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Abstract—Power management is an essential tool for microgrid
(MG) safe and economic operation, particularly in the islanded
operation mode. In this study, a multi-timescale cost-effective
power management algorithm is proposed for islanded MG
operation  targeting generation, storage, and demand
management. Comprehensive modeling, cost, and emission
calculations of the MG components are developed in this study to
facilitate high accuracy management. While the MG’s overall
power management and operation is carried out every several
minutes to hours, depending on the availability of the required
data, simulation for highly dynamic devices (such as batteries and
electric water heaters (EWHSs) used for demand response (DR))
are performed every minute. This structure allows accurate,
scalable, and practical power management taking into
consideration the intra-interval dynamics of battery and EWHs.
Two different on/oFF strategies for EWH control are also
proposed for DR application. Then, the power management
algorithm is implemented using the two different DR strategies
and the results are compared with the no-DR case. Actual solar
irradiation, ambient temperature, non-EWH load demand, and
hot water consumption data are employed in the simulation
studies. The simulation results for the MG studied show the
effectiveness of the proposed algorithm to reduce both MG’s cost
and emission.

Index Terms—Demand response, diesel generator efficiency
and emission model, battery dynamic modeling, power
management, electric water heater dynamic model.

I. INTRODUCTION

CCORDING to the U.S. department of Energy’s (DOE’s)

list of five fundamental technologies that will drive the
smart grid [1], “advanced control methods to observe essential
components for rapid diagnosis and precise solutions to
events” is envisioned as one of the most critical apparatus for
successful implementation of smart grid. Given the complexity
of the smart grid implementation, MGs have emerged as a
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bridging technology to pave the way to the smart grid [2]. The
key to wider recognition and employment of MGs is
innovative power management strategy [3].

In general, real-time MG management is classified into
energy and power management. The energy management
algorithms deal with monitoring and operation of a complex
system of electrical, thermal, and mechanical components with
emphasis on desired and longer term outcomes. However, the
objective of power management is to affect the instantaneous
operational conditions towards certain desired performance
[4]-[11]. From a general perspective, both power and energy
management refer to control actions that are based on
particular objectives.

MG management algorithms can be divided into centralized
[4]-[9] and decentralized architecture [10], [11]. Structurally,
MGs can be operated in grid-tied [4], [7], [9]-[11], islanded
[5], [6], or a combination of both modes, e.g., [8]; each of the
above modes has certain requirements to be fulfilled. This
paper focuses on the design, modeling, and proposing a
comprehensive cost-effective rule-based and multi-timescale
power management algorithm for an islanded MG that
operates independently in a remote area. Although rule-based
algorithms may not be ideal for grid-tied and plug-and-play
operation of MGs, they are ideal in real-world applications
with minimum computational burden, in particular for rural
areas. In this study, the MG components include a diesel
generator (DiG), solar PV panels, and storage batteries, which
are commonly available for residential applications.

In islanded MGs, ancillary services is provided using
storage and DR to compensate for renewable generation and
load demand variability. Although the DR is foreseen to be an
essential part of MGs’ cost-effective operation, some literature
on power management do not include the DR in their proposed
algorithm, e.g. [6]-[8], and others consider generic load for
DR, e.g. [5], [10], [11]. However, in this study, DR is
implemented with EWHs for which a dynamic model with
actual hot water consumption data is used. Although EWH is
used as an example to show the effectiveness of DR in the
proposed management algorithm, it can be replaced with any
other responsive load that has energy storage capability, such
as electric space heating and cooling. Two different ON/OFF
control algorithms (called DR.A and DR.B) are introduced and
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implemented to provide the required increase or decrease in
load at the time needed.

Moreover, the multi-timescale structure of the proposed
algorithm allows two different simulation intervals for MG
components based on their dynamic behavior and the available
data. This way, simulation interval of highly dynamic
components (e.g., battery and EWHSs) will be decoupled from
those of the available load and generation data, which might be
available with different intervals (e.g., 20 minutes or 1 hour).
This way, the flexibility and accuracy of the algorithm will be
increased, which can result in faster and more accurate control
of MGs.

The major contributions of this paper are: The multi-
timescale structure, the cost-effective operation in rule-based
power management structure, and the DR application. We also
included detailed dynamic models of the battery and EWH
(that we have developed previously), [12], [13]-[15], in our
proposed multi-timescale power management algorithm.
MATLAB® GUIs have been developed to easily scale and
modify the proposed MG structure and simulation time
interval as well as to observe the MG performance through a
monitoring GUI during the simulation.

The rest of the paper is organized as follows. MG design
and modeling are briefly explained in Section Il, including an
overall view of the proposed simulation environment. Section
Il presents the proposed power management algorithm and
two different DR strategies for EWHs. Simulation results and
discussion are presented in Section IV, and the paper is
concluded in Section V.

Il. MG DESIGN AND MODELLING

In the following sub-sections, MG design and
comprehensive modeling are presented for the MG’s
components, including solar PV, DiG, storage, and EWH
loads.

