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 

Abstract— Demand response (DR) has proved to be an 

inevitable part of the future grid. Much research works have been 

reported in the literature on the benefits and implementation of 

DR. However, little works have been reported on the impacts of 

DR on dynamic performance of power systems, specifically on the 

load frequency control (LFC) problem. This paper makes an 

attempt to fill this gap by introducing a DR control loop in the 

traditional LFC model (called LFC-DR) for a single-area power 

system. The model has the feature of optimal operation through 

optimal power sharing between DR and supplementary control. 

The effect of DR communication delay in the controller design is 

also considered. It is shown that the addition of the DR control 

loop increases the stability margin of the system and DR 

effectively improves the system dynamic performance. Simulation 

studies are carried out for single-area power systems to verify the 

effectiveness of the proposed method. 

Index Terms—Demand response (DR), linear quadratic 

regulator (LQR), single-area power system model, sensitivity, 

smart grid, stability, steady-state error. 

I. INTRODUCTION 

RADITIONALLY, frequency regulation in power system is 

achieved by balancing generation and demand through 

load following, i.e., spinning and non-spinning reserves ‎[1]. 

The future power grid, on the other hand, is foreseen to have 

high penetration of renewable energy (RE) power generation, 

which can be highly variable. In such cases, energy storage 

and responsive loads show great promise for balancing 

generation and demand, as they will help to avoid the use of 

the traditional generation following schemes, which can be 

costly and/or environmentally unfriendly.  

Given the limited availability, low efficiency, and high cost 

of large storage devices, real-time smart responsive load 

participation, known as demand response (DR), has been 

actively considered for power balancing. It can be achieved by 

active consumer participation in real-time to maintain balance 

between generation and demand with two-way communication 

‎[2]. It is well known that DR increases system reliability and 

flexibility to manage the variability and uncertainty of some 

RE resources, decreases the cost of operation, and enhances 

system efficiency. Furthermore, DR can be used to provide 
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ancillary services (AS) for regulation reserve and to respond 

momentarily to the area control error (ACE). Although AS are 

called more frequently than traditional load shedding events, 

the annual total hours of curtailment is much less, and 

individual events are much shorter. Thus, AS programs may 

appeal to retail customers, as they will find more frequent and 

short on/off switching of some of their end-use loads more 

acceptable than infrequent and long curtailments ‎[3]. 

Examples of customer end-use loads that have instantaneous 

response and are potential candidates for DR are electric water 

heaters (EWHs) and HVACs. For the above reasons 

considerable attention has been recently given to DR for 

different purposes, e.g. economic benefits of DR ‎[4]-‎[8], off-

line planning and day-ahead scheduling ‎[9]-‎[15], availability 

assessment of the DR resources for reserve capacity ‎[16]-‎[18], 

and analysis of the effectiveness of DR in providing AS at the 

islanded distribution-level microgrids ‎[19]-‎[21]. A number of 

studies have also addressed the effectiveness of decentralized 

dynamic demand control on stabilization of grid frequency, 

mainly at the transmission level ‎[22]-‎[31]. However, the above 

studies present the following shortcomings: 

 They do not present a general framework for the analysis 

of the impacts of DR on a general power system model 

and load ‎[22]-‎[28], ‎[30], and ‎[31] 

 AGC model has not been considered in the analysis, ‎[22], 

‎[24]-‎[28], and ‎[30] 

 Only specific loads (such as HVAC, EWHs and lighting) 

have been considered in ‎[23], ‎[24], ‎[27] and specific 

power systems without generalization, ‎[22], ‎[23], ‎[25]-

‎[28], and ‎[30] 

 Communication delay in central DR, and measurement 

delay in decentralized DR have not been considered, 

‎[22]-‎[26], ‎[30], and ‎[31] 

 Frequency regulation as AS have not been studied. Only 

under-frequency load shedding (UFLS) characterization 

has been analyzed, ‎[30], ‎[31] 

 Unreal assumptions for the availability of DR at all times 

have been made, ‎[29]  

 Load-damping coefficient, which can improve frequency 

stabilization, has been ignored, ‎[27] 

 Only sensitivity analysis of frequency-related load-

damping coefficient characteristic without generalization 

and DR control is presented, ‎[31] 

In the last five decades, traditional LFC models have been 

revised and modified to include the different types of power 
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plants, including RE power generation with actual limitations, 

such as ramp-up/down limits, in the traditional and de-

regulated power market ‎[32]-‎[33]. These models are useful in 

small disturbance studies such as small variations in load and 

generation, and in controller design. However, so far in the 

literature, the concept of control in the LFC model has only 

focused on the generation side, and DR has not been included 

in these studies. In this paper we modify the general small-

signal model of a power system used in LFC studies by 

introducing a DR control loop to the LFC model (called LFC-

DR). 

