Patterns

Quantifying the predictability of renewable energy
data for improving power systems decision-making

Graphical abstract

i

€
g

External factors
e.g., Causer Pays cost

Quantifying the
predictability of data

Decision making
in power systems
[

Policy design Solar farm investment
-0.302 ; X i *®

0.12 0.18 0.24 0.30
Predictability of PV output

Predictability of rooftop P

10% revenue loss due

Smarter policies using
the predictability

to low predictability

Highlights
e Effective method found to quantify the predictability of
renewable generation data

e Some applications of predictability in the power systems
domain discussed

e Low generation predictability can reduce up to 10% of solar
farms’ revenue

e Considering predictability in policy design imperative for a
reliable power system

Karimi-Arpanahi et al., 2023, Patterns 4, 100708
April 14, 2023 © 2023 The Author(s).
https://doi.org/10.1016/j.patter.2023.100708

Authors

Sahand Karimi-Arpanabhi,
S. Ali Pourmousavi, Nariman Mahdavi

Correspondence

sahand.karimi-arpanahi@
adelaide.edu.au

In brief

The net-zero energy transition requires
more renewable energy in the electricity
generation mix. However, these sources
have unpredictable generation that poses
challenges for the power grid and lowers
profits for investors. Currently there is no
reliable method for quantifying renewable
energy predictability. This paper presents
a predictability measure and
demonstrates its significance for the
energy industry. Our findings indicate that
considering predictability in decision-
making leads to better policies, higher
profits for investors, and lower electricity
costs for customers.
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waste of clean energy, and lower electricity costs.
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THE BIGGER PICTURE As energy generation from solar and wind sources is subject to weather variability,
short- and long-term decisions in the electricity sector are heavily influenced by their generation forecasts.
Consequently, millions of dollars of public and private funds have been spent on developing accurate fore-
casting tools. In this article we argue that, while these tools are essential, there is a complementary aspect
to this problem, namely the inherently limited predictability of renewable energy data. Researchers and
practitioners in the energy sector have often overlooked this aspect. Here, we present a reliable method
for quantifying the data predictability of renewable energy sources and illustrate its applications through
real-world examples, from private investment decisions to public policies. Our findings indicate that consid-
ering predictability in power system decisions can save millions of dollars in operation costs, prevent the

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems

SUMMARY

Decision-making in the power systems domain often relies on predictions of renewable generation. While
sophisticated forecasting methods have been developed to improve the accuracy of such predictions, their
accuracy is limited by the inherent predictability of the data used. However, the predictability of time series
data cannot be measured by existing prediction techniques. This important measure has been overlooked by
researchers and practitioners in the power systems domain. In this paper, we systematically assess the
suitability of various predictability measures for renewable generation time series data, revealing the best
method and providing instructions for tuning it. Using real-world examples, we then illustrate how predict-

ability could save end users and investors millions of dollars in the electricity sector.

INTRODUCTION

In 2023, renewable electricity generation is expected to increase
by more than 9%, surpassing 9,300 TWh worldwide.' Two-thirds
of this growth comes from the increase in solar photovoltaic (PV)
and wind energy generation, demonstrating their crucial role in
reducing greenhouse gas (GHG) emissions.' A surge in the
new solar and wind farm installation is anticipated in the coming
years with the recent commitment of more than 40 countries to
phase out coal-fired power plants at the COP26 climate sum-
mit.? Despite the evident environmental and economic benefits
of PV and wind generation sources, their output is intermittent
and highly uncertain and, hence, undispatchable (the dispatch-

ability of an electricity generation source means that their output
power can be adjusted within the physical limits of the generator
based on the electricity grid requirements).® This, in turn, can
cause frequent mismatches between electricity supply and
demand in power grids, which affects the planning and design
of power systems, electricity market operation, and several other
aspects of power systems that depend on dispatchability and
accurate prediction of electricity generation.” As a result,
renewable generation prediction has become an integral part
of numerous decision-making processes related to power
systems.

These decisions, made by different stakeholders in electricity
systems, are usually split into short- and long-term decisions.
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Short-term decisions are typically operational in nature by
focusing on how to make the best use of resources in the short
term, e.g., day-ahead and real-time electricity markets, in which
power plants and transmission system operation will be sched-
uled. In contrast, long-term decisions, made when considering
future achievements, lead decision-makers to take actions
different from those they would usually do. GHG emission reduc-
tion through renewable energy policy design is a classic example
of a long-term decision typically made by governments. Other
examples of long-term decisions are (1) shaping the long-term
strategies of renewable energy in a jurisdiction based on solar
and wind atlases®® or (2) a private investor who decides among
multiple energy projects by looking at the potential yield of
the sites in several decades ahead.’ A short-term example is
the energy procurement by the power system operators in the
day-ahead or real-time electricity markets, where they use
day- or several-minutes-ahead predictions of renewable
generation for making least-cost, reliable decisions.'® Whether
short- or long-term decisions, some form of renewable genera-
tion prediction is involved in the decision-making process.
Thus, one can realize the sheer importance of renewable
generation prediction in the electricity industry.

In recent years, much work has been done on developing
short-term forecasting methods (prediction horizons of a few
minutes to a day) for wind and solar PV generation.”'”"® These
scientific efforts have been supported by generous grant money,
mostly from government funding agencies,'*'® hoping to
improve the forecasting accuracy of solar or wind generation.
In addition to academic efforts, numerous companies'®~'® are
commercially providing renewable generation forecast services
for electricity market participants and operators. Nonetheless,
all the existing forecasting methods in the literature use historical
data directly or indirectly for prediction, even those using numer-
ical weather forecast models. As a result, regardless of the type,
granularity, and prediction horizon of forecasting methods, their
accuracy is restricted by inherent predictability of the historical
data. Predictability in this context means “the ability to deter-
mine ahead of time the availability of a generation resource,””
such as wind and solar energy. Despite the importance of
inherent predictability in this context, most studies that explored
the uncertainty in renewable generation relied solely on fore-
casting methods to evaluate their impacts on electricity sys-
tems.""™"® There are a few studies on the predictability of wind
speed or power generation for some power systems applica-
tions, where prediction error metrics were used as a predictabil-
ity measure.'®" While lower forecast errors could imply higher
predictability in a given time series, they cannot be used as a sur-
rogate parameter for the predictability because of the following
issues.

1. Which forecasting method? Each prediction technique
uses a predefined model, e.g., linear or nonlinear, or deter-
ministic or stochastic, to learn the existing patterns in a
time series.?” Therefore, their predictions do not reflect
the inherent predictability of the time series.”>?* Even if
we could know the characteristics of the underlying
data, there would have been numerous prediction tech-
niques for each class of problems with potentially different
performance and accuracy, making it arduous to justify
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using a specific forecasting method. The other way is to
try all those methods which may be impossible or inef-
ficient.

2. What prediction horizon? The performance of forecasting
methods can vary significantly by the prediction horizon
and highly depends on seasonality and the time of
day.?>"*® Therefore, a particular prediction horizon should
be picked and justified, which is challenging.

3. Which prediction error metric? There are many prediction
error metrics (mainly categorized into scale-dependent,
percentage, and scaled errors) to evaluate the perfor-
mance of a forecasting method, each with specific limita-
tions.?” Choosing the proper prediction error metric
depends on the data and their quality, the loss function
of the forecasting method, goals, and applications. Thus,
another arduous task is to choose and justify an error
metric representing the predictability for a given time
series.

Therefore, using a proper predictability theory that does not
involve the above issues is necessary.

The concept of time series predictability has been investigated
in other disciplines, such as climatology,”® ecology,?® epidemi-
ology,*° financial markets,®' and communication systems,*? to
mention a few. In power system studies, however, predictability
measures have rarely been used despite their multifaceted appli-
cations.?®**** Consequently, quantifying the predictability of
renewable generation has been entirely overlooked in practical
decision-making processes and relevant research studies where
power systems are concerned.