A. MG Design:

The proposed islanded MG (Fig. 1) is designed for a
residential neighborhood including 100 houses. The residential
units are assumed to have EWHSs, which are used for the DR
(when needed) to provide ancillary services for the MG. MG
design (unit sizing) is carried out using HOMER® [16]. Actual
minute-by-minute residential load data, recorded for a single
house between 2006 to 2010, has been used [17]. The load
demand data for 100 houses is generated by a series of random
numbers with an average of 0.1 kW and standard deviation of
0.2, added to the one-house data available to us. Actual solar
irradiation and ambient temperature have also been used [9]. It
is assumed that all PV arrays experience similar solar
irradiation and ambient temperature. The component sizes for
the application obtained from HOMER are: 570 kW of PV,
350 kW of DiG, and 840 kWh of battery.

Management «
Unit

Fig. 1. Schematic diagram of the MG configuration.

B. MG modeling:

Comprehensive modeling of the MG components is an
essential part of the proposed multi-timescale structure to
perform accurate simulation and decisions making. In this sub-
section, model of each component will be briefly explained in
addition to the cost and emission calculations that were
applied for the relevant components.

PV Model

In this study, a comprehensive mathematical model of PV,
[18], is used where the PV operating point is calculated based
on solar irradiation and ambient temperature. An actual grid
wattage PV module from SunPower Corporation (SPR-200-
BLK), which is suitable for residential applications, was
selected for modeling [19]. The maximum power point (MMP)
of the PV module at different solar irradiation and ambient
temperatures is calculated using the first derivative of the
module instantaneous power with respect to the module’s
voltage. In order to avoid solving numerical nonlinear
equation in each iteration, the MPP corresponding to different
common solar irradiation levels and ambient temperature were
calculated and stored in a 2-D lookup table for future use in
the power management algorithm (PMA). This procedure
simplifies the implementation of the proposed PMA for real-
world application. A 100-W/m? solar irradiation interval and
3°C temperature interval is used in the 2-D lookup table. These
intervals are small enough for precise linear approximation
between two neighboring sample points. This has been verified
through sensitivity analyses for different solar irradiation
values and ambient temperatures, which are not given in this
paper because of page limit.

Since the PV system is connected to the MG through
DC/DC and DC/AC converters, the efficiency of converters
has also been modeled as a function of the normalized input
power [7]. Since converters’ efficiency drops rapidly for small
loading, a deadband of 5% of the module nominal power (i.e.,
200 W) was considered for PV operation.

In addition to the model of the MG components, their
accurate operational cost calculation is also essential for an
accurate PMA. The operational cost is commonly divided into
ownership and operating costs [20]. In order to calculate the
ownership cost of MG components, a general framework
considering uncertainty and risk analyses was used, which has
been proposed by the authors in [21]. However, no ownership
cost is considered for the PV system because PV modules
usually last for 20-25 years, equal or more than the 20-year
project lifetime assumed. Therefore, no replacement cost is
required throughout the project lifetime. Also, PV operating



FINAL VERSION BEFORE EDITORIAL: IEEE TRANSACTIONS ON SMART GRID, VOL. 6, NO. 3, MAY 2015 3

cost (which only comprises maintenance cost) is very cheap,
less than 0.005 $/kWh [22]. Therefore, it is reasonable to
consider PV power as negative load to extract its maximum
available power at any time.

DiG Model

Since DiGs are equipped with electronic speed governor
and automatic voltage regulator (AVR), their dynamic
behavior is not a concern as long as the simulation interval
does not go below one minute. The DiG selected for this study
is rated at 350 kW (CumminsOnan Commercial DFEG-
C350D6 diesel genset) with 1.5 and 2.1 seconds recovery time
for voltage and frequency, respectively, after 100% change in
load [23]. In addition, DiGs have incredibly fast cold startup
time (about 10 seconds for DiGs smaller than 1000 kW) [24].
Therefore, the DiG modeling for this study is limited to its cost
and emission. Fuel consumption data for the DiG used in this
study are given in Table I. It should be noted that DiGs are
usually responsible to establish frequency in an islanded MG,
which requires the DiG to operate in standby mode at all
times. Therefore, the DiG will consume a minimum amount of
fuel (15 L/hour) at no load.

TABLE |
ACTUAL FUEL CONSUMPTION FOR THE DiG STUDIED [23].
No 25% 50% 75% | 100%
NiEHE] CeBlbs load load load load load
Fuel Consumption (L/hour) 15 30.2 50.4 72 96

Based on the approach reported in [21], the ownership cost
for the DiG under consideration is calculated as 1.6018 $/hour.
The DiG operating cost consists of fuel cost, cost of other
regularly replaceable components, and overhaul costs. Fuel
consumption data for a variety of DiGs ranging from 6 to 2260
kW are compiled and modeled in [10], and is utilized in
HOMER® [16]. However, employing a similar linear model for
the DiG studied does not show an acceptable fit to the data
given in Table I. A quadratic polynomial curve fitting (1) is
tried on the data using MATLAB/Curve Fitting toolbox [25],
and it gives an excellent fit to the data:

Foie (') =0.0001773 PIZZ)iG (i)+ 0.1709P;, (i)+l4.67 (1)
where Py (i) is the DiG operating power level (kW) at

interval i. The cost of diesel is considered to be $0.97/L in this
study. Comparison of the two methods (i.e., linear vs.
quadratic curves) yields substantial differences which can
result in erroneous fuel and cost calculations which can result
in a series of incorrect decisions for the MG operation.

