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Abstract—The coordinated operation of different energy
systems, such as electrical, gas, and heating, can improve the
efficiency of the whole energy system and facilitate the larger
penetration of renewable energy resources in the electricity
generation portfolio. However, appropriate models considering
various technical constraints of the energy carriers (e.g.,
gas system pressure limit and heat losses in the district
heating networks) are needed to effectively assess the true
impact of integrated energy system (IES) operation on the
overall system’s performance. This paper proposes a flexible
unit commitment (UC) problem for coordinated operation of
electricity, natural gas, and district heating networks, called
multi-carrier network-constrained unit commitment (MNUC),
to minimize the operation cost of the IES. Besides, an
integrated demand response (IDR) program is considered as a
promising solution to improve consumers’ electrical, gas, and
heat consumption patterns and increase the power dispatch of
combined heat and power units. Multi-energy storage systems
are also included in the proposed model to decrease the impact
of multi-energy network constraints on the overall system’s
performance. To model the uncertainties involved in the operation
of the three networks, a combined robust/stochastic approach is
preferred in the MNUC problem considering multi-carrier energy
storage systems and the IDR program. Numerical results show
that the whole operation cost of the IES has decreased by %2.58
considering the IDR program and multi-energy storage systems.

Index Terms—Integrated energy system, gas network,
district heating network, unit commitment, robust optimization,
stochastic optimization.

NOMENCLATURE
Decision Indices

t Time intervals
w Scenarios
i Generation units
wf Wind power plants
gw Gas suppliers
gs Gas storages
hs Heat storages
es Electrical storages
j Electrical loads
g Gas loads
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hl Heat loads
b Power system buses
h DHN nodess
m Gas system nodes
L Power system lines
hp Heat pipelines
pl Gas pipelines

Decision Parameters
NT Sum of time periods
NG, NJ ,
NHL

Sum of gas/ electrical/ heat loads

NES, NHS,
NGS

sum of electrical/ heat/ gas storage
systems

NW Sum of scenarios
NGW Sum of gas wells
NWF Sum of wind power units
GU , NC EU Sum of gas-fired/ CHP/ non-gas fired units
GWmax

gw ,
GWmin

gw

Max/ min natural gas injection

pw Probability of scenarios
Pwf,t Forecasted wind power
Pmin
i ,Pmax

i Max/ min power produced by power
generation units

Rupi ,Rdni Ramp up/ down of power generation units
T oni ,T offi Minimum on/ off time of power

generation units
η+
xs,η

−
xs Efficiency of charge/ dischrage of

electrical/ gas/ heat storages
X−min
xs ,X−max

xs Min/ max discharge capacity of electrical/
gas/ heat storages

X+ min
xs ,X+ max

xs Min/ max charge capacity of electrical/
gas/ heat storages

XSmin
xs ,XSmax

xs Max/ min capacity of electrical/ gas/ heat
storages

XLz,t,s Electrical/ gas/ heat demands
αz Participation factor of electrical/ gas/ heat

loads in demand response programs
∆Ddn

z ,∆Dup
z Ramp down/ up of shiftable demands

XL Line reactance
PFmax

L Capacity of transmission line
T0 Environment temperature
Tmin
h , Tmax

h Limitation of temperature in DHN nodes
HPmin

hp ,HPmax
hp Limitation of mass flow rate in DHN

pipelines
Cm,n Gas pipelines constant
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πmin
m , πmax

m Limitation of pressure in gas network
nodes

Decision Variables
Pi,t,w Power generation of units
Hi,t,w Heat generation of CHP units
GWgw,t,w Gas supply of gas wells
XLdrz,t,s Electrical/ gas/ heat demands after

implementing demand response
P+
es,t,w,
P−es,t,w

Charge/discharge power of electrical
storage

G−gs,t,w,
G+
gs,t,w

Released/Stored gas of gas storage

H−hs,t,w,
H+
hs,t,w

Released/Stored heat of heat storage

ESes,t,w State of charge of electrical storage
GSgs,t,w State of charge of gas storage
HShs,t,w State of charge of heat storage
∆Ej,t,w Adjustable electric demand
∆Gg,t,w Adjustable gas demand
∆Hhl,t,w Adjustable heat demand
PFL,t,w Power flow through electrical lines
Fpl,t,w Gas flow through gas pipelines
HPhp,t,w Mass flow rate of heat pipelines
Th,t,w Hot water temperature in the pipelines
δh,t,w Bus angle of power system
πm,t,w Gas system pressure

I. INTRODUCTION

A. Motivation

THE interdependency of various energy systems is
increasing due to a higher amount of gas-fired

power plants, combined heat and power (CHP) units,
gas/electric district heating networks (DHNs), different types
of energy storage technologies, and integrated demand
response programs (IDRPs) [1]–[3]. According to the 2014
Annual Energy Outlook [4], gas utilization for electricity
production will increase to 35% of the total electricity supply
in the U.S. by 2040, which leads to higher interdependency
between power and gas systems in the future. DHNs were
designed in the second half of 19th century to satisfy heat
demand in an area with higher efficiency and less pollution
[5]. In a DHN, heat is produced at a central station and
transferred to heat consumers as hot water or steam through a
network of underground pipelines. Heat is mainly produced by
gas-fired CHP units [6]. Gas-fired-based CHP units generate
electricity at the same time as heat, which is a highly
efficient model of electricity production and decreases the
requirement for large power plants [7]. The larger adoption of
such technologies increases interdependency between energy
systems such as power, gas, and district heating networks.
This way, the concept of integrated energy systems (IESs) was
born to take advantage of applying alternative energy resources
and interconnected systems to provide high-quality service to
consumers. It is expected that an IES reduces the overall cost
of operation for the end-users while expedites the adoption
of renewable energy sources (RES) without jeopardizing the
security and integrity of the power grid. It is not, however,

possible without a realistic and optimal mechanism for an IES
operation.