This article investigates the suitability of various potential pre-
dictability measures used in other disciplines for the renewable
generation time series. After finding the best predictability mea-
sure, we tune its hyperparameters to suit our application. Then,
through studying different real-world examples, we demonstrate
that considering the predictability of renewable generation as a
deciding factor is essential for many long-term decisions in elec-
tric power systems. We argue that while renewable generation
forecasting methods are indeed necessary, incorporating the
inherent predictability of renewable generation in long-term
decision-making processes can help achieve better decisions.
In this regard, we demonstrate that solar farms’ expected profit
strongly correlates with their generation predictability. Then, by
revealing the strong dependency of predictability on the location
of solar farms, we establish that these decisions will be subopti-
mal unless predictability is considered in the investment deci-
sions of the renewable plants. Also, by presenting the findings
from our study on the rooftop PV systems across South Australia
(SA), Australia, we illustrate that ignoring the predictability in
renewable energy policymaking has led to more unpredictable
generation in the power grid, potentially resulting in higher
reserve market prices and green energy spillage. Lastly, by
showing the strong relationship between predictability and the
location of solar PV systems, we show how this feature can
help public service sectors to achieve better solutions for man-
aging a power system with high renewable energy integration.
These findings highlight the crucial role of quantifying renewable
generation predictability in making effective long-term decisions
related to power systems.
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Table 1. Summary of the assessed predictability measures

Predictability measure Introduced in

No. of hyperparameters

Applied in

Dispersion entropy (DE) 2016 (Rostaghi and Azami*°)

Permutation entropy (PE) 2002 (Bandt and Pompe®’)

2000 (Richman and Moorman®°)

Sample entropy (SaE)

1991 (Inouye et al.”®) 0
2013 (Fadlallah et al.*®)

Spectral entropy (SpE)
Weighted PE (WPE)

2 (dimension, class)

1 (dimension)

2 (dimension, match criterion)

1 (dimension)

mechanics (Rostaghi et al.?"), biomedical
engineering (Azami et al.®?)

medicine (Li et al.?%), epidemiology

(Scarpino et al.*°), economics (Zumino
et al.?)

biology (Kaffashi et al.®%), neurology (Li
et al.?®), biomedical engineering (Yentes
et al.?’)

economics (Georg®®), neurology (Li et al.®)
ecology (Pennekamp et al.” ), computer
science (Garland et al.>), climatology
(Huang and Fu®®)

RESULTS

Finding a universal predictability measure

The predictability of a dynamical system reflects the extent to
which its future state can be anticipated. In a system with high
predictability, the future state of the system can be accurately
predicted using previously known states. For example, periodic
or constant signals fall into this class. Conversely, a dynamical
system with low predictability refers to a system whose future
state cannot be determined among various possibilities. White
noise, for example, falls into this category, where the historical
data give no insight into the future, regardless of the forecasting
method. On this basis, predictability is an inherent property of
dynamical systems.*

As there is little consensus on the definition of the signal’s pre-
dictability, various measures have been developed and used to
determine the predictability of time series data. Most of these
measures can be categorized into two groups: (information) en-
tropy-based metrics and fractal theory-based metrics. While the
former group is more widely known for measuring the predict-
ability of time series,>*" the metrics from the fractal theory,
specifically the self-similarity parameter (also known as Hurst
exponent), have been used to represent the predictive structure
of a signal.?5%?%8:39 Nonetheless these two groups are funda-
mentally different, as each captures a particular aspect of the
time series predictability. In information theory, entropy is used
to characterize the complexity or compressibility of data.’?*’
Data with high entropy include minimal redundant information,
making them difficult to compress. In other words, these data
have a high level of randomness or unpredictability, making it
difficult to identify patterns or regularities that can be exploited
to compress the data. In contrast, data with low entropy tend
to be easier to compress as they have a higher level of regularity
and predictability. In fractal theory, however, the Hurst exponent
shows the degree of self-similarity and long-range dependence
of a signal.®® In this context, higher long-range dependence
means that past values can give a better insight into the future.
Nevertheless, as the Hurst exponent of a time series cannot be
directly calculated, various methods have been developed to
estimate it, each of which would provide a different value.*® It
is, therefore, challenging to establish a reliable and robust mea-
sure of predictability based on the Hurst exponent. On the con-
trary, the entropy-based metrics developed over the past three

decades can be readily calculated using efficient, reliable
methods. Some examples of such metrics are approximate en-
tropy (AE),*®> sample entropy (SaE),*° and permutation entropy
(PE).>” They are also closely related to the known predictability
of dynamical systems, quantified by Lyapunov exponents and
Kolmogorov-Sinai entropy.?**®*" These features (i.e., direct
representation of uncertainty and reliable calculation methods)
make entropy-based metrics a better way to quantify the pre-
dictability of renewable generation data.

Various entropy-based metrics have been introduced in
different disciplines to measure complexity or predictability,
where a time series with higher entropy is considered more com-
plex or less predictable, and vice versa. Here, we investigate
which method, among the prominent approaches, is the most
effective for measuring the predictability of renewable genera-
tion time series. Table 1 provides a summary of these entropy-
based metrics. In the experimental procedures section, we
describe how these measures are calculated.

To assess the suitability of the entropy-based metrics intro-
duced in Table 1, we used a dataset consisting of 1,000 rooftop
PV generation time series belonging to Australian households
known by their postcodes.” The data are available for 1 year,
from January 1, 2019 to January 1, 2020, with a sampling interval
of 5 min. The dataset was checked and cleansed before analysis,
where time series with more than 200 missing values and signif-
icant generation clipping (if a PV system has the same maximum
generation for 7 months, we consider significant generation clip-
ping has happened, possibly due to the rooftop PV export limits
in Australia) were removed from the dataset. This is important
because if the renewable generation time series is significantly
affected by external factors, such as clipping and self-curtail-
ment, the patterns of the affected time series would no longer
represent the inherent features of the renewable generation,
thus being unsuitable for measuring the inherent predictability
of a renewable energy source in a given time and location. After
data cleaning, 335 reliable time series remained to analyze the
generation of PV systems in SA, New South Wales (NSW), and
Victoria (VIC).

In the first step, we carried out a preliminary assessment of
the potential predictability measures. Using the five different en-
tropy-based metrics, we compared the entropy values of three
randomly selected PV generation time series from our dataset
with white Gaussian noise (WGN) and a pure sine wave signal
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Figure 1. Preliminary assessment of the suitability of potential pre-
dictability measures for renewable generation time series

(A), (B), (C), (D), and (E), respectively, show the values over time obtained by
dispersion entropy (DE), permutation entropy (PE), sample entropy (SaE),
spectral entropy (SpE), and weighted permutation entropy (WPE) for a sine
wave signal (with a 1-day cycle), a white Gaussian noise (WGN), and three
randomly selected PV generation time series from our dataset. These are
calculated using 2-month rolling windows that move 1 day forward at a time.
The hyperparameters are set to the commonly used values of each metric (i.e.,
the dimension of PE and WPE is 6, both the class and dimension of DE are 5,
and the dimension of SE is 3).

over 1 year using 2-month rolling windows. In this study, WGN, a
pure random noise, is expected to show high entropy values (i.e.,
low predictability) compared with other time series. At the same
time the sine wave, a perfectly periodic signal, must have the
lowest entropy (i.e., highest predictability). Also, the three PV
generation time series are expected to have entropy values be-
tween the two extreme cases. As shown in Figure 1, WGN and
sine wave signals consistently indicate the highest and lowest
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entropy values, respectively, over the course of a year when
PE, weighted PE (WPE), and spectral entropy (SpE) are used
as the predictability measures. Dispersion entropy (DE) and
SaE, however, fail the preliminary test because they incorrectly
indicate that the sine wave signal is less predictable than all three
PV generation time series. While the entropy values of each
metric will differ based on the hyperparameters used, the quali-
tative results will remain the same, i.e., DE and SakE fail the test
regardless. Thus, they are unsuitable metrics for measuring the
predictability of PV generation time series, and the most appro-
priate metric should be chosen from SpE, PE, or WPE.

