate and water temperature of each EWH, ambient 

temperature and solar irradiation for PV system, nominal DiG 

capacity, non-EWH load demand, battery SOC, voltage, and 

temperature from the last interval, and power step value, P . 

P is used in each interval to calculate the maximum amount 

of power to charge the battery (or to discharge from the 

battery). As shown in Fig. 4, the data will be pre-processed or 

directly transmitted to the PMA to calculate the operating 

points of the MG components. Finally, power/energy, cost and 

emission will be calculated.  

A MATLAB
®
-based graphical user interface (GUI) is 

developed to attain all the required data for the simulation. The 

GUI allows great flexibility and scalability of the MG for 

further investigation with different parameters and sizes. 

Another GUI is also developed to show the real-time 

simulation results at each interval. At the end of the 

simulation, a summary of the final results also appears in the 

GUI.  
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Fig. 4. Flowchart diagram of the MG simulation environment developed for 

this study. 

III. THE PROPOSED POWER MANAGEMENT ALGORITHM 

MGs often comprise fixed and variable generation, storage, 

and load within a restricted geographical area. Therefore, it is 

essential to have a real-time management system to assign 

appropriate operation point to different components, to protect 

them from operating outside their safe region, and to manage 

generation, storage and demand. Numerous objectives have 

been proposed for MG real-time power management ‎[34]. 

However, desired objectives may be different from one MG to 

another, system operators/owners choose the objectives that 

best fit their MG topology (grid-tied or islanded) to meet their 

need. In this section, the design of the multi-timescale rule-

based power management algorithm for cost-effective 

operation of the designed MG is explained. 

Rule-based power management based on pre-defined rules 

can be an effective tool for MG operation as long as the 

number and size of the available components and their 

dynamic behavior are known to the operator. One major 

advantage of the rule-based PMA is that they are incredibly 

fast and computationally efficient compared to the power 

management algorithms with optimization techniques, 

particularly in real-time applications. It is because the fact that 

the decision-making process is already designed based on all 
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possible scenarios using prior knowledge about the system. 

Additionally, rule-based PMAs are easy to implement in real-

world applications, particularly for islanded MGs in remote 

areas.  

The multi-timescale simulation and management structure, 

proposed in this study, helps to improve accuracy and increase 

the simulation speed by choosing different simulation intervals 

based on the components’ requirements. In this study, 

simulation for battery and EWHs is carried out every minute, 

while the PMA is updated every 20 minutes. The simulation 

interval for PV and DiG is the same as the power management 

interval. The updating interval for the proposed PMA can be 

changed in the GUI developed for this study. Moreover, the 

proposed rule-based algorithm targets least cost of the MG 

operation using least expensive components when possible. 

Rule-based algorithms become less applicable and effective in 

MGs with many devices and objectives or MG with features 

such as plug-and-play operation.   

The proposed PMA shown in Fig. 4 is expanded in Fig. 5. 

As shown in this figure, the battery and EWHs simulations are 

carried out in one-minute intervals (i.e., dark gray area), while 

the rest of the simulation (light gray area) is performed in a 

pre-defined interval, which can be minutes to hours. A 

description of the input parameters to the PMA is given in 

Appendix I.  

For the non-EWH load demand data, which is available 

every minute in this study, the average power is calculated and 

utilized for the length of the management interval. Using all 

the input parameters shown in Fig. 5, the PMA unit computes 

the operating point of each MG component. Here, three 

different rules can be identified (as shown in Fig. 5) which are 

explained as follows: 

RULE I (right column in Fig. 5): In this rule, the total load 

demand is less than the available PV power in the interval 

ahead, i.e. maxtot

L PVP P , where tot EWH nonEWH

L L LP P P  . 

Therefore, the excess power, i.e. maxsch tot

BATT L PVP P P  , can be 

stored in the battery if the battery SOC is less than the pre-

defined maximum value. The proposed strategy is given in 

Algorithm 1 of APPENDIX II. Note that battery simulation is 

performed every minute, regardless of the length of the 

management interval, to increase the accuracy and better 

observation of the battery performance. The one-minute 

simulation interval helps to accurately calculate maximum 

charging power in the battery considering the minute-by-

minute battery dynamic and its nonlinear behavior. 
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Fig. 5. Schematic diagram for the proposed multi timescale rule-based power 

management algorithm. 