B. Literature review

Some of the literature focused on solving the unit
commitment (UC) problem in power systems without
considering the interdependence between various energy
carriers. In [8], a novel method was proposed to calculate
startup cost in the UC problem. The authors of [9] introduced
a new stochastic approach to solve the UC problem, where
the Lambda-iteration technique is used to obtain the optimal
dispatch of units. A risk-based scheme for maintenance
scheduling and UC is investigated in [10] to reduce the total
operation cost, including the risk cost, production cost and
maintenance cost. The authors of [11] solved a flexible UC
based on the Modified Harmony Search Algorithm, where
the effect of plug-in electric vehicles on the daily operation
has been evaluated. A stochastic network-constrained UC
(NUC) problem is proposed in [12] to evaluate the impact
of hydrogen-based energy storage systems and DRPs on the
total operation cost.

Several studies examined the operation of IESs from
different perspectives in recent years. A robust framework for
the NUC in the integrated power and gas systems is introduced
in [13], where the possibility of transmission line outages
on the integrated system performance has been studied.
The authors proposed a risk-based stochastic approach for
co-optimization of power and gas systems in [14] considering
power-to-gas (P2G) storage and DR programs, where the
main objective was to minimize the operation cost of the
energy in the IES. In [15], the authors linearized the gas
network constraints for the day-ahead scheduling of a gas and
power integrated system, where the uncertainties associated
with load demand and DR resources have been assessed.
An approximate linearization approach is introduced for
non-linear technical constraints of a gas network in [16]
to optimally schedule an IES. A computationally tractable
market-based coordination of power and gas systems is
presented in [17], where the market prices are identified
iteratively while the exchange of proprietary information,
such as power and gas transmission line data, is avoided. A
two-stage stochastic and robust scheme is studied in [18] and
[19] for coordinated operation of power and gas networks
in the presence of electricity and gas demand uncertainties,
respectively.

Moreover, several algorithms for optimal operation of
integrated power and heat systems have been introduced
in the literature. A NUC formulation for integrated power
and heat systems is developed in [20] considering CHP
technology and DHN, where the variability of wind power
generation is managed by a heat storage system. The authors
studied the flexibility of heat and electricity demands in [21]
considering an aggregator, where a two-level problem was
designed for maximizing social welfare through independent
system operator (ISO) as well as minimizing the cost of
energy purchased by aggregators. In [22], the authors have
proposed a joint hourly UC formulation in an integrated power



3

system and DHN by characterizing thermal storage, the inertia
of pipelines, and heat demand. “decomposition–coordination
framework” for large-scale non-linear power and heat systems
is proposed in [7], where the impact of the proposed model
has been investigated on the flexibility and operation cost of
the system.

The integrated power, gas, and DHN operation has been
scarcely investigated in the literature. In [23]–[26], the authors
proposed energy management frameworks for multi-carrier
energy systems based on the energy flow model, where
the constraints of power, gas and DHNs are modeled. In
[23], the impact of DHN on optimization of multi-carrier
energy networks were analyzed by applying an evolutionary
optimization approach. In [24], a market trading model for
an integrated gas, DHN, and power network is proposed
based on the energy flow of each network as well as
their interconnection, where market equilibrium is attained
by implementing a mixed-integer linear programming. In
another effort, the authors have presented an integrated
optimization model for energy flow in power, gas, and DHNs
simultaneously in [25] considering various links among the
carriers, such as boilers and CHPs. In [26], an energy flow
model for an integrated power, gas and heat system has been
introduced in the presence of uncertainties related to solar
power output, heat and power demand.

C. Contributions

It can be seen from the literature review that the operation
of an IES with multi-energy storage and IDRPs have not been
investigated properly. Moreover, only the energy flow problem
has been investigated in an IES of power, gas, and DHN. The
major gaps in the existing literature are listed below:

1) In some of the literature, e.g., [8]–[12], interdependency
between power network with other energy networks has
been ignored in the UC problem.

2) In [4], [13], [15]–[19], [27], interdependency between
power and DHN as well as gas and DHN has not been
formulated in the UC problem.

3) The effect of gas network pressure limits on the power
and heat dispatch of CHP plants has not been investigated
in the UC problem in [6], [7], [20]–[22], [27].

4) In a few studies, e.g., [23]–[26], an energy flow model is
preferred to the UC problem, which is not sufficient for
the operation of a practical IES.

5) Flexible technologies such as multi-carrier energy storage
systems and IDRPs have not been formulated in the UC
problem in [4], [7], [13], [15]–[27].