Additionally, we should determine the best hyperparameters
and resampling intervals such that the predictability measure
can capture the most important predictive structures in the
renewable generation time series. While SpE calculation does
not include any hyperparameter, both PE and WPE values are
calculated based on a hyperparameter (i.e., embedding dimen-
sion) that can take any integer from 3 to 7.°”**> However, as
the maximum embedding dimension is restricted by the length
of the time series,** our options would be limited to from 3 to
6. Resampling the original 5-min data is also necessary for
measuring the inherent predictability of renewable generation
because the mentioned entropy-based metrics, i.e., PE, SaE,
WPE, and DE, are measured on the basis of patterns in the vec-
tors established from the 2 to 8 sequential data points in the time
series.®®%743:95 The finite length of the vectors may thus lead to
neglecting existing predictive structures in the vectors with
higher lengths. Conversely, creating longer vectors by choosing
a longer resampling interval may lead to disregard of predictive
patterns in the data, as the higher-resolution dynamics will
disappear in resampling. Hence, finding the optimal resampling
interval is necessary for measuring predictability.

To find the best metric, hyperparameters, and resampling in-
tervals, we calculated the entropy values of all PV generation
time series in our dataset, using the candidate predictability
measures with different hyperparameters and resampling inter-
vals. The best measure was chosen by comparing the correlation
between the entropy values and the average prediction errors of
all time series in our dataset. No matter what prediction method,
horizon, or error metric is used, a time series with low entropy
(i.e., high predictability) should exhibit relatively low prediction
errors. To this end, we compared different predictability mea-
sures based on their average correlation with 16 sets of predic-
tion errors consisting of four prediction horizons (i.e., 5 min,
10 min, 15 min, and 20 min ahead), two forecasting methods
(i.e., autoregressive integrated moving average [ARIMA] and
naive), and two error metrics (i.e., the normalized absolute error
[NMAE] and the normalized root-mean-square error [NRMSE]).
The maximum prediction horizon was 20 min, the longest horizon
relevant to renewable generation prediction in the Australian
electricity market (while our case studies are limited to the
Australian electricity market, the predictability measurement
process, and the conclusions, are not). In this spot energy mar-
ket, generators typically submit their final bids (the generation
forecasts in the case of renewable plants) for each dispatch
target 5-10 min ahead. However, depending on the forecasting
method or the operational requirements of the renewable plants,
forecasts with longer horizons, i.e., 10-20 min, can be important
too. We also chose different error metrics and forecasting
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Figure 2. Finding the best predictability measure and its hyperpara-
meters for renewable generation time series

Each line shows the average correlation between the predictability values
obtained by a measure with a specific hyperparameter and 16 datasets of
prediction errors, resulting from four prediction horizons (5 min, 10 min, 15 min,
and 20 min ahead), two forecasting methods (ARIMA and naive), and two error
metrics (NMAE and NRMSE).

methods with different learning procedures to ensure that the
best metric would be selected regardless of the method and er-
ror metric. The NMAE and NRMSE of each time series for each
forecasting method were calculated based on 105,080 predic-
tions obtained for 5-, 10-, 15-, and 20-min-ahead horizons with
3 h of training data. To create the set of predictions for each
time series, we used rolling windows throughout the year with
one interval moving forward at a time. Finally, 16 forecast error
sets were created from different combinations of prediction ho-
rizons, methods, and error metrics to find the best predictability
measure for our application.

The result of this comparison is shown in Figure 2. According
to the graph, WPE outperforms SpE and PE regardless of
the selected hyperparameter and resampling interval. Also,
increasing the resampling interval impacts the average correla-
tion of each metric differently. Even choosing different
hyperparameters for the WPE leads to different best resampling
intervals (i.e., the resampling interval with the highest average
correlation). Furthermore, when the resampling interval varies
between 10 and 25 min, the WPE values obtained for dimensions
4-6 have an average correlation of more than 0.6 with prediction
errors. This shows the robustness of the WPE measure in this
application, although tuning the WPE hyperparameters would
result in a better measure. Overall, the WPE with a dimension
of 6 and a resampling interval of 10 min has the highest correla-
tion among all cases, which makes it the most suitable predict-
ability measure in this application. Figure 3 depicts the relation-
ship between the tuned WPE and the NMAE and NRMSE values
of the time series obtained for the two forecasting methods and
the four prediction horizons. All 16 scatterplots show a statisti-
cally significant correlation between the WPE and the prediction
error. The R? values, shown in Figure 3, are high, given the
amount of explainable short-term variability in the rooftop PV
generation data. This further supports the selection of the WPE
for measuring the predictability of renewable generation.

¢ CellP’ress

In addition to the minutes-ahead bidding in the Australian elec-
tricity market, generators should submit day-ahead generation
bids. While they are not financially binding as generators can
change the bids in the real-time market, they act as an advisory
measure for the market operator. Therefore, an accurate day-
ahead renewable generation prediction can help the operator
run the market more efficiently. In this regard, Figure 4 depicts
a moderate to strong correlation between the tuned WPE and
the day-ahead prediction errors. We used two forecasting
methods, seasonal naive and random forest, with 9 (note the
qualitative results have been the same with any other training
set sizes between 6 and 14 days) days for training and 1 day
for testing.?” The NRMSEs and NMAEs were obtained for a
10-day rolling window (9 days for training and 1 day for testing)
throughout a year with 1 day moving forward (i.e., 354 prediction
windows). Finally, the median of the NRMSEs and NMAEs was
calculated for each time series in the dataset. The strong positive
correlation between the day-ahead prediction errors and the
WPE shows its suitability as a predictability measure for renew-
able generation. Since the WPE is positively correlated with pre-
diction errors, we define the predictability index as “1 — WPE,”
where a lower WPE of a given time series shows higher
predictability.