The HVFlag is a variable in the battery model that shows the 

battery overvoltage or equivalently battery maximum SOC 

violation, or battery maximum charging power. In RULE I, the 

battery will be utilized before the DR because a higher battery 

SOC results in a higher battery lifetime. If the battery is not 

able to store all the excess PV power, the maximum possible 

power will be calculated based on the first inner loop shown in 

the right column in Fig. 5. Based on the convention used in 

this study, battery is in charging mode when the power is 

negative ( 0sch

BATTP  ), and it is in discharging mode when 

power is positive ( 0sch

BATTP  ). The battery charging algorithm 

is given in Appendix II. Finally, the operating point of the 

battery for the interval ahead can be obtained, given as 

 ,BATT t t T
P


. Since the battery will be charged only by excess 

PV generation, no cost is assigned to the battery operation in 

the charging mode. 

If excess PV power is still available (i.e., 
 ,

0excess

PV t t T
P


 ), 

the status of EWHs (as DR resource) will be examined to store 

the excess power in the form of heat energy. Similar to the 

battery, this part of the simulation will also be carried out 

every minute regardless of the management interval. The DR 

strategies are designed to fulfill two important conditions: 1) 

the increase in EWHs power should not exceed the excess PV 

power available at each interval, 2) no more than the pre-

specified number of EWHs are allowed to be on 

simultaneously to control peak power. These conditions assure 

that the EWHs accurately participate in the DR 

implementation. The proposed DR strategy is given in 

Algorithm 2 of APPENDIX III. Based on the same principles 
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mentioned in Algorithm 2, two different ON/OFF control 

strategies (explained below) are proposed, where in both cases 

the customers’ quality of service (QoS) has the highest 

priority:  

DR.A: In this case, upper and lower hot water temperature 

setpoint remain between 120-160 ºF, respectively, throughout 

the day.  

DR.B: In this case, a dynamic structure for the upper 

setpoint for hot water temperature is considered. While the 

lower setpoint remains at 120 ºF throughout the day for all 

EWHs, the upper setpoint remains at 130 ºF unless there is 

excess PV power. In that case, the hot water temperature upper 

setpoint will be elevated to 160 ºF. In DR.A and DR.B when 

the water temperature goes above 130 ºF, the outflowing hot 

water will be mixed with an appropriate amount of cool water 

by a thermostatic mixing valve (TMV) prior to use to avoid 

scalding. Details of the calculations are explained in ‎[14] and 

‎[15]. The difference between the two cases (i.e., DR.A and 

DR.B) is significant, as will be shown in the simulation results.  

In the rare cases when there is excess PV power and the 

battery and EWHs are fully charged, the excess energy needs 

to be curtailed using power electronic interfaces in the PV 

system, or dissipates in a dump load. 

RULE II (middle column in Fig. 5): In this rule, the total load 

demand is less than the sum of the available PV power and the 

DiG nominal power in the interval ahead, i.e., 

 max maxtot

L PV DiGP P P  . Therefore, the battery is idle, as shown 

in Fig. 5. However in order to guarantee the cost-effective 

operation in the proposed PMA, the DR strategy is used to 

decrease the required power from the DiG, as much as 

possible, by turning off some of the EWHs. Then, the 

remaining load is supplied by the DiG, i.e., 

 

max

,

tot ctrl

L EWH PV DiG t t T
P P P P


   , where ctrl

EWHP  is the amount of 

EWH power decreased by the DR strategy. In this study, the 

DiG is operated in the standby mode, where it consumes some 

fuel even at no load. As a result, the total operational cost will 

be cheaper if the DiG is utilized before the battery. This way, 

the cost-effective operation of the MG will be achieved, and 

the MG cost of operation will be equal to the DiG operational 

cost. The emissions and damage costs associated with the 

operation of the DiG will also be calculated in this rule.  