This paper presents a UC formulation constrained by power,
gas, and heat networks, which is called multi-carrier NUC
(MNUC), to investigate the mutual impact of the three energy
carriers in an IES. In particular, the effect of gas pressure
drop in the gas network is modelled accurately, which may
happen in winter due to the increase in natural gas demand.
Additionally, heat losses of the DHN are formulated to
evaluate its impact on the IES performance.. This way, the
proposed MNUC model allows the simultaneous application
of several emerging technologies (e.g., IDRPs) in day-ahead

scheduling under optimal conditions of the integrated power,
gas, and heat systems. Moreover, a combined robust/stochastic
approach is developed to adequately represent uncertain
parameters of the IES. In this approach, the uncertainties
associated with electric, thermal and gas load demands are
modeled using Monte Carlo simulation, while the uncertainty
of wind power production is handled by using a robust
framework based on information gap decision theory (IGDT).
This way, there is no need for probability distribution functions
of the underlying uncertainties. The main contributions of this
paper are summarized below:

1) Integrating the gas pressure constraint and heat losses in
the proposed UC formulation (despite energy flow models
in [23]–[26]) for the day-ahead scheduling of the IES.

2) Introducing a combined robust/stochastic optimization
framework for the proposed MNUC problem to manage
uncertainties in an effective and tractable manner. The
proposed approach enables the system operator to use
both the benefits of a scenario-based modeling method
as well as a robust optimization technique to manage
uncertainties of the system simultaneously.

3) Integration of multi-energy storage systems (i.e.,
electricity, gas and heat) as well as the application
of electricity, gas, and heat-based DR programs in the
MNUC to assess its impact on the energy efficiency,
optimal utilization, minimization of the overall operation
cost, and better management of resources in an uncertain
environment.

The remainder of this paper is organized as follows.
Formulation of the proposed robust MNUC problem are
developed and described in Section II. Section III introduces
the case study, simulation results, and discussion. Finally,
Section IV concludes this paper.

II. PROBLEM DESCRIPTION AND FORMULATION

Multi-carrier energy storage technologies and IDRPs
can play a vital role in increasing the connection
between electricity, gas, and district heating networks. This
interconnection can lead to the interoperability of the IES that
facilitates a higher uptake of intermittent RES with minimum
cost. IDRPs consist of flexible electrical, gas and heat DR
resources. Electrical DR programs affect electricity market
prices, load demand profile, intermittent RES curtailment, and
operating cost of the power system. Electrical DR programs
are typically integrated in the wholesale electricity markets
through aggregators by reducing and/or shifting load demand
at certain times. The offers from aggregators will be added to
the NUC problem to determine the optimal dispatch of plants
and flexible loads [28]. When there is a link between gas/heat
networks with an electricity grid, it allows the implementation
of DR programs for gas systems and DHNs that can benefit
electricity grid operation. More specifically, it is helpful
by improving the flexibility of consumers in decreasing or
increasing gas and heat consumption at particular times. In
the gas system, the process of DR aggregator is similar to
that of the power network when the end-users consume gas
directly [3].
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Similar to electricity load aggregators, a gas aggregator
deals with gas consumers to alter their consumption by
shifting or curtailment. Accordingly, the aggregator offers the
flexibility of the gas consumers and intended prices to the
gas system operator (GSO). Finally, GSO determines hourly
dispatch considering flexible gas loads. Unlike electricity and
gas operators, the DHN operator (DHNO) is a buyer of gas
and electricity and a seller of heat to end-users in the form of
steam or hot water [29]. Accordingly, the DHN aggregator
can be defined as an independent entity that can manage
the end-users’ heat demand. This way, the DHN aggregator
provides flexibility for the DHN operator in line with the
flexibility of steam or hot water consumers [29].

In the proposed IES model, the ESO, GSO and DHNO
are managed under a single entity, which is called the
integrated energy system operator (IESO). In this arrangement,
multi-carrier energy suppliers, demand, aggregators, and
storage units provide their hourly bids to the IESO so that it
solves an integrated MNUC problem to determine the hourly
schedules of all units and participants from gas, electricity and
heat systems.

A. MNUC model

Traditionally, the NUC model is applied to achieve the
minimum daily operation cost with respect to the constraints
of the power system, ignoring the network constraints of
other energy carriers. Recently, modified NUC problems
are reported in the literature for the optimal scheduling of
coupled power and heating systems, or power and gas systems.
However, the interconnection between the three systems has
not been considered. In addition, the pressure shortage of the
gas network and increase of heat loss in the DHN are not
considered simultaneously in these studies. This can affect
energy system operation significantly due to an increase in
heat and gas demand during winter. The extra heat losses
should be compensated by increasing heat generated in the
CHP units,which inevitably leads to higher gas consumption
and thus higher operation cost. To address these challenges,
this paper offers an MNUC formulation considering the
constraints of power, gas and heating networks within the same
framework. The main purpose of the proposed MNUC is to
achieve the minimum operation cost of IES by simultaneously
satisfying constraints associated with the power, gas, and
heating network. The dependency between different energy
carriers in the MNUC problem is shown in Fig. 1

B. Stochastic Optimization Model

1) Objective function: The main objective of the proposed
MNUC framework for the IESO is to minimize the operation
cost of the integrated power, gas, and heat systems in the
presence of multi-carrier smart technologies while respecting
the technical constraints of the entire system, which is given
in (1). The first term in (1) represents the operation cost of
the non-gas-fueled power plants. The second term describes
the operation cost of electrical energy storage units. The
operation cost of the gas suppliers and natural gas storage
units are modelled in the third term in (1). The last term
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Fig. 1. The dependency between different energy carriers in the MNUC
problem

of the objective function accounts for the cost of electric
demand response (EDR), gas demand response (GDR), and
heat demand response (HDR), respectively.