Applications of predictability in power systems

Private investment decisions

Many research studies have been carried out in recent years pro-
posing methods for finding the best location for building solar PV
and wind farms,*®~*° wherein various tools and factors are used,
such as solar or wind atlases, geographic information system
data, transmission lines, roads, and so forth. Similar factors, in
addition to some practical considerations, are taken into
account by industry and investors for renewable plant invest-
ments.°*>" For example, in Australia, marginal loss factor
assessment at a potential location is a key step in building new
power plants because it can greatly affect revenue and is one
of the main factors considered by investors.>”> Such assess-
ments are critical because these factors affect not only the
energy yield of solar or wind farms over their lifetime but also their
participation in the day-ahead and/or real-time (or spot) elec-
tricity markets, where they must meet their energy commit-
ments. Similar to conventional power plants, solar and wind
farms are penalized for deviating from their market commit-
ments. The penalty could be particularly devastating when
renewable power plants participate in a day-ahead market
compared with a real-time market because of higher prediction
errors in the day-ahead market (many renewable plants bid
conservatively, i.e., below their actual prediction, to dodge the
imbalance penalties, which results in green and cheap energy
spillage). Even in a real-time market where participants can bid
only a few minutes to hours before every dispatch interval,
prediction errors of renewable generation can lead to significant
financial penalties. For example, in the Australian National Elec-
tricity Market (NEM), the operator utilizes regulation Frequency
Control Ancillary Services (FCAS) to ensure the balance between
supply and demand, where the source of imbalance could be the
difference between the actual production level of renewable
plants and their commitment due to prediction errors. The
Australian Energy Market Operator (AEMO) then recovers the
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regulation FCAS costs from market participants, including wind
and solar farms, by determining how much each has contributed
to the need for this service, called the “causer pays” proced-
ure.>® Figure 5 shows the share of regulation FCAS charges
per terawatt-hour of produced energy for the NEM power plants
based on fuel types in each quarter of 2020. While the total pro-
duction (hence revenue) of solar PV and wind farms was much
less than coal- and gas-fired plants, the share of regulation
FCAS charges for the renewable plants was considerably higher
than those of conventional power plants. This results in a signif-
icant reduction in the renewable plants’ profit. For example,
owing to such charges, four renewable plants in SA lost more
than 20% of their energy market revenue in 2020.°*°° One
main reason for higher FCAS charges of solar farms is the signif-
icant prediction errors in their generation forecasts that lead to
higher causer pays factors (CPFs), based on which a specific
percentage of the regulation FCAS costs is assigned to each po-
wer plant.*® Figure 6 depicts the relationship over time between
the CPFs of six solar farms in NSW, gathered from AEMO,*’ and
the predictability of PV generation, determined on the basis of
two different datasets: (1) our rooftop PV generation dataset
and (2) 5-min historical data of all-sky global tilted irradiance
(GTI) at the six solar farm locations in 2019, downloaded from
SolCast.*® The figures demonstrate a strong negative correlation
between the average CPF and the predictability for the actual so-
lar PV generation and the GTI of solar farms. Each participant’s
monthly CPF determines their regulation FCAS market costs,
so the lower the CPF, the lower the regulation FCAS charges.
This further validates the choice of the WPE as the predictability
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we considered the revenue and the FCAS
market charges caused by the unpredict-
ability of generation in calculating the projected net revenue.
Note that the solar farm capacity equals the average capacity
of the six solar farms studied in the previous analysis. Also, all
potential locations are situated close to transmission lines and
main roads in NSW. To quantify the monetary value of PV gener-
ation predictability, we first estimated a quantitative relationship
between the predictability and the CPF. The scatterplots in Fig-
ure 7A illustrate the relationship between the average predict-
ability and the CPF of solar farms over 2-month rolling windows
in NSW, based on the previous analysis shown in Figure 6. We
further validated the results by depicting the relationship be-
tween the annual predictability of solar farms’ GTl data and their
average CPF for a year (Figure 7B). Despite the limited number of
data points, in all three cases shown in the scatterplots the Pear-
son correlation was statistically significant, indicating a strong
negative correlation between the predictability (i.e., 1 — WPE)
and the CPF. Even though the predictability values of the GTI da-
taset are consistently higher than those of the rooftop PV system,
the slope of the regressed lines are relatively similar, suggesting
that a robust relationship exists between the CPF and the pre-
dictability. (This is due to many reasons. For example, PV system
malfunction, panel degradation, shading, and so forth do not
impact the GTI data, which leads to its higher predictability.)
Finally, to compare the net revenue of the solar farm in different
locations for the two scenarios, we used the GTI sun-tracking
data of the locations shown in Figure 8 from August 2021 to
August 2022. We set location 1, where the White Rock solar
farm is installed, as our baseline in the comparison. Based on
the real historical data, the White Rock solar farm had an annual
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Figure 4. Strong correlation between the WPE and the day-ahead
prediction errors of solar PV generation

The scatterplots show the relationship between the WPE of dimension 6 and
the 10-min resampling interval, and the median NRMSE and the median NMAE
of the day-ahead predictions of PV generation data using random forest and
seasonal naive forecasting methods.

revenue of about AUS$10,000 per MW installed capacity in
2020.°° Accordingly, we calculated the revenue of a 51.8 MW so-
lar farm in other locations, assuming a 1% higher annual GTI
would lead to 1% more revenue. Also, using the most conserva-
tive estimate for the slope of the regressed line between the CPF
and the predictability, shown in Figure 7B, it is possible to esti-
mate the reduction in the CPF when the predictability increases.
For instance, the figure shows that a 0.1 increase in the renew-
able generation predictability would reduce CPF by 0.272. Given
that the average annual cost of the regulation market was about
$85.6 million in the last 5 years,®° a 0.272 reduction in the CPF
leads to roughly $233,000 lower cost of regulation FCAS each
year. Finally, the net revenue of the solar farm in different loca-
tions is compared in Figure 9. According to the bar plot, location
9 would be the best option for building a 51.8 MW solar farm
without considering the predictability. However, if the cost asso-
ciated with the predictability of PV generation were taken into ac-
count, location 5 would be the best option by a significant margin
over location 9. Once predictability is considered, the ranking of
the choices changes significantly in relation to the highest net
revenue, suggesting it has a considerable impact on solar farm
investments.

These observations indicate that considering generation pre-
dictability as a factor in investment decisions of renewable plants
is imperative because profits strongly depend on it. Figure 10
illustrates the changes in the predictability of solar PV generation
in various locations in Australia. We can observe that the PV gen-
eration predictability varies significantly across different regions
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Figure 5. Australian electricity market regulation costs by type of
power plant

Each bar illustrates the share of power plants with a particular fuel type in the
regulation FCAS costs of the Australian electricity market in each quarter of
2020. The shares of costs in each quarter are normalized by the terawatt-hours
of generated energy during that period. The data for the regulation FCAS costs
and the generation of each fuel type are collected from AEMO’® and
OpenNEM,"® respectively.

and even within each state, indicating that it is highly location
dependent. Based on the previous analysis, we can estimate
that a 100 MW solar farm could lose roughly $900,000 of its reve-
nue each year because of these differences in PV generation pre-
dictability (this would be 9% of its potential $10 million revenue).
Without considering predictability, investment studies for building
renewable plants will produce suboptimal results. In other words,
tofind the best locations for future solar PV and wind farm projects,
we must take into account the cost implications of the predictabil-
ity as a decisive factor in addition to the other technical and
financial factors currently being used.°®°" This can be done by
measuring the predictability of the potential renewable generation
at a location using the existing (or simulated) generation data or
relevant surrogate variables, such as GTI for solar PV farms. This
is particularly vital, since the predictability measure is not corre-
lated with other factors being considered in such studies. For
further discussion on this topic, please refer to Note S1.

The predictability of renewable generation is expected to play
an increasingly important role in the future. Renewable energy
plants are currently subject to different regulations than conven-
tional ones by electricity market operators under the direction of
regulators and policymakers. For example, in Australia, conven-
tional generators are noncompliant if their generation deviates
from their instructed dispatch target; renewable plants are
not.%"*2 As most conventional power plants are expected to
retire in the next few years in Australia, the market rules have
been changing to ensure reliable grid operation. Such changes
mean that if renewable plants’ output is not predictable, they
must leave sufficient headroom (i.e., not generate at their
maximum availability) to respond to the unpredictable genera-
tion changes and meet their forecasts. Otherwise, they must
invest in storage systems to ensure that their power plants
comply with the rules or face heavy penalties. Both can be costly
solutions for investors but can be mitigated by choosing a loca-
tion with high generation predictability.
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Figure 6. Dependency of solar farms’ regula-
tion market costs on the predictability of PV
generation
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the predictability (1 — WPE) of PV generation and the
solar farms’ causer pays factors (CPFs) in New
South Wales (NSW) over the year 2019. In (A), the PV
generation data in NSW from our dataset is used to
calculate the average predictability over time.
However, in (B), the average predictability of PV
generation is determined based on the predictability
of global tilted irradiance (GTI) sun-tracking data in
the exact locations of the six solar farms in NSW.
The predictability of PV generation is calculated over
2-month rolling horizons with 1-month shifting for-
ward. To make the CPF data comparable with the
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eration capacity above 10 MW, which are commis-
sioned in or before January 2019, namely Griffith,
Royalla, Mugga Lane, Manildra, Coleambally, and
Moree solar farms. Also, the average CPF of solar
farms and the predictability of monthly GTI data are
calculated by the weighted average of the six farms
based on their maximum generation capacity.
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Policy design

The unpredictability of renewable generation, caused by inher-
ently uncertain weather forecasts, has increased the costs of
reserve electricity markets.®®® For instance, the United
Kingdom power grid experiences a £5-10 per MWh increase in
the reserve market costs for 1 MW additional wind or solar pro-
duction due to their prediction errors. As the number of renew-
able plants increases in the electricity grid, the additional cost
of operational reserve requirements per MWh of renewable en-
ergy will rise even more.®® Given that consumers (or taxpayers)
pay for these costs on their electricity bills (or government sub-
sidies), governments are responsible for minimizing these costs
through well-planned investments and shrewd policy design.