RULE III (left column in Fig. 5): In this rule, the total load 

demand is higher than the total of available PV power and the 

nominal power of the DiG in the interval ahead; i.e., 

 max maxtot

L PV DiGP P P  . Therefore, the battery and DR should be 

utilized to meet the remaining load demand. Since there is no 

cost associated with DR in the MG, it is beneficial to perform 

the DR strategy before the battery. Therefore, the DR 

procedure will be executed to provide load reduction as much 

as possible in order to avoid large and random load 

interruption in the MG. The DR procedure in this rule is 

similar to the one explained in Algorithm 2 (APPENDIX III) 

except that the EWHs will be sorted in ascending order based 

on their hot water temperatures. The two limiting conditions, 

given for the DR in RULE I, are also valid in this rule. It should 

be noted that the ON/OFF commands for the EWHs will be 

overridden in both of the DR algorithms if the hot water 

temperature goes beyond the pre-defined upper and lower 

limits. One-minute simulations will always be carried out for 

the EWHs in this rule. 

If there is still undelivered load demand after the DR 

procedure completed, the battery will be discharged to meet 

the remaining load demand. In this case, if the battery SOC is 

higher than the minimum (
minSOC ), the maximum derivable 

energy from the battery will be calculated for the interval 

ahead using the inner loop in the left column in Fig. 5. For this 

purpose, a similar procedure to the one in Algorithm 1 

(APPENDIX II) is developed in Algorithm 3 (APPENDIX IV) for 

the battery discharging, except that the discharged power is 

positive based on the power flow convention defined in this 

study. In addition, LVFlag is used instead of the HVFlag, 

which is introduced in the battery model to show the low-

voltage status of the battery, or equivalently to show if the 

battery SOC goes below the pre-defined minimum value, or if 

the pre-defined discharging power limit is violated. High 

accuracy in the battery model is guaranteed by the one-minute 

simulation to capture the inherited nonlinearity in the battery 

model. In rare cases that the battery and the DR cannot meet 

the shortage in generation, the partial undelivered load in the 

MG will be realized where some load will be shed. In this rule, 

MG operational cost will be computed as the sum of DiG cost 

and the battery cost in the discharging mode. 

IV. SIMULATION RESULTS AND DISCUSSION 

In order to show the effectiveness and applicability of the 

proposed multi-timescale rule-based power management 

algorithm, simulation studies using actual data are carried out 

for the MG presented in Fig. 1. Based on the availability and 

the type of DR mechanism, three different management 

algorithms (namely no-DR, DR.A, and DR.B) are simulated 

and their results are compared. The precision of the 

calculations is chosen to be 1 W; i.e., all the calculations and 

actual data are rounded towards 1 W, which is a reasonable 

assumption for real-world applications.  

Since the actual one-minute load data used in this study was 

only for one house, the load demand data for 100 houses is 

generated by a series of random numbers with an average of 

0.1 kW and standard deviation of 0.2, added to the one-house 

data available to us. The minute-by-minute power 

consumption of 100 houses is shown in Fig. 6. The different 

characteristics of the load demand data (e.g., peak hours and 

annual energy consumption) match the numbers given in ‎[35]. 

For simulation intervals larger than one minute, the average 

load demand data is used.  

In addition to the non-EWH load data, hot water flow-rate 

for each customer is also required for aggregate EWH 

modeling. These data are calculated from the real set of 

average residential EWH daily demand available in ‎[36] using 
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the method explained in ‎[15]. Since there is only average 

EWH power consumption data available in ‎[36], a technique 

for conversion of EWH power demand to hot water 

consumption (flow rate) and a randomization technique, 

introduced by the authors in ‎[14] and ‎[15], is used to generate 

hot water demand data for 100 houses, shown in Fig. 7.  

Normal and uniform distribution is used to randomize the 

parameters of the EWH model, i.e. tank volume, thermal 

resistance of tank insulation, initial on/off state, and initial 

water temperature inside the tank. 
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Fig. 6. Minute-by-minute active non-EWH load demand (winter weekday) for 

100 houses ‎[17]. 
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Fig. 7. Hot water consumption for 100 houses in the MG, winter weekday. 