Maintenance cost is another component of the DiG’s
operating cost which has been ignored in some studies, e.g.
[26]. Since the non-fuel operating cost data was not available
for the specific DIG studied, the non-fuel operating cost data
for 1-10 MW DiGs reported by EPRI, [27], is utilized. The
total maintenance cost (i.e., operating cost minus fuel cost) is
approximated as $75.44/kW-installed by looking at the 20-
year net present value of costs [27]. Therefore, annual
maintenance cost of the 350-kW DiG used in this study can be
approximated as $1320/year. This cost is for all maintenance
levels and overhaul of the DiG used.

There is no emission data provided for this specific 350-kW
DiG. However, an extensive emission measurement has been
carried out for 10-kW DiGs used in residential applications
and on military bases, reported in [28] for 10 kW DiGs [28].
In this reference, several experiments are carried out on three
different 10-kW DiGs from the manufacturer of the DiG used
in this study, and CO,, CO, Ethylene, NO,, NO, and
hydrocarbon (HC) production are reported. Since CO and CO,
typically account for more than 99% of the carbon emitted in
engine exhaust [28], the emission production (EM;) is

categorized into CO, and non-CO, emissions, i.e., non-CO,
emissions are combined to simplify the overall emission
equation. A fifth-order polynomial is found to be a good fit for
the data as follows:

EM éiG (') = a:l.j'PDSiG (i)"'azj-PéiG (i)"'aef 'PE::iG (')
+a]).P2; (i) +al.P, (i)+a

where j is the type of emission at interval i. Coefficients for the

emission types are given in Table Il. The emission values for

the 350-kW DiG used in this study is approximated by linearly

scaling up all values from the 10-kW DiG by multiplying by

35. This is only an approximation since no emission data for
the 350-kW DiG used was not available.

2

TABLE Il
CURVE-FITTED COEFFICIENTS OF THE FUNCTIONS FOR EMISSION PRODUCTION
e | & |al|a|oa | a |
CO; 1511 |-35.47|290.1| -1011 1519 | 1422
Non-CO; | -0.01859 [0.4579|-4.128| 17.959 | -43.776 | 105.9

The total cost of emission, which is a function of fuel
consumption, can be calculated as follows:
i j P ., 0.832
Cles(i)=C' EM/ (i).Fys (i) x—— 3
DIG( ) DIG( ) DIG( ) 1000 ( )
where C'is the damage cost (externality cost) of pollutant j,
0.832 ; ; lkgof fuel _ gr
and 000 1S the conversion factor for fer — <kg The
damage costs of CO, is estimated as $0.014/kg in [29]. The
cost for non-CO, pollutants is taken from [30], which is
estimated at $4.2/kg pollutant (total hydrocarbon) since they
are the most dangerous pollutant for living organs’ health. The
DiG’s efficiency can be calculated as follows [10]:
P 3600x P, (i
out _ X -DIG( ) (4)
Pin I:DiG (I)'Ec
where E. is the diesel energy density (35000 kJ/L). The
efficiency values for the linear and quadratic fuel consumption
functions are shown in Fig. 2. The significant difference
between the two curves can be due to the two different
methods (i.e., linear and quadratic functions) used for fuel
consumption calculation.
Battery Model
In this paper, a commonly used valve-regulated lead-acid
(VRLA) battery dynamic model, described in [31] (also used
in our earlier work for power/energy management studies

[12]), is used. The VRLA model is slightly modified for this
paper to work based on its output power instead of voltage.

bic =
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Instantaneous power, voltage, current, state of charge (SOC),
internal temperature, and efficiency are important parameters
of the battery which are monitored and calculated by the model
developed in one minute interval.
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Fig. 2. The overall efficiency of the DiG based on input and output energy.

Battery operational cost, which consists of ownership and
operating costs, is also considered in this study. The battery
ownership cost (1.1815 $/Ampere-hour) is calculated based on
uncertainty and risk analyses, reported in [21]. Since the
battery does not consume fuel and does not experience moving
and mechanical parts, its operating cost is treated as a
percentage of the total investment cost (1%-2.5%) [32].

Battery control is a complicated task in a MG and is
essential for its safe operation. A thorough study of the battery
chemical reactions is given in [33], where, the general battery
operation framework. A similar principle is utilized for the
battery operation in this study, as shown in Fig. 3.

Upper SOC limit, SOC =09

Lower marginal limit, SOCp,j»=0.3
Reserve limit=10.2
—tLower SOC limit = 0.15

100%  State of Charge (SOC) 0%
Fig. 3. Classification and operational framework for battery SOC limits [33].

EWH Model

Residential EWHSs are utilized as the DR medium in this
study. The dynamic model of a single EWH is similar to the
one in [13]. Similar EWH model were also used in [14], [15],
where the water temperature is allowed to rise to 160 °F. The
thermostatic-controlled valve is utilized in the model to assure
safe hot water temperature for the household to avoid scalding
and burning. No cost is considered for DR since customers’
hot water temperature will not go beyond a pre-defined limit
(i.e., customers’ quality of service (QoS) is always considered
as the highest priority and will not be violated). This procedure
only utilizes any excess available energy in the residential
EWHs, when available.