In November 2021, SA became the first gigawatt-scale power
grid in the world to reach zero net demand when the combined
output of rooftop solar and other small-scale generators ex-
ceeded the total customers’ load demand.®® This has been
achieved mainly by the federal government’s subsidies on
rooftop PV panels®® as well as state government policies, such
as solar feed-in payments.®”°® Despite all the benefits, the
high level of distributed PV generation has led to higher variability
of power system net demand, which can cause high spot energy
prices, voltage swings, or even loss of supply if not adequately
managed.®® One well-known solution is to integrate costly bat-
tery storage systems in the grid. Yet a cheaper but effective
way to mitigate some of these issues is to invest in renewable
energy sources with higher generation predictability.

In this regard, recognizing the differences in the predictability
of renewable generation in different areas could change the pub-
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lic sector policies for the better long-term

good. For instance, as shown in Figure 11,

northern SA with the highest predictability
has an average density of rooftop PV systems equal to 41.5%,
comparable with the south (40%) with significantly lower predict-
ability. A better policy could have been offering different incen-
tives in different regions based on their predictability, e.g.,
rooftop PV only in the northern part of the state and PV plus bat-
tery in the south.

On a larger scale, considering renewable generation pre-
dictability as a factor in the decision-making processes can
impact the strategies for dealing with the uncertain nature of
renewable generation. For instance, the lower predictability
of PV generation in the state of VIC (Figure 10) suggests
that increasing rooftop solar PV in that region will increase
net demand uncertainty compared with other states, which
in turn requires a higher amount of operational reserve re-
quirements in the power grid and, hence, higher cost of
energy for consumers. This can shape the policies and regu-
lations to push for alternative renewable generation (e.g.,
small-scale wind turbines) instead of rooftop PV or subsidies
on home battery systems in that region. These are only a
few examples to showcase the significance of considering
PV generation predictability in various aspects of electricity in-
dustry policymaking.

Other applications in power systems

Apart from the application of predictability in private invest-
ment and policy design, we identified several potential appli-
cations related to other aspects of the energy sector, such
as power system daily operation, power grid planning studies,
and even automated diagnosis of generation anomalies in a
large number of PV systems. For instance, considering the
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predictability changes over time reveals interesting and help-
ful seasonality patterns in renewable generation predictability
that can advise system planning studies. Figure 12 presents
the predictability profiles of the rooftop PV generation in three
states of Australia, namely NSW, VIC, and SA, over time. In
these charts, each line represents the predictability profile of
an Australian household over the year 2019, calculated on
the basis of 2-month rolling windows that move forward
1 day at a time. It can be seen that the evolution of predictabil-
ity over time varies remarkably from one state to another. This
observation may have significant policy design implications,
e.g., to jointly plan future flexibility resources (such as batte-
ries or pumped hydro storage) and interconnections between
states to share flexibility capacity in different seasons, thus
lowering the cost of decarbonization for all Australians. For
example, the PV generation predictability is the lowest in
SA from August to October (Figure 12A) but the highest in
NSW during the same period (Figure 12C). In the event of
proper interconnection between the two states (in May
2021, the Australian Energy Regulator approved constructing
a new interconnector between SA and NSW'°), the flexibility
sources in NSW can be used to manage the higher uncer-
tainties in the SA power grid during that time. The average
predictability of renewable generation in each state can
also inform power system operators and market partic-
ipants in determining the time frame for the annual mainte-
nance of their assets, ensuring the availability of enough

highly correlated with solar insolation, we
expect to see similar output from the PV
systems located in close proximity. As a result, we should
observe similar changes in the predictability of the PV systems
in the same region, which can be verified in Figure 12. This
further proves that the predictability of the PV generation,
measured by the WPE, is an inherent feature of the PV system.
From a different perspective, we can use this property to auto-
matically diagnose faults, shading, and other inefficiencies and
malfunctions in PV systems within a region using “big data”
analysis.”"

DISCUSSION

The overwhelming attention to improving the forecasting
methods of renewable generation in recent years has overshad-
owed the fact that no method can provide perfect predictions for
renewable generation. This leads us to think about how the
inherent predictability of renewable generation can be quanti-
fied. In this paper, we tried to shed light on this missing piece
of the puzzle. By conducting a set of analyses on an actual PV
generation dataset, we found a reliable method among various
potential metrics to quantify the inherent predictability of renew-
able generation data. For this purpose, we demonstrated that
the WPE with dimension 6 and a 10-min resampling interval is
the most suitable predictability measure for our application, illus-
trating its strong relationship with forecast errors regardless of
the forecasting method, prediction horizon, and error metric.
Then, using our PV generation dataset and analyzing various
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Figure 8. Annual solar irradiance and predictability values of (poten-
tial) solar farms in NSW

In (A), the fill color of the circles quantifies the total annual GTI sun-tracking
values for the potential solar farm locations in NSW. In (B), the fill colors of
the circles quantify the predictability (1 — WPE) of the GTI data at the
potential solar farm locations in NSW. The circles with orange borders
indicate actual farm locations. Both the annual solar irradiance and pre-
dictability are calculated based on the 5-min GTI time series from August
2021 to August 2022. The GTI data were obtained from SolCast."®.

real-world examples, we provided evidence that this measure
can offer valuable additional information to decision-makers in
the energy industry. Revealing the significant impact of PV gen-
eration predictability on the profit of solar farms, we demon-
strated that considering the predictability in renewable plant in-
vestments can lead to better decisions with higher profits.
Also, by comparing the rooftop PV density and predictability
data in SA, we showed that policymakers can benefit from
considering renewable generation predictability in policy design.
Lastly, we demonstrated how predictability can be applied
beyond what we discussed here, analyzing PV generation pre-
dictability in different states of Australia to show an example of
such applications.

Electricity generation and consumption are undergoing
significant changes, for example the ever-increasing adoption
of electric vehicles and rooftop PV systems combined with
the installation of utility-scale renewable power plants, making
electricity supply and demand more unpredictable. Conse-
quently, estimating the predictability of generation and demand
is becoming more critical than ever. While forecasting methods
are essential, they will never be perfect. Hence, attention
must be paid to the other half of the problem: the limited
inherent predictability of intermittent generation sources.
Measuring this property of renewable generation data can offer
numerous direct and indirect insights to policymakers, inves-
tors, power system planners and operators, and third-party

10 Patterns 4, 100708, April 14, 2023

Patterns

Considering solar irradiance
mmm Considering solar irradiance and predictability

10

1 dal
1

Revenue change (%)

T T T
2 3 4 5 6 7 8 9
Solar farm location

Figure 9. Impact of considering the predictability in choosing the
best location for building a solar farm

The bar plot shows the projected revenue changes of a 51.8 MW solar farm
when installed in different locations, shown in Figure 8, with respect to location
1. In the first scenario, the revenue only depends on the annual solar irradiance.
In the second scenario, the costs associated with the regulation market costs
are also taken into account based on the changes in the predictability; thus,
the CPF.

service providers in the electricity industry for better decision-
making.