The actual temperature and solar irradiation data, employed 

in this study, are shown in Fig. 8 for a weekday in the winter. 

It is assumed that all PV modules experience similar ambient 

temperature and solar irradiation level. 
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Fig. 8. Temperature and solar irradiation for a non-cloudy weekday in the 

winter ‎[9]. 

Three different simulations are performed with DR.A, DR.B, 

and without DR (No-DR) to show the effectiveness of the 

proposed PMAs with DR. For all simulation studies, the power 

management is updated every 20 minutes, and the simulation is 

performed for 24 hours. Additionally, the DiG is operated in 

standby mode for the three cases. The simulation results are 

reported in Table III for the MG presented in Fig. 1. 
TABLE III 

SIMULATION RESULTS OF THE MG OPERATION FOR 

THE THREE PMAS FOR 24 HOURS. 
PMAs  No-DR  DR.A  DR.B 

PV       

Total used energy, kWh  1325.171  1631.8417  1749.3663 

Unused energy, kWh  508.4457  201.775  84.2503 

Average efficiency, %  89.0605  89.7931  89.855 

DiG       

Total generation, kWh  3187.408  2981.8243  2876.8337 

Fuel Consumption, L  1044.8309  996.173  971.1315 

Average efficiency, %  23.0945  22.0459  22.0328 

Battery       

Discharge, kWh  242.645  179.2043  203.1227 

Charge, kWh  445.2683  440.8677  480.9853 

Average efficiency, %  92.4503  92.9302  91.1408 

MG Emission       

Total CO2, kg  1661.7  1632.4  1603.7 

Total Non-CO2, kg  53.4  51.0  49.9 

Total damage cost, $  38.2105  37.1239  36.4132 

Total load, kWh  4309.9557  4352.0027  4348.3373 

Total undelivered load, kWh  20.7687  7.1467  8.112 

Total MG operation cost, $  1339.3116  1245.8123  1238.1705 

In the remainder of this section, the effect of PMAs with 

DR.A and DR.B on the performance of the MG and its 

component is compared with the No-DR PMA, based on the 

results given in Table III. 

SOLAR PV PANEL: It can be seen from Table III that the PV 

power utilization is increased by 23.1% and 32.0% in the 

DR.A and DR.B algorithms, respectively, compared to the No-

DR. This is because of employing the DR in the management 

algorithm. When the EWHs’ upper thermostat setpoint is 

increased to 160 ºF, a large amount of heat storage capacity is 

provided by the EWHs hot water tanks. The percentage of 

increase is less in the DR.A algorithm compared to the DR.B 

algorithm because the upper thermostat setpoint in the DR.A is 

set to 160 ºF for the whole day. This way, less free capacity in 

the hot water tanks will be available when excess PV 

generation is available in the middle of the day. The increase 

in power utilization from the PV also resulted in slightly 

higher efficiency of the PV unit due to higher efficiency of the 

converters.  

DIG: According to Table III, in the PMAs with DR.A and 

DR.B, the total generated energy by the DiG is decreased by 

6.45% and 9.74% and the total fuel consumption decreased by 

4.66% and 7.05%, respectively. Since the DiG fuel 

consumption is a nonlinear function of its output power, the 

percent reduction in the total generated power by the DiG is 

not equal to its corresponding total fuel consumption for the 

two PMAs. Storing the excess PV generation as hot water 

using the DR strategies (which results in less power 

consumption by the EWHs in the hours ahead) as well as 
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reducing EWHs power consumption during power shortage are 

the two major reasons for the reduction in the DiG generation. 

However, the average efficiency of the DiG is slightly 

decreased in the DR.A and DR.B algorithms compared to the 

No-DR algorithm. This is because the utilization of the DR 

decreases the need for the DiG power and as a result, the DiG 

operates in the lower range of its rated power where its 

efficiency is lower, as shown in Fig. 2.  