Other goals of the paper are to make the model as general as 

possible and to include communication latency associated with 

DR between the load aggregator companies (Lagcos) and the 

end-use customers’ devices. This is an important parameter in 

the system dynamic performance of LFC-DR. We have 

assumed the communication delay between the balancing 

authority (BA) and the Lagcos to be the same as that between 

the BA and generation companies (Gencos). We have not 

considered these delays in our study since the focus of this 

paper is on the evaluation of the DR loop in the LFC model. 

The proposed LFC-DR also gives an opportunity to the system 

operator to choose the DR option or spinning/non-spinning 

reserve, or a combination of the two, based on the real-time 

market price. Furthermore, the LFC-DR model can be used to 

estimate the actual value of the required responsive load 

manipulation when the magnitude of the disturbance is 

unknown to the system operator. 

Another motivation for this study is the importance of the 

dynamic performance of a power system with DR to provide 

AS. Several real cases of DR operation have revealed that 

extreme shedding of the responsive loads in emergency DR 

could lead to unexpected power oscillations, which complicate 

the sequential generation control ‎[34], ‎[35]. The LFC-DR 

model will help the operators to investigate the impact of DR 

on the dynamic performance of the system prior to its usage 

and during the automatic generation control (AGC) design 

process.  

The idea of DR for AS used in this paper, has been fully 

explored in our previous work ‎[21] and will not be repeated 

here. In such a model, the Lagcos will work with the customers 

and inform the utilities, e.g., independent system operators, of 

the amount of DR available. An example of such a model is 

the PJM electricity market ‎[4].  

The remainder of this paper is organized as follows: In 

Section II, the concept of LFC-DR model is developed for a 

single-area power system. The model is analytically evaluated 

in Section III. The controller design is presented in Section IV, 

and simulation results are given in Section V. Section VI 

includes a discussion of exceptional cases not explored in this 

paper and the future work. Finally, the paper is concluded in 

Section VII. 

II. PROBLEM FORMULATION FOR SINGLE-AREA POWER 

SYSTEM 

The general low-order linearized power system model for the 

purpose of frequency control synthesis and analysis is given by 

the power balance equation in the frequency-domain ‎[33], 

‎[36]: 

       2 . . .T LP s P s H s f s D f s        (1) 

where, 

ΔPT(s)-ΔPL(s) is the incremental power mismatch, 

Δf(s) is the frequency deviation, 

2H is the equivalent inertia constant, 

D is the equivalent load-damping coefficient, 

s is the Laplace transform operator. 

Since DR for AS performs like spinning reserve in 

magnitude and power flow direction, i.e. once frequency 

deviation is negative (positive), it is required to turn OFF (ON) 

a portion of the responsive loads (i.e., DR), Eq. (1) can be 

simply modified as follows to include DR: 

         2 . . .DRT LP s P s H s f s D fP s s         (2) 

In some earlier works such as ‎[25], ‎[26], ‎[31], the effect of 

DR has been included in the load-damping coefficient, D. We 

believe the effect of DR should be separated because D is an 

inherent parameter of the system and is not a controllable one, 

whereas DR is an intentional control signal. In addition, Eq. 

(2) will permit to have a separate control loop for DR, which is 

more realistic and gives a better structure for controller design. 

The block diagram for single-area power system with a 

simplified non-reheat steam turbine is shown in Fig. 1, where 

the feedback loop for DR is also shown. Tg and Tt are the 

equivalent speed-governor and turbine time constants, 

respectively, R is the equivalent droop value, and Td is the 

equivalent DR delay. The parameters of the system can be the 

equivalent of all generation assets and load damping of the 

same area. This model is selected to convey the main idea of 

this paper. In our future work, this model will be extended to 

multi-area interconnected power systems with multiple Gencos 

and Lagcos.  

Unlike the usual spinning reserve-provider power plants, 

there is no ramp up and down limitations on the DR resources. 

In other words, the power consumption status of controllable 

loads can be changed instantaneously by the command signal 

they receive. Therefore, the only obstacle for DR (disregarding 

the aggregation of small loads) is communication delay, 

known as latency, which could affect the system dynamic 

performance.  
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Fig. 1. Block-diagram representation of a single-area power system model 

A. State-Space Dynamic Model for LFC-DR  

State-space representation of the LFC model is a useful tool 
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for the application of modern/robust control theory ‎[33]. It can 

also be used for creating a general framework of LFC in 

dynamic frequency analysis which can be conveniently 

modified and applied to power system of any size. We 

therefore derive the dynamic model of the power system, 

including DR in the state-space representation, to study the 

effect of DR on LFC performance and controller design. 