Fig. 4 shows a flowchart diagram of the simulation
environment developed for this study in MATLAB®. At each
management interval, the following information (as shown in
Fig. 4) are given as input to the simulation environment: hot
water flow rate and water temperature of each EWH, ambient

temperature and solar irradiation for PV system, nominal DiG
capacity, non-EWH load demand, battery SOC, voltage, and
temperature from the last interval, and power step value, AP.
AP is used in each interval to calculate the maximum amount
of power to charge the battery (or to discharge from the
battery). As shown in Fig. 4, the data will be pre-processed or
directly transmitted to the PMA to calculate the operating
points of the MG components. Finally, power/energy, cost and
emission will be calculated.

A MATLAB®-based graphical user interface (GUI) is
developed to attain all the required data for the simulation. The
GUI allows great flexibility and scalability of the MG for
further investigation with different parameters and sizes.
Another GUI is also developed to show the real-time
simulation results at each interval. At the end of the
simulation, a summary of the final results also appears in the
GUL.
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Fig. 4. Flowchart diagram of the MG simulation environment developed for
this study.

I1l. THE PROPOSED POWER MANAGEMENT ALGORITHM

MGs often comprise fixed and variable generation, storage,
and load within a restricted geographical area. Therefore, it is
essential to have a real-time management system to assign
appropriate operation point to different components, to protect
them from operating outside their safe region, and to manage
generation, storage and demand. Numerous objectives have
been proposed for MG real-time power management [34].
However, desired objectives may be different from one MG to
another, system operators/owners choose the objectives that
best fit their MG topology (grid-tied or islanded) to meet their
need. In this section, the design of the multi-timescale rule-
based power management algorithm for cost-effective
operation of the designed MG is explained.

Rule-based power management based on pre-defined rules
can be an effective tool for MG operation as long as the
number and size of the available components and their
dynamic behavior are known to the operator. One major
advantage of the rule-based PMA is that they are incredibly
fast and computationally efficient compared to the power
management algorithms with  optimization techniques,
particularly in real-time applications. It is because the fact that
the decision-making process is already designed based on all
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possible scenarios using prior knowledge about the system.
Additionally, rule-based PMAs are easy to implement in real-
world applications, particularly for islanded MGs in remote
areas.

The multi-timescale simulation and management structure,
proposed in this study, helps to improve accuracy and increase
the simulation speed by choosing different simulation intervals
based on the components’ requirements. In this study,
simulation for battery and EWHs is carried out every minute,
while the PMA is updated every 20 minutes. The simulation
interval for PV and DiG is the same as the power management
interval. The updating interval for the proposed PMA can be
changed in the GUI developed for this study. Moreover, the
proposed rule-based algorithm targets least cost of the MG
operation using least expensive components when possible.
Rule-based algorithms become less applicable and effective in
MGs with many devices and objectives or MG with features
such as plug-and-play operation.

The proposed PMA shown in Fig. 4 is expanded in Fig. 5.
As shown in this figure, the battery and EWHSs simulations are
carried out in one-minute intervals (i.e., dark gray area), while
the rest of the simulation (light gray area) is performed in a
pre-defined interval, which can be minutes to hours. A
description of the input parameters to the PMA is given in
Appendix .

For the non-EWH load demand data, which is available
every minute in this study, the average power is calculated and
utilized for the length of the management interval. Using all
the input parameters shown in Fig. 5, the PMA unit computes
the operating point of each MG component. Here, three
different rules can be identified (as shown in Fig. 5) which are
explained as follows:

RULE | (right column in Fig. 5): In this rule, the total load
demand is less than the available PV power in the interval

ahead, ie. R <PBy*, where R =p" 4peEM,
Therefore, the excess power, i.e. Pin. =P —P3™, can be

stored in the battery if the battery SOC is less than the pre-
defined maximum value. The proposed strategy is given in
Algorithm 1 of ApPENDIX II. Note that battery simulation is
performed every minute, regardless of the length of the
management interval, to increase the accuracy and better
observation of the battery performance. The one-minute
simulation interval helps to accurately calculate maximum
charging power in the battery considering the minute-by-
minute battery dynamic and its nonlinear behavior.
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Fig. 5. Schematic diagram for the proposed multi timescale rule-based power
management algorithm.

The HVFlag is a variable in the battery model that shows the
battery overvoltage or equivalently battery maximum SOC
violation, or battery maximum charging power. In RULE I, the
battery will be utilized before the DR because a higher battery
SOC results in a higher battery lifetime. If the battery is not
able to store all the excess PV power, the maximum possible
power will be calculated based on the first inner loop shown in
the right column in Fig. 5. Based on the convention used in
this study, battery is in charging mode when the power is

negative (PS5 <0), and it is in discharging mode when
power is positive (Ps’ >0). The battery charging algorithm
is given in Appendix Il. Finally, the operating point of the
battery for the interval ahead can be obtained, given as

(Pasrr )MM] . Since the battery will be charged only by excess

PV generation, no cost is assigned to the battery operation in
the charging mode.

If excess PV power is still available (i.e., (Ps™) 1>0),

[t.t+AT

the status of EWHSs (as DR resource) will be examined to store
the excess power in the form of heat energy. Similar to the
battery, this part of the simulation will also be carried out
every minute regardless of the management interval. The DR
strategies are designed to fulfill two important conditions: 1)
the increase in EWHs power should not exceed the excess PV
power available at each interval, 2) no more than the pre-
specified number of EWHs are allowed to be on
simultaneously to control peak power. These conditions assure
that the EWHs accurately participate in the DR
implementation. The proposed DR strategy is given in
Algorithm 2 of ApPENDIX Ill. Based on the same principles
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mentioned in Algorithm 2, two different ON/OFF control
strategies (explained below) are proposed, where in both cases
the customers’ quality of service (QoS) has the highest
priority:

DR.A: In this case, upper and lower hot water temperature
setpoint remain between 120-160 °F, respectively, throughout
the day.