BATTERY: The battery discharging is decreased by 26.14% 

and 16.29% in DR.A and DR.B, respectively, compared to the 

No-DR case. This is because using any excess PV generation 

to preheat water in EWHs decreases the energy required by the 

EWHs during high demand hours. Therefore, less energy from 

the battery is required to meet the load demand. In general, any 

reduction in the battery discharging reduces the MG 

operational cost, increases battery lifetime, and provides more 

storage for unexpected loss of PV power and load variations. 

The battery SOC for the three simulation cases is shown for 

one day in Fig. 9. The battery discharging starts around 7:30 

AM in the DR.B algorithm. Since the upper thermostat setpoint 

in the DR.B algorithm is set to 130 ºF during normal condition 

(i.e., during the time of no excess PV generation availability), 

and because the DR is employed more often, as given in RULE 

II, more EWHs will turn on early in the morning during first 

peak period (approximately 7:30-9:00 AM), as shown in Fig. 

7. This way, the PV and the DiG cannot meet the total load 

demand, so the battery is discharged to provide the remaining 

load demand. The hot water temperature for all households is 

shown in Fig. 10 (a) and (b) for the DR.A and DR.B PMAs, 

respectively. It can be seen that at around 7:30 AM, hot water 

temperatures for most of EWHs reach to about 143 ºF in the 

PMA with DR.A, and the EWHs stay off during the morning 

peak hours. However during this peak demand period, the hot 

water temperature in the majority of the EWHs go below 125 

ºF in the DR.B PMA, where some of the EWHs turn on 

resulting in more demand from the EWHs during the morning 

peak hours.  

In addition, it can be seen from Fig. 9 that the battery 

discharging occurs approximately during 17:00 to18:30 and 

21:00 to 22:30 for the No-DR case, while the battery is idle 

during this period for the other two PMAs. This is because the 

EWHs could not store hot water during the off-peak hours 

because of the 130 ºF upper thermostat setpoint limit. 

Therefore, some of the EWHs will be turned on during the 

second daily peak hours, which would increase the power 

demand. As a result, the battery will be discharged to 

compensate for the power shortage.  

Due to the early battery discharge in the DR.B PMA, the 

accumulative battery charging energy at the end of the day is 

more than the other PMAs. As shown in Fig. 10 (b), the EWHs 

hot water temperature increases toward 160 ºF during the 

excess PV generation hours (approximately during 12:00-

15:00 hours.) This causes all the EWHs to be off during the 

second daily peak hours (approximately 16:30-21:00), which 

is the main reason for lower battery discharging in DR.A and 

DR.B compared to the No-DR case, shown in Fig. 9. Although 

the average efficiency of the battery is decreased when the DR 

is used, the average battery SOC for a day of simulation did 

not change significantly for the three PMAs. The average 

battery SOC is 63.8%, 64.0%, and 63.3% for No-DR, DR.A, 

and DR.B, respectively.  

0 4 8 12 16 20 24
45

50

55

60

65

70

75

80

85

90

95

Time, hour

B
a
tt
e
ry

 S
O

C
, 
%

 

 

no-DR

DR.A

DR.B

 
Fig. 9. Battery SOC for the proposed management systems, with and without 

DR. 
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(b) 

Fig. 10. The hot water temperature for all household in (a) DR.A, and (b) 

DR.B PMAs. 

MG EMISSIONS: As expected, the total MG emission is 

reduced because of the DiG generation reduction when the DR 

strategies are used. The reduction in CO2 and non-CO2 

emissions for the DR.A and the DR.B compared to the No-DR 

PMA are tabulated in Table IV. 1.8% and 3.5% reduction for 

CO2 emission as well as 4.5% and 6.6% reduction in non-CO2 

emissions are observed for the DR.A and DR.B, respectively, 

compared to the No-DR case. These reductions in emission 

resulted in 2.8% and 4.7% decrease in the total damage cost 

for DR.A and DR.B, respectively, compared to the No-DR 
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case.  