min

NW∑
w=1

pw

NT∑
t=1



EU∑
i=1

[F (Pi,t,w) + SUi,t + SDi,t]

+
NSE∑
e=1

[
P+
e,t,wC

+
e + P−e,t,wC

−
e

]
+

{
NGW∑
gw=1

CWell
gw GWgw,t,w +

NGS∑
gs=1

C−gsG
−
gs,t,w

}

+


NJ∑
j=1

CEj
∣∣∆Ej,t,w∣∣+NGL∑

g=1
CGg

∣∣∆Gg,t,w∣∣
+
NHL∑
hl=1

CHhl

∣∣∣∆Hhl,t,w

∣∣∣



(1)

2) UC problem constraints: All of the constraints related
to the UC problem include the minimum and maximum
generation of the power plants (2), the ramp rates of the power
plants in continuous time intervals (3) and (4), the minimum
up/down times of the units (5) and (6), start-up and shut-down
of the power plants (7), (8) and feasible operating regions of
the CHP units (13)- (17), as shown in Fig. 2. EU , CU and
GU represent sets of non-gas fired units, gas-fired CHP units
and non-CHP units, respectively [30].

Pmin
i Ii, t ≤ Pi, t,w ≤ Pmax

i Ii, t (2)

Pi,t,w − Pi,t−1,w ≤ [1− Ii,t(1− Ii,t−1)]Rupi
+Ii,t(1− Ii,t−1)Pmin

i

(3)

Pi,t−1,w − Pi,t,w ≤ [1− Ii,t−1(1− Ii,t)]Rdni
+Ii,t−1(1− Ii,t)Pmin

i

(4)

(Xon
i,t−1 − T oni ) (Ii, t−1 − Ii,t) ≥ 0 (5)

(Xoff
i,t−1 − T

off
i ) (Ii,t − Ii,t−1) ≥ 0 (6)

SUi,t ≥ sui (Ii,t − Ii,t−1) i ∈ EU (7)
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Fig. 2. Feasible operating region of the CHP units

SDi,t ≥ sdi (Ii,t−1 − Ii,t) i ∈ EU (8)

SUGi,t ≥ sugi (Ii,t − Ii,t−1) i ∈ CU ∪GU (9)

SDGi,t ≥ sdgi (Ii,t−1 − Ii,t) i ∈ CU ∪GU (10)

SUGi,t ≥ sugi (Ii,t − Ii,t−1) i ∈ GU (11)

SDGi,t ≥ sdgi (Ii,t−1 − Ii,t) i ∈ GU (12)

Pi,t,w−PAi −
PAi − PBi
HA
i −HB

i

×(Hi,t,w−HA
i ) ≤ 0 i ∈ CU (13)

Pi,t,w−PAi −
PAi − PBi
HA
i −HB

i

×(Hi,t,w−HA
i ) ≤ 0 i ∈ CU (14)

Pi,t,w−PBi −
PBi − PCi
HB
i −HC

i

×(Hi,t,w−HB
i ) ≥ −(1−Ii,t)×M i ∈ CU

(15)

Pi,t,w−PCi −
PCi − PDi
HC
i −HD

i

×(Hi,t,w−HC
i ) ≥ −(1−Ii,t)×M i ∈ CU

(16)

0 ≤ Hi, t,w ≤ HA
i × Ii, t i ∈ CU (17)

3) Multi-carrier energy storage systems: In this study, the
electricity, gas, and heat storage technologies are considered
in the problem formulation. The constraints of the storage
systems are defined by (18)-(23). Equation (18) ensured only
one of the charging and discharging operation at a given time.
Power limits are enforced by (19)-(20) during charging and
discharging modes. State of charge is computed in (21) for
each hour, and capacity limits of the storage units are enforced
by (22). Finally, energy neutrality of the storage units over the
entire scheduling period is guaranteed by (23) [31].

I+
xs,t,w + I−xs,t,w ≤ 1 (18)

X+ min
xs I+

xs,t,w ≤ X+
xs,t,w ≤ X+ max

xs I+
xs,t,w (19)

X−min
xs I−xs,t,w ≤ X−xs,t,w ≤ X−max

xs I−xs,t,w (20)

XSxs,t,w = (1−ηxs)XSxs,t−1,w+η+
xsX

+
xs,t,w−

X−xs,t,w

η−xs
(21)

XSmin
xs ≤ XSxs,t,w ≤ XSmax

xs (22)

XSxs,0 = XSxs,24,w (23)
where X ∈ {E,G,H} and xs ∈ {es, gs, hs} represent
electricity, gas, and heat storage technologies, respectively

4) IDRPs: In this work, a generic IDRP model is developed
for electricity, gas, and heat aggregators, where aggregators
can offer their flexibility bids to the IESO market. This way,
the IESO solves a single MNUC problem by considering the
conditions of the three energy carriers simultaneously. As a
result, the IESO coordinates shiftable power, gas, and heat load
demands. Equation (24) represents the maximum adjustable
load at each time interval for power, heat and gas load
demands. A conservative DR concept is adopted in (25) for
the three energy carriers by modelling load’s rebound effect.
Equation (26) represents electricity, gas and heat load demand
after IDRPs implementation. Finally, (27) and (28) model the
loads ramp rate in continuous times, where X ∈ {E,G,H}
and z ∈ {j, hl, g} (23) [31].∣∣∆Xz,t,s