DR.B: In this case, a dynamic structure for the upper
setpoint for hot water temperature is considered. While the
lower setpoint remains at 120 °F throughout the day for all
EWHs, the upper setpoint remains at 130 °F unless there is
excess PV power. In that case, the hot water temperature upper
setpoint will be elevated to 160 °F. In DR.A and DR.B when
the water temperature goes above 130 °F, the outflowing hot
water will be mixed with an appropriate amount of cool water
by a thermostatic mixing valve (TMV) prior to use to avoid
scalding. Details of the calculations are explained in [14] and
[15]. The difference between the two cases (i.e., DR.A and
DR.B) is significant, as will be shown in the simulation results.

In the rare cases when there is excess PV power and the
battery and EWHSs are fully charged, the excess energy needs
to be curtailed using power electronic interfaces in the PV
system, or dissipates in a dump load.

RULE 1l (middle column in Fig. 5): In this rule, the total load
demand is less than the sum of the available PV power and the
DiG nominal power in the interval ahead, i.e.,

P < (P + Py ). Therefore, the battery is idle, as shown

in Fig. 5. However in order to guarantee the cost-effective
operation in the proposed PMA, the DR strategy is used to
decrease the required power from the DiG, as much as
possible, by turning off some of the EWHs. Then, the
remaining load is supplied by the DiG, i.e,

(P — P, = PR + Py >[mm, where P2, is the amount of

EWH power decreased by the DR strategy. In this study, the
DiG is operated in the standby mode, where it consumes some
fuel even at no load. As a result, the total operational cost will
be cheaper if the DiG is utilized before the battery. This way,
the cost-effective operation of the MG will be achieved, and
the MG cost of operation will be equal to the DiG operational
cost. The emissions and damage costs associated with the
operation of the DiG will also be calculated in this rule.

RULE 111 (left column in Fig. 5): In this rule, the total load
demand is higher than the total of available PV power and the
nominal power of the DiG in the interval ahead; i.e.,

P > (P> + Py ) . Therefore, the battery and DR should be

utilized to meet the remaining load demand. Since there is no
cost associated with DR in the MG, it is beneficial to perform
the DR strategy before the battery. Therefore, the DR
procedure will be executed to provide load reduction as much
as possible in order to avoid large and random load
interruption in the MG. The DR procedure in this rule is
similar to the one explained in Algorithm 2 (APPENDIX III)
except that the EWHSs will be sorted in ascending order based

on their hot water temperatures. The two limiting conditions,
given for the DR in RULE I, are also valid in this rule. It should
be noted that the oN/OFF commands for the EWHs will be
overridden in both of the DR algorithms if the hot water
temperature goes beyond the pre-defined upper and lower
limits. One-minute simulations will always be carried out for
the EWHs in this rule.

If there is still undelivered load demand after the DR
procedure completed, the battery will be discharged to meet
the remaining load demand. In this case, if the battery SOC is
higher than the minimum (SOC,;,). the maximum derivable

energy from the battery will be calculated for the interval
ahead using the inner loop in the left column in Fig. 5. For this
purpose, a similar procedure to the one in Algorithm 1
(APPENDIX I1) is developed in Algorithm 3 (APPENDIX IV) for
the battery discharging, except that the discharged power is
positive based on the power flow convention defined in this
study. In addition, LVFlag is used instead of the HVFlag,
which is introduced in the battery model to show the low-
voltage status of the battery, or equivalently to show if the
battery SOC goes below the pre-defined minimum value, or if
the pre-defined discharging power limit is violated. High
accuracy in the battery model is guaranteed by the one-minute
simulation to capture the inherited nonlinearity in the battery
model. In rare cases that the battery and the DR cannot meet
the shortage in generation, the partial undelivered load in the
MG will be realized where some load will be shed. In this rule,
MG operational cost will be computed as the sum of DiG cost
and the battery cost in the discharging mode.

IV. SIMULATION RESULTS AND DISCUSSION

In order to show the effectiveness and applicability of the
proposed multi-timescale rule-based power management
algorithm, simulation studies using actual data are carried out
for the MG presented in Fig. 1. Based on the availability and
the type of DR mechanism, three different management
algorithms (namely no-DR, DR.A, and DR.B) are simulated
and their results are compared. The precision of the
calculations is chosen to be 1 W; i.e., all the calculations and
actual data are rounded towards 1 W, which is a reasonable
assumption for real-world applications.

Since the actual one-minute load data used in this study was
only for one house, the load demand data for 100 houses is
generated by a series of random numbers with an average of
0.1 kW and standard deviation of 0.2, added to the one-house
data available to wus. The minute-by-minute power
consumption of 100 houses is shown in Fig. 6. The different
characteristics of the load demand data (e.g., peak hours and
annual energy consumption) match the numbers given in [35].
For simulation intervals larger than one minute, the average
load demand data is used.