TABLE IV 

REDUCTION IN CO2 AND NON-CO2 EMISSIONS IN THE DR.A AND DR.B PMAS 

PMAs  DR.A  DR.B 

Decrease in CO2 emissions  1.8%  3.5% 

Decrease in non-CO2 emissions  4.5%  6.6% 

TOTAL UNDELIVERED LOAD: Although for the size of the MG 

studied, the total undelivered power for the No-DR PMA is 

negligible (less than 0.5% compared to the total load demand), 

this value is reduced by 65.6% and 60.9% for the DR.A and 

DR.B PMAs, respectively. Undelivered power occurs when the 

total available generation, storage, and reduction in EWHs’ 

power is less than the sum of the non-EWH load demand and 

the power demand of the EWHs that are forced to be on. For 

the DR.A and DR.B PMAs, undelivered load demand occurred 

during 16:40-17:00 (1.659 kW and 1.329 kW for DR.A and 

DR.B, respectively) and during 17:40-18:00 (19.781 kW and 

22.998 kW for DR.A and DR.B, respectively). According to 

Fig. 10, all EWHs are off during these periods, and the DR 

cannot be used to avoid undelivered load demand.  

TOTAL MG OPERATIONAL COST: As given in Table III, the 

total MG operational cost is reduced by 6.98% and 7.55% for 

the DR.A and DR.B PMAs, respectively, compared to the No-

DR PMA. It is because of the fact that when the DR strategies 

are employed, the DiG output energy and the battery discharge 

decrease. These reductions in energy demand have resulted in 

noticeable cost reduction in the MG operation.  

V. CONCLUSION 

In this paper, a rule-based multi-timescale cost-effective 

power management algorithm is proposed to effectively 

include generation, storage, and the DR within the same 

management framework. The MG design and comprehensive 

modeling are briefly discussed, and the power management 

algorithm is presented. Two different EWH DR strategies 

(DR.A and DR.B) are proposed and compared with the No-DR 

case. Simulation results showed that incorporating the DR in 

the management algorithm increased the PV power utilization; 

decreased the DiG total generation, its fuel consumption and 

emissions; increased the battery average SOC; and decreased 

the total undelivered load in the MG. As a result, the MG 

operational costs are decreased remarkably when the DR is 

employed in the PMA.  

Each of the DR strategies has certain advantages over the 

other; the choice of which one to use depends on the specific 

circumstances and is to be made by the owner/operator of the 

MG. DR.A is a better approach when the average efficiency of 

the DiG and battery, and the undelivered load demand are 

important. On the other hand, DR.B is better in terms of the 

MG operational cost, PV power utilization, and the total MG 

emissions. It should be noted that the proposed PMAs need to 

be modified to accommodate other variable generation sources 

(such as wind) according to their variable nature, as was done 

in this paper for solar PV. 

APPENDIX I 

 
 

max

,PV t t T
P


: Maximum PV available power for the interval 

ahead (i.e., t  to t T ), calculated by “comprehensive PV 

model” module, shown in Fig. 4.  

 
 

max

,DiG t t T
P


: Nominal capacity of the DiG unit. PDiG is a 

constant throughout this paper, but it can change in different 

time intervals.  

 
t

SOC : The latest value of the battery SOC. 

 
 ,t t T

P


 : is used in each interval to calculate the 

maximum amount of power to charge the battery (or to 

discharge from the battery). 

 
 ,stat t t T

EWH


: EWHs’ primary ON/OFF status calculated 

by “EWH dynamic model” module, shown in Fig. 4, based on 

the actual hot water flow rate at the beginning of the 

simulation for each interval.  

 
 ,

EWH

L t t T
P


: Load demand from the EWHs for t  to 

t T  interval, calculated by “EWH dynamic model” 

module. 

 
 ,

nonEWH

L t t T
P


: Non-EWH load demand for t  to t T  

interval.  

APPENDIX II 

Algorithm 1. BATTERY CHARGING 

Required: Battery SOC, internal voltage and temperature at the end 

of the last interval, step power change ( P ), battery scheduled 

power ( sch

BATTP ), and simulation interval ( T ). 