∣∣ ≤ αx ×XLz,t,s (24)

∆Xz,t,s = 0 (25)

XLdrz,t,s =
∣∣∆Xz,t,s

∣∣+XLz,t,s (26)

XLdrz,t,s −XLdrz,t−1,s ≤ ∆Dup
z (27)

XLdrz,t−1,s −XLdrz,t,s ≤ ∆Ddn
z (28)

5) Multi-carrier network constraints: The constraints
associated with the power system model are expressed in
(29)-(31) including power balance at each time interval
and scenario, and the technical constraints of the power
transmission lines. Equations (32)-(41) represent the
constraints of the DHN [7]. In steady state, the mass flow
equation at each time interval and node is expressed by (32).
The conversion of generated heat, heat demand, and heat
storage charging/discharging to mass flow rates are expressed
in (33)-(36), respectively. The energy carrier in the DHN can
be steam or liquid water. Without loss of generality, however,
we only considered liquid water in this study. Temperature
drops in the heat pipelines are indicated in (37), which
depends on the flow rate of the pipeline, (HPhp,t,s), the
length of the pipeline, Lehp, and the heat loss coefficient
of the pipeline, khp, as given in (38). The pipeline heat
losses coefficient is also determined by (39). The relevant
constraints of the temperature and capacity of the pipeline are
also expressed in (40)-(41). Equations (42)-(47) demonstrate
the gas flow through the pipelines with/without compressor,
the gas pressure limits at each node, the limits of natural gas
supply and the gas balance at each time interval and node
[4]. Typically, CHP and gas-fired units are big consumers of
natural gas, where their consumption is modelled in (48) and
(49) in connection with the gas system [7], [32].

NUb∑
i=1

Pi,t,w +
NESb∑
e=1

(
P−e,t,w − P+

e,t,w

)
+
NWFb∑
wf=1

Pwf,t

−
NJb∑
j=1

ELdrj,t,w =
NLb∑
l=1

PFL,t,w

(29)
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PFL,t,w = (θb,t,w − θb′,t,w)/XL (30)

|PFL,t,w| ≤ PFmax
L (31)

NCh∑
i=1

QGi,t,w +
NHLh∑
hl=1

QLdrhl,t,w

+
NHS∑
hs=1

(QS−hs, t,w −QS
+
hs, t,w ) =

NHPh∑
hp=1

HPhp, t,w

(32)

QGi,t,w = 3600 Hi, t, w/(Th, t, w−T backh,t, w) c i ∈ CU (33)

QS−hs, t,s = 3600 H−hs,t,s/(Th,t,s − T
back
h,t ) c (34)

QS+
hs, t,w = 3600 H+

hs,t,w/(Th, t,w − T
back
h,t ) c (35)

QLdrhl,t,w = 3600 HLdrhl,t,w/(Th,t,w − T backh,t ) c (36)

∆ThP,t,w = Ehp,t, wHPhp,t,w (37)

1000 c(HPhp,t,w)2 ×Ehp,t, w−3.6khp(1+β)Lehp = 0 (38)

khp = Thp − T0/R1 +R2 (39)

Tmin
h ≤ Th, t,w ≤ Tmax

h (40)

HPmin
hp ≤ HPhp, t,w ≤ HPmax

hp (41)

Fpl,t,w = sgn(πm,t,w, πn,t,w) Cm,n

√∣∣π2
m,t,w − π2

n,t,w

∣∣ (42)

sgn(πm,t,w, πn,t,w) =

{
1 πm,t,s ≥ πn,t,w
−1 πm,t,s < πn,t,w

(43)

Fpl,t,w ≥ sgn(πm,t,w, πn,t,w) Cm,n

√∣∣π2
m,t,w − π2

n,t,w

∣∣ (44)

πmin
m ≤ πm,t,w ≤ πmax

m (45)

GWmin
gw ≤ GWgw,t,w ≤ GWmax

gw (46)

NGWm∑
gw=1

GWgw,t,w +

NGSm∑
g=1

(
G−gs,t,w −G+

gs,t,w

)
−
NGm∑
g=1

GLdrg,t,w =

NPLm∑
pl=1

Fpl,t,w

(47)

GLg,t,s = ci + biPi,t,s + ai(Pi,t,s)
2 + diHi,t,s + ei(Hi,t,s)

2

+fiHi,t,sPi,t,s+SUGi,t + SDGi,t ∀g = i, ..., CU

(48)

GLg,t,s = ci+ biPi,t,s+ai(Pi,t,s)
2 ∀g = i, ..., GU (49)

C. Hybrid robust/stochastic framework

In this paper, a combined robust/stochastic optimization
framework is used to manage the uncertainty of the integrated
power, gas, and heat systems. Monte Carlo simulation is used
to model the uncertainties associated with electric, heat, and
gas load demands, and an IGDT-based robust approach is
applied to model wind power uncertainty. The IGDT-based

robust approach has several advantages over scenario-based
modeling and well-known robust optimization methods [33]:

1) The IGDT approach does not need a probability
distribution function to model the uncertain parameter,
which is a less computationally-expensive option
compared to the stochastic model.