While the analysis in this paper is based on PV generation
data, future studies on wind energy generation might gain
similar insights. Also, even though the predictability measure
chosen for this paper works well for measuring the short-
term predictability of renewable energy, it cannot be used to
measure long-term predictability (months and years ahead).
A metric for estimating long-term predictability could have
many applications in the electricity industry, e.g., quantifying
the long-term risks associated with renewable energy invest-
ments. Future research can benefit from addressing these
limitations.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will
be fulfilled by the lead contact, Sahand Karimi-Arpanahi (sahand.karimi-
arpanahi@adelaide.edu.au).

Materials availability

There are no physical materials associated with this study.

Data and code availability

All'the Python codes used for the mentioned analyses in this study are available
on Zenodo (https://doi.org/10.5281/zenodo.7538884)" and a GitHub reposi-
tory (https://github.com/sahand-karimi/Measuring_Predictability_Renewable_
Energy). The original rooftop PV generation data from Solar Analytics, used
in this study, cannot be shared because of a nondisclosure agreement
with the company. However, we have added a synthetic dataset with a similar
structure to our rooftop PV generation to the repository. This dataset is
synthesized by interpolating hourly solar irradiance data to 5-min resolution in
different locations of Australia in 2015.”° While this synthetic dataset does
not meet the criteria for the application described in our study, it guides the
users to prepare their own dataset in the correct structure that can be used
by our code. Also, it can be used as an example to study the code.
Please note that a renewable generation dataset should satisfy the following
three conditions for the applications described in this paper: (1) it should have
at least a temporal resolution of 10 min (it can differ depending on the electricity
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market and compliance rules); (2) the measured or estimated data should not
be systematically affected by the external factors, such as generation curtail-
ment, export limits, and so forth; and (3) the length of data should be at least
6 months, and the dataset should cover a wide geographical area such as a
country.

The solar irradiance data (GTI) from SolCast, used in this study, cannot be
shared publicly, but university students and researchers can freely access
the data on SolCast.com to reproduce our results.”® To do so, one should
create a “Student or public researcher” account and then submit a “Time se-
ries request” with the following details. Enter all the locations of the (potential)
solar farms as in our study (the exact latitude and longitude of each location are
available in the public repository). Set the “Data period” as mentioned in the
relevant analysis, “Time granularity” to 5 min, and “File format” to SolCast.
Select “GTI horizontal single-axis tracker” as one of the parameters in the
request. Finally, download the GTl data and use it as input for the relevant an-
alyses. In the case of an issue in accessing these data, please reach out to the
lead contact.
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Figure 11. Predictability and density of rooftop PV generation in SA
A comparison between the PV generation predictability at SA’s local govern-
ment areas (LGAs) with available data and the density of the dwellings with
rooftop PV in the LGAs. The data for rooftop density is obtained from the
Australian PV Institute.?® Also, the resampling interval of the PV generation
time series is 10 min, and the embedding dimension of WPE is 6.
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Figure 10. Impact of location on the predict-
ability of solar PV generation

The predictability values are shown for the 1-year PV
generation of houses in different regions across
Australia. Each region consists of postcodes within
25 km of each other. The circles on the maps are
colored based on the average predictability (1 —
WPE) of PV systems in that region. The resampling
interval of the PV generation time series is 10 min,
and the embedding dimension in the WPE calcula-
tion is set to 6.
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Permutation entropy
Aiming to define a predictability measure, which is “easily calculated for any
types of time series, be it regular, chaotic, noisy, or reality-based,” Bandt
and Pompe introduced PE in their seminal work.>” As a model-free complexity
metric, PE was shown to behave similarly to Lyapunov exponents and
Kolmogorov-Sinai entropy (i.e., the complexity measures of dynamical sys-
tems).®”*>"* PE can readily be calculated by determining the ordinal pattern
of the vectors in a time series and extracting the probability distribution of
the ordinal patterns. The core idea in PE is that the patterns inside a time series
do not have a similar probability of occurrence. For instance, if a couple of spe-
cific patterns occur most often in a time series, PE will be a small number close
to zero, meaning that the time series is predictable because of the repetitive
patterns. Conversely, if all patterns have an almost equal probability of occur-
rence, PE will be close to 1, showing that the time series is difficult to predict.

To calculate the PE of time series {x;}; _; , of length N for embedding
dimensiond, wefirst divide the time seriesintoN — (d — 1) embedding vectors
(i.e., sequences of values) of length d, whichare X¢ = (X¢, X¢ 4 1, .., Xt + @-1))for
t =1,...,N — (d — 1). We then assign each vector to a single permutation, =;,
in the set of possible permutations, IT, which includes all possible unique order-
ings of d real numbers. Therefore, there are d! unique permutations in II. In
other words, we associate each sequence of values, X,d , to one permutation,
m;, based on the sequence’s ordinal pattern, m; ~ ¢(X§’). For example, if X;’ is
{4,3,7}, then ¢(X§’), the ordinal pattern of this sequence, is 2-1-3.

For each m; € II, the relative frequency of permutation =; occurring in time
series {x;} is
{t.t<N - d.¢(x?) = m}|

_
Plm) = N=({d—1)

(Equation 1)

where |.| shows cardinality, ¢(X¢) is the ordinal pattern of X¢, and P(m;) is the
occurrence probability of vectors that has the same ordinal pattern as permu-
tation ;.
Using the above definitions, PE for d > 2 is defined as
PE(d) = — > P(m)logz(P(m)).

mell

(Equation 2)

As 0<PE(d) <log>(d"), the PE value is commonly normalized by dividing it
by log>(d!), so the normalized PE values are between 0 and 1. This way, the
values of PE in different dimensions are comparable with each other. In this pa-
per, the normalized PE is referred to as the “PE.”

It is also worth noting that the Bandt and Pompe®” recommended that, for
practical purposes, the embedding dimension should be a number between
3 and 7 (de {3,4,5,6,7}). Additionally, to allow all possible patterns in the
time series to appear in the analysis, we should select the dimension such
thatd! <« N. This enables accurate estimation of the relative frequency of per-
mutations for a finite time series. Note that to determine the exact values of the
frequencies, we must have N— + «.”° Lastly, because PE does not consider
the possibility of equal values in a vector, tie-breaking methods should be
implemented in those situations, particularly in discrete-valued time series.
However, such circumstances can infrequently happen if the data are re-
corded in high resolution, as in our dataset.
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Figure 12. Different patterns of changes in PV generation predict-
ability over time in different states of Australia

The predictability values (1 — WPE) of a 2-month rolling horizon across a year
for the PV systems’ generation profiles in the states of (A) SA, (B) VIC, and (C)
NSW. In this analysis, the resampling interval of the PV generation time series
is 10 min, and the embedding dimension of the WPE is 6.

Weighted permutation entropy
A major drawback in PE for measuring the predictability of time series is that it
reflects no information other than the order structure of the vectors in a time
series. This is particularly significant when the changes in the amplitude of a
time series contain important information, such as in a PV generation time se-
ries. In addition, PE is highly sensitive to measurement when the values of the
observations in the time series are close to each other. To deal with these is-
sues, an improved version of PE was proposed by Fadlallah et al.,*® whereby
they assigned a weight to each vector in the time series, calling the new mea-
sure WPE. ltis less sensitive to noises and considers the amplitude information
of the observations in the calculations. This is because the weights of the vec-
tors are quantified according to the variance of the observations in each
vector.