In addition to the non-EWH load data, hot water flow-rate
for each customer is also required for aggregate EWH
modeling. These data are calculated from the real set of
average residential EWH daily demand available in [36] using
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the method explained in [15]. Since there is only average
EWH power consumption data available in [36], a technique
for conversion of EWH power demand to hot water
consumption (flow rate) and a randomization technique,
introduced by the authors in [14] and [15], is used to generate
hot water demand data for 100 houses, shown in Fig. 7.
Normal and uniform distribution is used to randomize the
parameters of the EWH model, i.e. tank volume, thermal
resistance of tank insulation, initial on/off state, and initial

water temperature inside the tank.
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Fig. 6. Minute-by-minute active non-EWH load demand (winter weekday) for
100 houses [17].
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Fig. 7. Hot water consumption for 100 houses in the MG, winter weekday.

The actual temperature and solar irradiation data, employed
in this study, are shown in Fig. 8 for a weekday in the winter.
It is assumed that all PV modules experience similar ambient
temperature and solar irradiation level.
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Fig. 8. Temperature and solar irradiation for a non-cloudy weekday in the
winter [9].
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Three different simulations are performed with DR.A, DR.B,
and without DR (No-DR) to show the effectiveness of the
proposed PMAs with DR. For all simulation studies, the power
management is updated every 20 minutes, and the simulation is
performed for 24 hours. Additionally, the DiG is operated in
standby mode for the three cases. The simulation results are

reported in Table 111 for the MG presented in Fig. 1.
TABLE Il
SIMULATION RESULTS OF THE MG OPERATION FOR
THE THREE PMAS FOR 24 HOURS.

PMAs No-DR DR.A DR.B
PV
Total used energy, kWh ~ 1325.171  1631.8417  1749.3663
Unused energy, kWh  508.4457 201.775 84.2503
Average efficiency, % 89.0605 89.7931 89.855
DiG
Total generation, kWh ~ 3187.408  2981.8243  2876.8337
Fuel Consumption, L 1044.8309 996.173 971.1315
Average efficiency, % 23.0945 22.0459 22.0328
Battery
Discharge, kWh 242.645 179.2043 203.1227
Charge, kWh  445.2683 440.8677 480.9853
Average efficiency, % 92.4503 92.9302 91.1408
MG Emission
Total CO;, kg 1661.7 1632.4 1603.7
Total Non-CO,, kg 53.4 51.0 49.9
Total damage cost, $ ~ 38.2105 37.1239 36.4132
Total load, kWh 4309.9557  4352.0027  4348.3373
Total undelivered load, kWh 20.7687 7.1467 8.112
Total MG operation cost, $ 1339.3116 1245.8123 1238.1705

In the remainder of this section, the effect of PMAs with
DR.A and DR.B on the performance of the MG and its
component is compared with the No-DR PMA, based on the
results given in Table I11.

SOLAR PV PANEL: It can be seen from Table Il that the PV
power utilization is increased by 23.1% and 32.0% in the
DR.A and DR.B algorithms, respectively, compared to the No-
DR. This is because of employing the DR in the management
algorithm. When the EWHs’ upper thermostat setpoint is
increased to 160 °F, a large amount of heat storage capacity is
provided by the EWHSs hot water tanks. The percentage of
increase is less in the DR.A algorithm compared to the DR.B
algorithm because the upper thermostat setpoint in the DR.A is
set to 160 °F for the whole day. This way, less free capacity in
the hot water tanks will be available when excess PV
generation is available in the middle of the day. The increase
in power utilization from the PV also resulted in slightly
higher efficiency of the PV unit due to higher efficiency of the
converters.

DIG: According to Table IlI, in the PMAs with DR.A and
DR.B, the total generated energy by the DiG is decreased by
6.45% and 9.74% and the total fuel consumption decreased by
4.66% and 7.05%, respectively. Since the DiG fuel
consumption is a nonlinear function of its output power, the
percent reduction in the total generated power by the DiG is
not equal to its corresponding total fuel consumption for the
two PMAs. Storing the excess PV generation as hot water
using the DR strategies (which results in less power
consumption by the EWHSs in the hours ahead) as well as
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reducing EWHSs power consumption during power shortage are
the two major reasons for the reduction in the DiG generation.
However, the average efficiency of the DiG is slightly
decreased in the DR.A and DR.B algorithms compared to the
No-DR algorithm. This is because the utilization of the DR
decreases the need for the DiG power and as a result, the DIiG
operates in the lower range of its rated power where its
efficiency is lower, as shown in Fig. 2.

BATTERY: The battery discharging is decreased by 26.14%
and 16.29% in DR.A and DR.B, respectively, compared to the
No-DR case. This is because using any excess PV generation
to preheat water in EWHSs decreases the energy required by the
EWHs during high demand hours. Therefore, less energy from
the battery is required to meet the load demand. In general, any
reduction in the battery discharging reduces the MG
operational cost, increases battery lifetime, and provides more
storage for unexpected loss of PV power and load variations.
The battery SOC for the three simulation cases is shown for
one day in Fig. 9. The battery discharging starts around 7:30
AM in the DR.B algorithm. Since the upper thermostat setpoint
in the DR.B algorithm is set to 130 °F during normal condition
(i.e., during the time of no excess PV generation availability),
and because the DR is employed more often, as given in RULE
I, more EWHSs will turn on early in the morning during first
peak period (approximately 7:30-9:00 AM), as shown in Fig.
7. This way, the PV and the DiG cannot meet the total load
demand, so the battery is discharged to provide the remaining
load demand. The hot water temperature for all households is
shown in Fig. 10 (a) and (b) for the DR.A and DR.B PMAs,
respectively. It can be seen that at around 7:30 AM, hot water
temperatures for most of EWHSs reach to about 143 °F in the
PMA with DR.A, and the EWHs stay off during the morning
peak hours. However during this peak demand period, the hot
water temperature in the majority of the EWHs go below 125
°F in the DR.B PMA, where some of the EWHs turn on
resulting in more demand from the EWHSs during the morning
peak hours.