2) Unlike well-known robust optimization methods, where
the maximum prediction error of an uncertain parameter
is considered as the input to the problem, it is treated as
the output of the optimization problem. As a result, the
IESO can manage a certain level of prediction error of
an uncertain parameter by changing its operation cost to
an acceptable level.

The mathematical representation of the uncertainty is given
in (50), where ν̄ is the forecasted value of the uncertain
parameter v. Furthermore, ε shows the maximum permissible
deviation of an unknown parameter from its predicted value.

u = u(ν̄, ε) =

{
ν :

∣∣∣∣ν − ν̄ν̄
∣∣∣∣ ≤ ε} (50)

Equation (52) represents the mathematical model of the
IGDT-based approach, where ofb and ∆C are defined as
the initial and guaranteed amounts of the objective function,
respectively. In addition, x is the problem decision variable.
βr is the robustness degree versus an increase of the objective
function with regard to the basic status value [34].

α(x,∆C) = max

{
ε :

(
max

ν∈U(ν̄,ε)
of ≤ ∆C = (1 + βr)ofb

)}
(51)

In the risk-averse model, the unknown parameter creates
an undesirable impact on the value of objective function. So,
the IESO faces a higher operation cost with respect to the
undesirable deviation of the uncertain parameter, which is
defined as a two-level model by (52)-(54) [33].

α = max ε (52)

max

NW∑
w=1

pw

NT∑
t=1



EU∑
i=1

[F (Pi,t,w) + SUi,t + SDi,t]

+
NSE∑
e=1

[
P+
e,t,wC

+
e + P−e,t,wC

−
e

]
+
NGW∑
gw=1

CWell
gw GWgw,t,w

+
NGS∑
gs=1

C−gsG
−
gs,t,w

+



NJ∑
j=1

CEj
∣∣∆Ej,t,w∣∣

+
NGL∑
g=1

CGg
∣∣∆Gg,t,w∣∣

+
NHL∑
hl=1

CHhl

∣∣∣∆Hhl,t,w

∣∣∣





≤ ∆C

(53)

Eqs. (2)− (49) (54)
The forecast error of wind power generation in a robust

approach is modeled in a way that it would result in higher
operating costs. Since a decrease in the generated wind power
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will make the higher operating cost of the integrated system,
the two-level problem presented in (52)-(54) can be defined
as a one-level problem as follows:

α = max ε (55)

NW∑
w=1

pw

NT∑
t=1



EU∑
i=1

[F (Pi,t,w) + SUi,t + SDi,t]

+
NSE∑
e=1

[
P+
e,t,wC

+
e + P−e,t,wC

−
e

]
+
NGW∑
gw=1

CWell
gw GWgw,t,w

+
NGS∑
gs=1

C−gsG
−
gs,t,w

+



NJ∑
j=1

CEj
∣∣∆Ej,t,w∣∣

+
NGL∑
g=1

CGg
∣∣∆Gg,t,w∣∣

+
NHL∑
hl=1

CHhl

∣∣∣∆Hhl,t,w

∣∣∣





≤ ∆C

(56)

∆C = (1 + βr)ofb (57)

NUb∑
i=1

Pi,t,w +
NESb∑
e=1

(
P−e,t,w − P+

e,t,w

)
+
NWFb∑
wf=1

(1− ε)Pwf,t

−
NJb∑
j=1

ELdrj,t,w =
NLb∑
l=1

PFL,t,w

(58)

Eqs. (2)− (28) and Eqs. (30)− (49) (59)
The proposed hybrid problem-solving process is presented

in Fig. 3

III. IMPLEMENTATION AND SIMULATION RESULTS

In order to evaluate the effectiveness of the proposed
model, a multi-carrier IES, as shown in Fig. 4, consisting
of a 30-node heating network, 6-bus electrical grid, and a
6-node natural gas network is considered. Characteristics of
the power, gas, and heating systems are given in [7], [15].
The predicted wind power production and energy demands
is demonstrated in Fig. ?? [28]. The proposed MNUC
model is a mixed-integer nonlinear problem (MINLP) that
is solved by applying Discrete and Continuous Optimizer
(DICOPT) solver in GAMS which is a high-level modeling
language being employed for mathematical programming as
well as non-convex optimization. Hence, the DICOPT optimal
solutions can be globally optimal with a fair degree of
confidence so that has been employed in some literature such
as [1], [14], [35]. The main problem is separated into two
sub-problems in DICOPT. The NLP sub-problem is solved
using CONOPT solver and the MIP sub-problem is taken care
of by CPLEX solver.

Four simulation cases are considered to evaluate the
performance of the proposed MNUC formulation.