To calculate the WPE of a time series, we first determine the weight of each
vector as follows:

2

1 d wd .
Wy = 82521(Xt+(s—1) - Xr) s (Equation 3)

where )?: is the arithmetic mean of the values in the corresponding vector.
For each =; € I, the weighted probability of permutation «; occurring in time
series {x;} is
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(Equation 4)
where y(a,b) is 1 whena = b, and 0 otherwise.
Using the above definitions, WPE for d > 2 is defined

WPE(d) = = > Pu(mi)logz(Pu ().

mell

(Equation 5)

Similar to PE, WPE values are normalized by log»(d!). In this paper, the
normalized WPE is referred to as the “WPE.”

Sample entropy
Pincus adapted the concept of entropy for real-world applications by propos-
ing approximate entropy (ApE) to measure the complexity of time series. He
argued that the variations in the proposed measure are closely related to the
changes in Lyapunov exponents and Kolmogorov-Sinai entropy, thereby
demonstrating the ability of ApE to indicate the complexity of system dynamics
by using imperfect and finite data.*®

To determine the ApE for time series {xt},_4 _n, we should first
form a sequence of vectors {ul},_4 n_,.,¢ With length m, where
uf = [Xt,Xt +1,...,Xt + m—1] and m is a positive integer (for the sake of consis-
tency with PE and WPE definitions, we call m “dimension”). Second, we define
function d(uf”,uT") as the maximum of the absolute values of the component-
wise differences between the two vectors. Next, we count “similar” vectors
with dimension m in the time series by

1

Ccr(r) = mHT} d(uf,u) <r}|, (Equation 6)

where |.| shows cardinality, and r specifies the tolerance for two vectors to be

considered similar (we call r “match criterion”). C{"(r) is actually the probability
that vector u7 is within r of u”. Using this function, we next define

1 N—m +1

¥ = > ncy).

=1

(Equation 7)

Considering the mentioned definitions, the ApE of time series {x;}, _ 4
defined as

ApE(m,r) = lim (®™(r) — @™ *'(r)).

NE n (Equation 8)

Owing to some issues in the practical implementation of ApE, Richman
et al.’® proposed an improvement to the ApE, defining it as sample en-
tropy. An important shortcoming of the ApE is its bias in the calculation
of C"(r), since the self-matches of the template vector, uf, are included.
This would particularly be an issue for relatively short time series.* To
address this issue in calculating C'(r), they did not consider self-
matches. In addition, they considered only the first N — m vectors of
dimension m (instead of N— m+1 in ApE) to ensure that, for
1<t<N - m, both ul and uf*' are defined. Therefore, to calculate
the SaE, we first define

B () L[l ar) <rtey,

SN-m=1 i (Equation 9)

AP(r) ! 3 {rld(uy =" u?*") <rt =1} (Equation 10)

TN-m-1

Thereafter, we define

9 N-m
B™(r) = N m 2 Bl (r), (Equation 11)
9 N-m
A™(r) = N—m 2 AT(r) (Equation 12)
Considering the above definitions, the SaE of time series {x¢};_;  is

defined as
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SaE(m,r) = Tﬂnjw —In (A”’(r))y (Equation 13)

B (r)

which can be estimated by statistic SaE(m,r) =

An
— In(BmE:;).
The SaE is more robust against data length and displays relative consistency

under different circumstances than the ApE. Also, it can be calculated faster
than ApE because of its higher computational efficiency.*®

Dispersion entropy
Tackling some limitations of SaE and PE, Rostaghi and Azami introduced
DE in 2016 as a new “irregularity indicator.” Since the probability of
different states is similar in a system with maximum entropy or irregular-
ity, it is impossible to predict the system states. Conversely, the system
has a minimum irregularity (or entropy) if there is only one state with the
probability of one that can happen.*®

Accordingly, to calculate the DE of time series {x:},_4 _, of length N for
embedding dimension d and classes c, we first map each data point x; to one
of the classes, labeled from 1 to c. While this mapping can be done through
different linear or nonlinear methods, the typical way“® is to employ the normal
cumulative distribution function to map {x;} to {y:}; _ 4y, Where y; is between
0 and 1. We can then use a linear algorithm to assign y: to an integer from 1 to
c, creating {z};_ 1 . Then, similar to PE, we first divide the time series into
N — (d —1) embedding vectors (i.e., sequences of values) of length d, which
are Z¢ = (24,2t +1, .- 1Zt 4w (g—1)) fort = 1,...,N — (d — 1). We then assign
each vector to a single dispersion pattern among all possible patterns. The num-
ber of possible dispersion patterns is equal to ¢, since the length of each
embedding vector is d, and each data point in the vector can be an integer
from 1 to c. Thereafter, similar to PE (Equations 1 and 2), the relative frequency
of each dispersion pattern is calculated, based on which the value of DE is deter-
mined. Lastly, as this value would be between 0 and log» (cd), itis normalized by
dividing it by log (c?). This paper refers to the normalized DE as the “DE.”

Spectral entropy
The power spectral density (PSD) (or simply power spectrum) of a signal, widely
used in signal-processing literature, describes the distribution of the signal’s
power content based on the frequency components composing the signal.
To calculate the SpE, we first utilize a periodogram to estimate the PSD of
the time series. The PSD is then normalized by the total power of the time se-
ries. Thus, there would be E;": oSr = 1, where S is the normalized power
spectrum, and f, is a reasonably high frequency.”®
Given the normalized PSD of the time series, its SpE can be defined as

fn
SpE = — > Sslog,(S).

f=0

(Equation 14)

Predictability

As discussed earlier in the paper, predictability is an inherent property of
dynamical systems.”®> To measure the predictability of time series
{xt}; _1__n using its entropy, we define it as

Pred. = max(H) — H({x:}), (Equation 15)
where H denotes the entropy value and max(H) is the maximum value that it
can have. Thus, if the entropy is normalized, max(H) = 1.

Time series resampling

Time series resampling is an essential technique that allows us to flexibly find
the best time resolution for our analysis. It can be used for different purposes,
e.g., handling large datasets, removing the impact of sporadic measurement
errors, or getting desirable results for specific purposes.

To perform resampling, we created each data point of the resampled time
series based on the average of the required number of data points in the orig-
inal time series. For instance, to create a 10-min resampled time series from
our original 5-min data, we created each data point of the resampled time se-
ries based on the average of two data points in the original series.

¢? CellPress

OPEN ACCESS

Normalized root-mean-square error
Assume A;,F;, and e; respectively denote actual, forecast, and error values for
t = 1,...,N. Then, the NRMSE will be calculated as follows:

e = A — Fr:Yte {1,..,N},

(Equation 16)

RMSE (RootMeanSquareError) = \/mean(e?), (Equation 17)

RMSE

NRMSE = max (A — min(A)

(Equation 18)

Please note that in the minutes-ahead predictions, NRMSE is normalized by
the 99th percentile to avoid the impact of potential measurement errors on the
normalization.

Normalized mean absolute error
Assume A;,F;, and e; respectively denote actual, forecast, and error values for
t = 1,...,N. Then, the NMAE will be calculated as follows:

e = A — F:Vte {1,...,N}, (Equation 19)

MAE (MeanAbsoluteError) = mean(|e;), (Equation 20)

MAE
NMAE = max(A;) — min(A)’

(Equation 21)
where |.| shows the absolute function.

Please note that in the minutes-ahead predictions, NMAE is normalized by
the 99th percentile to avoid the impact of potential measurement errors on
the normalization.