1:  ch sch

BATT BATTP P   

2:   HVFlag = BattModel†( , , , ,ch

BATT t
P SOC V T T ) 

3:   While (HVFlag = 0) & ( 0ch

BATTP  ) do 

4:      ch ch

BATT BATTP P P    

5:       HVFlag = BattModel( , , , ,ch

BATT t
P SOC V T T ) 

6:   End While 

7:   If (HVFlag = 1) & ( 0ch

BATTP  ) then 

8:       
 ,

ch

BATT BATTt t T
P P


 ;

 ,

excess sch ch

PV BATT BATTt t T
P P P


  ; 

9:   Else 

10:     
 ,

0BATT t t T
P


 ;       

 ,

excess sch

PV BATTt t T
P P


 ; 

11:  End If 
†
 “BattModel” is the dynamic model of the battery developed in 

MATLAB® m-file. 

APPENDIX III 

Algorithm 2. EWHS ON/OFF CONTROL ALGORITHM
*
 

Required: PV excess power ( excess

PVP ), EWHs consumption and status 

( t T

iS  ) for the interval ahead and at the end of the last interval, 

number of EWHs ( EWHNO ), and simulation interval ( T ). 
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1:  , 1on excess

DR PVP P t    

2:   For (t < T ) do 

3:     Ind=sort†( ; 1,...,i EWHt
T i NO ,‘descending’) 

4:     calculate , ( )total orig

EWHP t , 

5:     While (i < 
EWHNO ) do 

6:          If (
1i t

T


> max

iT ) then   0iS t   

7:          Else If (
1i t

T


< min

iT ) then   1iS t   

8:          Else  

9:                If (  iS t = 0), then  iS t = 1 

10:                  temp = sum(  ; 1,...,i EWHS t i NO ) 

11:                  calculate ,new ( )total

EWHP t  

11:                  If (temp > Maxon) || 

                           (( ,new ( )total

EWHP t - , ( )total orig

EWHP t ) > on

DRP ), then 

12:                         iS t = 0; break; 

13:                  End If 

14:              End If 

15:           End If 

16:           Data=EWHModel( , ,i i i t
S T F ) 

17:          1i i   

18:     End While 

19:     1t t   

20:  End For 

21:   
 

,new ,

,
( ) ( )excess excess total total orig

PV PV EWH EWH
t t T

P P P t P t


    

†
 “sort” is the sorting algorithm in MATLAB®. 


 “EWHModel” is the dynamic model of the single EWH developed in 

MATLAB® m-file. 

*
 Required modifications for Algorithm 2 in RULE III for reduction in the 

EWHs consumption: 

    1:  , 1off undelivered

DR LoadP P t    

    3:     Ind=sort†( ; 1,...,i EWHt
T i NO ,‘ascending’) 

    9:                If (  iS t = 1), then  iS t = 0 

  11:                  If (temp > Maxoff) || 

                           ((
,new ( )total

EWHP t -
, ( )total orig

EWHP t ) > 
off

DRP ), then 

  12:                         iS t = 1; break; 

  21:   
 

,new ,

,
( ) ( )undelivered undelivered total total orig

Load Load EWH EWH
t t T

P P P t P t


    

APPENDIX IV 

Algorithm 3. BATTERY DISCHARGING 

Required: Battery SOC, internal voltage and temperature at the end 

of the last interval, step power change ( P ), battery scheduled 

power ( sch

BATTP ), and simulation interval ( T ). 

1:  dis sch

BATT BATTP P   

2:   LVFlag = BattModel†( , , , ,dis

BATT t
P SOC V T T ) 

3:   While (LVFlag = 0) & ( 0dis

BATTP  ) do 

4:      dis dis

BATT BATTP P P   

5:       LVFlag = BattModel( , , , ,dis

BATT t
P SOC V T T ) 

6:   End While 

7:   If (LVFlag = 1) & ( 0dis

BATTP  ) then 

8:       
 ,

dis

BATT BATTt t T
P P


 ;

 ,

undelivered sch dis

Load BATT BATTt t T
P P P


  ; 

9:   Else 

10:     
 ,

0BATT t t T
P


 ;       

 ,

undelivered sch

Load BATTt t T
P P


 ; 

11:  End If 
†
 “BattModel” is the dynamic model of the battery developed in 

MATLAB® m-file. 
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