Scenario reduction using SCENRED tool in GAMS software

Recording original total expected operation cost

Applying IGDT-based robust strategy: Eqs. (57)-(61)

Updating robustness parameter βr

Calculating optimal robustness function (α )

βr= βr-1

Start

End

Yes

Generating scenario for multi-carrier demands using probability density function

Solving stochastic MNUC problem: Eqs. (1)-(49)  

No

Fig. 3. The proposed hybrid problem-solving process

Case study 1: In this case, the impact of the technical
constraints of the natural gas system and DHN is analyzed
on the UC problem, while uncertainties of the integrated
system and intelligent multi-carrier technologies are ignored.
Fig. 6 shows the hourly dispatch of generation units in this
case study. It can be observed from Fig. 6(a) that when the
natural gas and DHN constraints are not considered, the CHP
plant is dispatched at all intervals to satisfy electricity and
heat demands. G1 with a maximum capacity of 20 MW is
scheduled between t = 13 and t = 21. G2, as the most
expensive power plant in the system, is dispatched between
t = 14 and t = 18 to partially fulfill load demand during
on-peak hours. Under these conditions, the total operation
cost of the IES is $267, 323.30. Considering the limitations
of the natural gas system, the hourly participation of G1 and
G2 increased, as shown in Fig. 6(b), due to the limitations
of the fuel supplied to the CHP plant as a result of gas
pressure drop at node 1 in the natural gas network. In Fig. 7,
it can be seen that power generated by the CHP plant has
decreased during elevated gas demand, which indicates the
dependence of the system’s planning on the constraints of
the natural gas system. Consequently, the total operation cost
increased to $275, 422.33. The impact of heat losses on the
temperature drop in the DHN pipelines and the increase in
the heat generated by the CHP power plant are shown in
Figs. 8 and 9. The temperature drop in the pipelines, hence
an increase in heat consumption, exacerbated the amount of
fuel consumption, which resulted in a reduction of the CHP
plant output power. Therefore, as shown in Fig. 6(c), the lower
generation of the CHP plant increased the hourly participation
of G1 and G2, which further resulted in raising the overall
operation cost of the IES to $277, 971.88.
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Fig. 4. The integrated electricity, gas and heating network under study
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Fig. 5. The forecasted wind power and multi-energy demands
Total operation cost= $267,323.30 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

CHP                         

G1                         

G2                         

(a) Without the gas pressure limits and heat losses of heat network 

Total operation cost= $275,422.33 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

CHP                         

G1                         

G2                         

(b) With the pressure limits of gas network 

Total operation cost= $277,971.88 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

CHP                         

G1                         

G2                         

(c) With the gas pressure limits and heat losses of heat network 

Fig. 6. The power plants schedules with gas and DHN constraints (Case 1)
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Fig. 7. The impact of gas pressure on the heat and power production of the
CHP unit (Case 1)

Case study 2: In this case, IES operation is assessed
in the presence of multi-carrier energy storage systems, the
results of which are shown in Fig. 10. It can be seen that
the hourly participation of expensive power plants is reduced
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Fig. 8. The effect of heat losses on the temperature (Case 1)
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Fig. 9. CHP unit heat generation under heat losses (Case 1)

when the power, gas, and heat storage systems are considered
simultaneously, which resulted into $27, 426.34 reduction in
the total operation cost of the IES. The energy stored in
multi-carrier energy storage systems is shown in Fig. 11 for
one day of operation. The gas and heat storage systems operate
as a backup option to lower the negative impact of natural gas
pressure limits on the power dispatch of the CHP plant. When
the heat storage system is in discharging mode during t = 8 to
t = 13, less heat energy is needed from the CHP plant, which
leads to a reduction in the heat production of the plant. As
a result, gas fuel is only needed for electricity generation by
the CHP unit, which curtails overall gas demand. Furthermore,
the gas storage system is charged during the time intervals in
which the IES does not suffer from gas pressure drops. The gas
storage unit injects natural gas to node 1 in the gas network
during the hours when the system experiences a pressure drop
(t = 14 to t = 20), thus more gas will be available for the
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Total operation cost= $276,678.73 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

CHP                         
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(a) With heat energy storage 

Total operation cost= $275,401.99 
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(b) With heat and gas storage 

Total operation cost= $274,276.43 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

CHP                         

G1                         

G2                         

(c) With heat, gas and electrical storage 

 Fig. 10. The impact of multi-carrier storage systems on hourly participation
of plants (Case 2)

CHP plant during those hours. Also, the power storage system
reduces the hourly participation of expensive power plants by
storing electricity during off-peak hours (t = 1 to t = 12) and
delivering power to the grid during on-peak hours (t = 13 to
t = 15).
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Fig. 11. State of charge of the storage units (Case 2)
Case study 3: This case evaluates the application of IDRPs

within the IES considering multi-carrier energy storage units.
The amount and cost of shiftable electric, heat, and gas load
demands are assumed to be 6% at $5/MWh, 6% at $5/MWh,
and 3% at $0.9/kcf, respectively, at a given forecast of each
time interval. Figs. 12 and 13 depict the profiles of electricity,
gas, and heat demand in Case 3. It can be seen that a part of
power, heat and gas load demand has shifted from on-peak to
off-peak hours. The shift in heat and gas demand increased
the power dispatch of the CHP plant. This increase is due
to two reasons: 1) The heat generated by the CHP plant
decreased; therefore, the fuel supplied to the CHP plant is
only used for electricity generation which increased overall
CHP electricity production, 2) the amount of gas delivered to
the CHP plant increased due to the lower natural gas pipeline
congestion. When the power production of the CHP plant is
reduced due to the congestion of natural gas pipelines, shifting
load to off-peak intervals is effective in lowering the hourly
participation of expensive power plants. In fact, during these
intervals (t = 13 to t = 20), the shiftable power demand is
used as a flexibility source to reduce the dependency of the
power system to the natural gas system constraints. As it can
be observed from Fig. 14(c), the total operation cost dropped to
$270, 970.03 by considering integrated DR programs. Table I
also shows the effect of smart energy technologies on the total
operation cost for cases 1 to 3. It can be seen that the total
operation cost has been reduced by %2.58 and %1.22 in case
3 compared to cases 1 and 2, respectively.
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Fig. 12. The effect of DR on the profile of electricity and heat loads (Case
3)
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Fig. 13. The effect of DR on gas demand profile (Case 3)