ARIMA prediction method

We used ARIMA as one of the standard minutes-ahead prediction
methods to determine the prediction errors of time series in the datasets.
ARIMA works on the basis of autocorrelations in the time series to model
temporal structures. We can then use the fitted model to predict future
values in a time series. The ARIMA model consists of three main compo-
nents, based on which a model is fitted on a time series. The autoregres-
sion (AR) part of ARIMA aims to describe a particular time series data
point based on the linear regression of past observations. The moving
average (MA) part uses past prediction errors in the time series in a
regression-like model to predict future values. Lastly, if the time series
is not stationary, the integrated (l) part of ARIMA calculates the differ-
ences between consecutive observations of the time series to create a
stationary time series, using which the model would be trained. Inter-
ested readers are referred to the book by Hyndman and Athanasopou-
los?’ for additional information regarding the ARIMA models.

Naive prediction method

The naive prediction method was used as the second minutes-ahead repre-
sentative prediction method in our analysis. As a result of this method, forecast
values are set to previous period observations, i.e.,

Frogr = Ar, (Equation 22)
where A; and F; denote the actual and predicted values, respectively, and
Fr.qr is the predicted value at time T +t when Ar is the last historical
data value.

Random forest prediction method

We used random forest regression as one of the common day-ahead pre-
diction methods to determine the prediction errors of time series in the da-
tasets. Random forest regression is a supervised learning algorithm that
uses an ensemble learning method for regression. This method combines
predictions from multiple machine-learning algorithms to make more accu-
rate predictions than those of a single model using random forecast as a
regressor.”’
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Seasonal naive prediction method

This article used the seasonal naive prediction method as the second day-
ahead representative prediction method. This method sets predicted values
to the observed values for the previous seasonal period, where the seasonal
period is 1 day for the PV generation time series. Accordingly, the predicted
values are calculated by

Froogr = Arst-mk+ 1) (Equation 23)
where A; and F; denote the actual and predicted values, respectively; Fr . 7 is
the predicted value at time T + t when Ar is the last historical data value; m is
the seasonal period; and k is the integer part of (t — 1)/m.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
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Note S1: Why is the predictability of PV generation not coupled with the factors
currently being considered in the decision-making processes?

A crucial question regarding the importance of the proposed predictability measure
for renewable generation is what additional information it can provide that current mea-
sures lack in the decision-making processes. In this respect, as the “fuel” of renew-
able energy sources is weather-related (e.g., solar irradiance or wind speed), a common
counterargument is that the predictability of renewable energy sources is coupled with
weather-related factors, which are already being considered.

To address this concern, we first acknowledge that PV generation predictability is
coupled with short-term weather patterns (e.g., 1, 5 or 10-minute changes) since they
are the main reason behind short-term changes in renewable generation. However, the
way the weather-related factors are considered in decision-making processes does not
bring into the picture the impact of these short-term changes on the predictability of re-
newable generation and its impacts; hence, these factors are not inherently correlated
with the short-term predictability of renewable energy sources. To better explain the
problem, let us focus on finding the best location for a solar farm, which typically in-
volves the most comprehensive weather-related studies. Because of its impact on the
return on investment, a detailed solar resource assessment is done by the investors to
find the best location. Usually, they use earlier typical meteorological year (TMY) and
satellite solar irradiance data to find one or more potential locations that would provide
the highest annual yield. Then, a good practice is to install weather monitoring stations
at potential locations to calibrate the satellite data and track the weather conditions over
a period to improve the accuracy of yield estimation. Based on the current practices,
the best location is the one that provides a high energy yield with minimal changes over
the years and facilitates the safe operation of the solar farm. The former is estimated
based on the solar irradiance metrics, such as monthly or annual global horizontal irra-
diance (GHI), direct normal irradiance (DNI), or global tilted irradiance (GTI), together
with the cloud opacity or Clearness Index, in the potential solar farm locations. The safe
operation is ensured based on tracking higher resolution meteorological data, such as
wind gusts, rainfall, and clouds, to ensure the plant is safe from severe weather issues
(such as floods), and it can operate safely during various events (for example during
start-ups, shutdowns, and transients) [S1]. Therefore, if the safe operation of a plant
can be ensured, the location with the highest solar power yield is typically chosen.

While affecting the decisions, none of these factors is inherently coupled with the
short-term predictability of solar PV generation. Yet, the power grid’s safe and efficient
operation depends on the predictability of net demand and generation. That is why
current (and especially the future) electricity markets reward the generation with higher
predictability.

Here, we intend to reject a potential counterargument for the importance of PV gen-
eration predictability: the proposed predictability measure (WPE of dimension 6 and a
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Figure S1. Negative correlation between the predictability of PV generation and the average daily GHI
over time in NSW.

resampling interval of 10 minutes) is correlated with the monthly or annual solar irradi-
ance. In other words, a location with higher all-sky solar irradiance (i.e., solar irradiance
when the cloud opacity and its impact on the irradiance at the land surface is considered)
would have higher generation predictability. As annual or monthly solar irradiance is the
most critical factor in such decisions, if there was a link between the two, considering
predictability would become unnecessary. Therefore, we have conducted the following
analyses to reject this hypothesis.

Using our real-world PV generation dataset [S2], we first demonstrate that the pre-
dictability of PV generation is not coupled with solar irradiance. To do so, we compare
the PV generation predictability (1-WPE) of all rooftop systems in the states of South
Australia (SA) and New South Wales (NSW) over a year (by rolling two-month windows)
with the average all-sky GHI in the same locations. Our rooftop PV generation dataset,
respectively, includes the time series of 106 and 74 postcodes in the two states. Also,
GHI data of these postcodes were obtained from the National Aeronautics and Space
Administration (NASA) Langley Research Center (LaRC) Prediction of Worldwide En-
ergy Resource (POWER) Project funded through the NASA Earth Science/Applied Sci-
ence Program [S3]. Figures [S1|and [S2]show the average PV generation predictability
and the average daily GHI over time for the states of NSW and SA, respectively. In
SA, there is a positive correlation between the average GHI and the predictability over
time, while in NSW, there is a negative correlation. In other words, unlike in SA, the
two parameters not only show no meaningful correlation in NSW but also are negatively
correlated. This means that although they can be correlated over time in some locations
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Figure S2. Positive correlation between the predictability of PV generation and the average daily GHI
over time in SA.
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Figure S3. No correlation between the predictability of PV generation and the average daily GHI in
different postcodes of NSW.
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(due to the weather patterns of that region), we cannot generalize the existence of the
correlation to every region. This rejects the assumption that all-sky solar irradiance (or
other associated factors) and PV generation predictability are inherently coupled.

Furthermore, to test the existence of any coupling between the PV generation pre-
dictability and the average daily solar irradiance of different locations, we calculated the
correlation between these two factors for different postcodes in SA and in NSW, using
our rooftop PV generation dataset and GHI data obtained from [S4]. As shown in Figure
there is no meaningful correlation between these two factors in NSW. However, do-
ing the same analysis for SA, we found a weak correlation between these two factors,
as shown in Figure[S4] As previously noted, while there might be a correlation between
these two factors in some locations, it is not universal; hence, they are not inherently
coupled, and one cannot be used as a proxy variable for the other in decision-making
processes.

Additionally, to check if the independence between predictability and average solar
irradiance holds for solar farm locations in NSW (which usually have relatively high ir-
radiance compared to urban areas), we used a dataset consisting of the 5-minute GTI
time series (from August 2021 to August 2022) for single-axis sun-tracking panels in 9
potential solar farm locations in NSW. Figures 8.(a) and 8.(b) in the main manuscript,
respectively, show the total annual GTI values and the predictability for these locations
in NSW. We can see that the locations with higher annual GTI do not necessarily have
higher predictability. For better illustration, Figure shows the scatter plot of two pa-
rameters, exhibiting no correlation between them. This analysis shows that the short-
term predictability of GTI (or solar irradiance) in a location is not coupled with its monthly
or annual GTI, similar to the PV generation. Consequently, the location with the highest
solar irradiance might not necessarily present high predictability of PV generation.
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