In addition, it can be seen from Fig. 9 that the battery
discharging occurs approximately during 17:00 t018:30 and
21:00 to 22:30 for the No-DR case, while the battery is idle
during this period for the other two PMAs. This is because the
EWHSs could not store hot water during the off-peak hours
because of the 130 °F upper thermostat setpoint limit.
Therefore, some of the EWHs will be turned on during the
second daily peak hours, which would increase the power
demand. As a result, the battery will be discharged to
compensate for the power shortage.

Due to the early battery discharge in the DR.B PMA, the
accumulative battery charging energy at the end of the day is
more than the other PMAs. As shown in Fig. 10 (b), the EWHSs
hot water temperature increases toward 160 °F during the
excess PV generation hours (approximately during 12:00-
15:00 hours.) This causes all the EWHSs to be off during the
second daily peak hours (approximately 16:30-21:00), which
is the main reason for lower battery discharging in DR.A and
DR.B compared to the No-DR case, shown in Fig. 9. Although
the average efficiency of the battery is decreased when the DR
is used, the average battery SOC for a day of simulation did

not change significantly for the three PMAs. The average
battery SOC is 63.8%, 64.0%, and 63.3% for No-DR, DR.A,
and DR.B, respectively.

95

—=—n0-DR

90 # %A ——DR.A |1
—o—
85 I{ % DR.B
80
s fo
g 75 #z
o]
‘g 70
15 —
£ 65
o
60
55 }
50
|
L
450 4 8 12 16 20 24

Time, hour

Fig. 9. Battery SOC for the proposed management systems, with and without
DR.

165 T

160

155

=
a1
o

i
S
o

Temperature, “F
L
w B
@ o

[y
w
o

|
|
:
0 4 8 12 16 20 24

@

145

[
W
o

Temperature, °F

=
w
o

s

=
N

= \

o
N
Ul

oy
N
o

|
|
8 12 16 20 24
Time, hour
(b)
Fig. 10. The hot water temperature for all household in (a) DR.A, and (b)
DR.B PMAs.

N
&

o

-

MG EMISSIONS: As expected, the total MG emission is
reduced because of the DiG generation reduction when the DR
strategies are used. The reduction in CO, and non-CO,
emissions for the DR.A and the DR.B compared to the No-DR
PMA are tabulated in Table V. 1.8% and 3.5% reduction for
CO, emission as well as 4.5% and 6.6% reduction in non-CO,
emissions are observed for the DR.A and DR.B, respectively,
compared to the No-DR case. These reductions in emission
resulted in 2.8% and 4.7% decrease in the total damage cost
for DR.A and DR.B, respectively, compared to the No-DR
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case.
TABLE IV
REDUCTION IN CO2 AND NON-CO; EMISSIONS IN THE DR.A AND DR.B PMAs
PMAs DR.A DR.B
Decrease in CO- emissions 1.8% 3.5%
Decrease in non-CO, emissions 4.5% 6.6%

ToTAL UNDELIVERED LOAD: Although for the size of the MG
studied, the total undelivered power for the No-DR PMA is
negligible (less than 0.5% compared to the total load demand),
this value is reduced by 65.6% and 60.9% for the DR.A and
DR.B PMAs, respectively. Undelivered power occurs when the
total available generation, storage, and reduction in EWHs’
power is less than the sum of the non-EWH load demand and
the power demand of the EWHSs that are forced to be on. For
the DR.A and DR.B PMAs, undelivered load demand occurred
during 16:40-17:00 (1.659 kW and 1.329 kW for DR.A and
DR.B, respectively) and during 17:40-18:00 (19.781 kW and
22.998 kW for DR.A and DR.B, respectively). According to
Fig. 10, all EWHs are off during these periods, and the DR
cannot be used to avoid undelivered load demand.

ToTAL MG OPERATIONAL CosT: As given in Table Ill, the
total MG operational cost is reduced by 6.98% and 7.55% for
the DR.A and DR.B PMAs, respectively, compared to the No-
DR PMA. It is because of the fact that when the DR strategies
are employed, the DiG output energy and the battery discharge
decrease. These reductions in energy demand have resulted in
noticeable cost reduction in the MG operation.

V. CONCLUSION

In this paper, a rule-based multi-timescale cost-effective
power management algorithm is proposed to effectively
include generation, storage, and the DR within the same
management framework. The MG design and comprehensive
modeling are briefly discussed, and the power management
algorithm is presented. Two different EWH DR strategies
(DR.A and DR.B) are proposed and compared with the No-DR
case. Simulation results showed that incorporating the DR in
the management algorithm increased the PV power utilization;
decreased the DiG total generation, its fuel consumption and
emissions; increased the battery average SOC; and decreased
the total undelivered load in the MG. As a result, the MG
operational costs are decreased remarkably when the DR is
employed in the PMA.