Case study 4: In this case, uncertainties associated with
the parameters of the IES are considered in the simulation
study. It is assumed that power, heat, and gas load demand
follow a normal distribution with 5% standard deviation.
1000 scenarios have been generated using Monte Carlo
simulation, which has been reduced to 5 scenarios using
the scenario reduction method in GAMS package. The
effect of multi-energy demand uncertainties on the predicted
operation cost of IES is reported in Table II. As it is
anticipated, the expected operation cost has increased under
uncertainty modeling compared to the deterministic model due
to increased participation of expensive power plants. However,
the expected operation cost has dropped from $280, 685.66
to $274, 573.41 by considering smart energy technologies.
In order to model wind power uncertainty, a IGDT-based
robust approach has been implemented. The base operation
cost of the IES is $274, 573.41, which is equal to the expected
operation cost of the system considering the uncertainties of
multi-carrier energy demand .

Total operation cost= $272,350.50 
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(a) With electrical based DR program 

Total operation cost= $271,273.74 
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(b) With electrical and gas based DR programs 

Total operation cost= $270,970.03 
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(c) With integrated DR programs 

 Fig. 14. The effect of integrated DR on hourly scheduling of units (Case 3)

TABLE I
EVALUATING THE EFFECT OF SMART ENERGY TECHNOLOGIES ON THE

TOTAL OPERATION COST
Simulation cases Modeling multi-energy network constraints Multi-carrier energy storage systems IDR program Total operation cost ($)

Case study 1 X × × 277,971.88
Case study 2 X X × 274,276.43
Case study 3 X X X 270,970.03
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In the IGDT-based robust approach, the operator can
increase the conservatism level of the operation against the
wind power uncertainty by increasing the robustness parameter
β. To this end, a sensitivity analysis is applied in order
to evaluate the effect of the robustness parameter β on the
optimal robustness function α and the total operation cost. To
do so, the proposed MNUC problem is solved by changing the
robustness parameter β, from 0.005 to 0.03 with increment of
0.005, the results of which are shown in Fig. 15. It can be
seen that the critical operation cost and the optimal function
α increases for higher β values, which means that the operator
can cover a wider range of wind power prediction errors at a
higher operation cost. When β = 0.01, the critical operation
cost and the optimal function α are $27, 699.88 and 0.142,
respectively. It means that the IESO can manage 14% of the
wind power forecast error by increasing 1% of the operation
cost (i.e., the desirable operation cost of the operator). This
way, the IESO can handle wind power production uncertainty
under a desirable operation cost, which can be associated
with various factors such as social welfare, environmental,
economical, and technical conditions of the network. In Fig. 16
the impact of uncertainty of wind power production on the
hourly participation of the plants is investigated under the
resistance parameter β of 0.01 and 0.02. It can be seen that the
hourly participation of expensive power plants has increased
when β = 0.02. In fact, by increasing β, the uncertainty of
wind power generation increases, which leads to an increase
in the participation of more expensive units. However, the
system operator will be able to manage 31% of the wind power
prediction error by applying a more robust operation strategy.

TABLE II
THE IMPACT OF UNCERTAINTIES ON THE TOTAL OPERATION COST IN

CASE 4
Without smart energy technologies With smart energy technologies
Deterministic Stochastic Deterministic Stochastic

Total operation cost ($) 277,971.88 280,385.66 270,970.03 274,573.41
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Fig. 15. α and the operation cost versus changes in β in Case 4

α=0.142 
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 Fig. 16. The effect of β on hourly dispatch of the units (Case 4)

IV. CONCLUSION

This paper developed a flexible unit commitment (UC)
formulation for an integrated electricity, gas, and district
heating system. For managing the uncertainties of power,
gas and heat load demands as well as wind power, a
combination of stochastic and robust optimization methods
are used. Additionally, multi-carrier energy storage systems
and integrated DR programs were added to the MNUC
formulation, and the impact of these technologies are
investigated on hourly scheduling of the units and operation
cost of the entire system. The proposed model enabled energy
system operators to use the advantages of both stochastic
and robust techniques simultaneously to mitigate the risks.
Besides, the proposed model confirms the effectiveness of the
smart energy technologies in reducing the daily operation cost
under a realistic energy system model that involves practical
constraints of multi-energy networks. The The simulation
results show that gas pressure constraints of the natural
gas system and heat losses of the DHN reduced the power
produced by the CHP plant, which resulted in an increase
in the overall cost of IES by %3. In contrast, applying
smart energy technologies such as multi-carrier energy storage
systems and integrated DR programs could decrease the total
operation cost by %2.58.

The work of this paper can be extended by focusing on
the optimal scheduling of energy systems consisting of power,
gas, hydrogen, cooling, and heating. In addition, the effect of
other smart energy technologies such as power-to-gas storage,
ice storage, and electric vehicle parking lots will be studied
on the energy system’s performance in future works.
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