Each of the DR strategies has certain advantages over the
other; the choice of which one to use depends on the specific
circumstances and is to be made by the owner/operator of the
MG. DR.A is a better approach when the average efficiency of
the DIG and battery, and the undelivered load demand are
important. On the other hand, DR.B is better in terms of the
MG operational cost, PV power utilization, and the total MG
emissions. It should be noted that the proposed PMASs need to
be modified to accommodate other variable generation sources
(such as wind) according to their variable nature, as was done
in this paper for solar PV.

APPENDIX |
v <PPV >[t,t+AT]
ahead (i.e., t to t+AT), calculated by “comprehensive PV
model” module, shown in Fig. 4.

max . H H - - .
v <PDiG >[m+m]' Nominal capacity of the DiG unit. Ppig is a

constant throughout this paper, but it can change in different
time intervals.
v (SOC), : The latest value of the battery SOC.

v <AP>[

maximum amount of power to charge the battery (or to
discharge from the battery).

v (EWH,, ) : EWHs’ primary ON/OFF status calculated

by “EWH dynamic model” module, shown in Fig. 4, based on
the actual hot water flow rate at the beginning of the
simulation for each interval.

: Maximum PV available power for the interval

is used in each interval to calculate the

tE+AT] "

[tt+AT]

v (RE™M) : Load demand from the EWHs for t to
[t.t+AT]
t+AT interval, calculated by “EWH dynamic model”
module.
v (R : Non-EWH load demand for t to t+AT
[t.t+aT]
interval.

APPENDIX |1

Algorithm 1. BATTERY CHARGING

Required: Battery SOC, internal voltage and temperature at the end
of the last interval, step power change (AP), battery scheduled
power (P ), and simulation interval (AT ).

1 P <P
2: HVFlag = BattModel( Pgﬂﬁ,(SOC,V,T)I ,AT)
3: While (HVFlag = 0) & (P&, <0) do
4 PRI =Ph+AP
5. HVFlag = BattModel( P ,(SOC,V,T) ,AT )
6: End While
7: If (HVFlag = 1) & (P&, <0) then

. ch . excess sch ch .
8: <PBA1T>[1,1+AT] = Foarr 5 <PPV >[l,l+AT] = Posrr —Foarr 5
9: Else

. . excess sch .

10: <PBATF >[t,t+AT] =0; <PPV >[m+AT] = Fgarr »
11: End If

i “BattModel” is the dynamic model of the battery developed in
MATLAB® m-file.

APPENDIX Il

Algorithm 2. EWHSs ON/OFF CONTROL ALGORITHM

Required: PV excess power ( P ), EWHs consumption and status
(S*") for the interval ahead and at the end of the last interval,
number of EWHSs ( NO,,, ), and simulation interval ( AT ).
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1 PSp <« Py™, t«1
2: For (t< AT )do
3 Ind=sort'((T;) ;i =1..,NOg, ,‘descending’)
4:  calculate PY= ™ (t),
5:  While (i< NOg,, ) do
6: If ((T)),_,> T™) then S;(t) <0
7 Else If ((T,),, < T,™) then S;(t)«1
8: Else
9 If (S;(t)=0), then S;(t)=1
10: temp = sum( S, (t); i =1,...,NOgy, )
11: calculate P2 (t)
11: If (temp > MaxX,,) ||
((Paw ™" () - Py ™™ (1)) > PR, then
12: S,(t) = 0; break;
13: End If
14: End If
15: End If
16: Data=EWHModel *((S;.T,,F),)
17: i<i+l
18: End While
19: t«t+1
20: End For

21: <P:\>;cess _ P;\jcess 7(Pé\o/\t”a_:,new (t) _ Pé\t;\tli:,ong (t))>

[t.t+AT]

7: If (LVFlag = 1) & (P, >0) then

B (Puar o) = Phl s (P =R R
9: Else

10: <PBAW >[M+AT] =0; <pLUU":;"\'9fed >[lvl+AT] =P

11: End If

T “sort” is the sorting algorithm in MATLAB®,
¢ “EWHModel” is the dynamic model of the single EWH developed in
MATLAB® m-file.

- Required modifications for Algorithm 2 in RuULE IIl for reduction in the
EWHSs consumption:

1 P« pundetered - ¢ 1

3 Ind=sort’((T, >t; i =1,...,NO,, ,ascending’)
9: If (S;(t)=1), then S;(t)=0
11 If (temp > MaXos) ||
((Pa ™" (1) - Py ™ (©)) > Pog ), then
12: S, (t) = 1; break;

21: <P:J;::Iivered — PLL:)n;:flivered _ ( PEls\tlaHl,new (t) _ PEt\tj\tl;a_'I,urlg (t))>

[t.t+AT]

APPENDIX IV

Algorithm 3. BATTERY DISCHARGING

Required: Battery SOC, internal voltage and temperature at the end
of the last interval, step power change (AP), battery scheduled
power ( P ), and simulation interval ( AT ).

L R P
2. LVFlag = BattModel ( P5;,(SOC,V,T), ,AT)
3: While (LVFlag = 0) & (Pas, >0) do

4 P =Pl AP

5. LVFlag = BattModel( Py ,(SOC,V,T) ,AT )
6: End While

T “BattModel” is the dynamic model of the battery developed in
MATLAB® m-file.
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