Although the proposed LFC-DR model of Fig. 1 is based on a 

simplified power system model with a non-reheat steam 

turbine, similar analysis and conclusions can be extended to 

other types of turbines, such as hydro or reheat-steam turbine.  

The state-space realization of a single-area power system 

with DR (shown in Fig. 1) is given by: 
( ) . ( ) . ( ) . ( )

( ) . ( )

x A x B u

C x

t t t w t

y t t

  


   (3) 

where A is the system matrix, B is the control input matrix, Γ 

is the disturbance matrix, x is the state vector, u(t) is the input 

vector, w(t) is the disturbance variable, C is the observation 

matrix, and y(t) is the system output. In order to derive the 

linear state-space model of the system, it is required to have a 

linear model of the system under study. From Fig. 1, it can be 

seen that the system has only one nonlinear element which is 

the time delay in the DR control loop. Therefore, we need to 

linearize the time delay for derivation of the linear state-space 

model. Padé approximation, used for linearizing the DR time 

delay, is explained in the following sub-section. 

B. Padé Approximation 

Padé approximation has been widely used to linearize 

systems with time delays in control engineering with very 

strong convergent results ‎[37]. It basically approximates time 

delays by a quotient of polynomials. Specifically, the Padé 

function for  .
.ds T

pq de R sT


  is defined as follows ‎[38]: 

     
1

. . .
.d d ds T s T s T

pq pq pqR e D e N e


  
    (4) 

where, 

 
 

   
 .

0

! !
. .

! ! !
d

p
ks T

pq d

k

p q k p
N e sT

p q k p k





 
 

 
   (5) 

 
 

   
 .

0

! !
. .

! ! !
d

q
ks T

pq d

k

p q k q
D e sT

p q k q k





 


 
   (6) 

Npq and Dpq are polynomials of order p and q, respectively. 

It is usually common for the numerator and denominator of the 

approximation fractional functions to have the same order, and 

the order usually varies between 5 and 10 ‎[37]. Fig. 2 shows 

the phase of the step response in frequency-domain of the 

Padé approximation with different orders in comparison to a 

pure time delay of 0.1 sec. Since the cut-off frequency of the 

low pass filters, i.e. speed-governor and turbine, in the model 

of the power system are usually less than 15 rad/sec, the 5
th

-

order Padé approximation is acceptable and is used in this 

study. The magnitudes of all orders of Padé approximation in 

the frequency domain have also been compared to that of pure 

time delay. They are all at 0 dB and not shown here. 

The signal flow graph for the state-space model of the 

power system shown in Fig. 1 with 5
th

-order Padé 

approximation is sketched in Fig. 3. The state variables are 

also shown in this figure for future reference. The gains of the 

feedback and feed-forward paths of the 5
th

-order Padé 

approximation are given in Table I. Td is the DR 

communication latency. 
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Fig. 2. Different order of Padé approximation for pure time delay, Td=0.1 sec 
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Fig. 3. Signal flow graph of the single-area power system model with 5th -

order Padé approximation 

TABLE I 

Padé APPROXIMATIONS FEED-FORWARD AND FEEDBACK VALUES FOR SIGNAL 

FLOW GRAPH. 

0  
1  

2  
3  

4  
5  
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2 . dT
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945
2 . dT

  17 3
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2 . dT
 15 2
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2 . dT

  9
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2 . dT
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1
2

  
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2 . dT
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2 . dT
  18 4
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2 . dT

  21 5
945

2 . dT
  

With the above approximation of time delay nonlinearity, 

the state-space representation of the system, Eq. (3), has the 

following matrices: 

3 3 11 5 20

2 5 3 8 4 14 5 17

1 30 105 945
0 0 0

2 2 2 . 2 2 . 2 2 . 2

1 1
0 0 0 0 0 0

1 1
0 0 0 0 0 0

.

30 105 105 945 945
0 0 0

2 2 2 2

0 0 0 128 0 0 0 0

0 0 0 0 64 0 0 0

0 0 0 0 0 32 0 0

0 0 0 0 0 0 16 0

d d d

t t

g g

d d d d d
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H H H T H T H T

T T

R T T

T T T T T
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   
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 
 
  
 
 

  
     

    
 
 
 
 


 
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
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  (7) 

1
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 
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 1 0 0 0 0 0 0 0 , [0]D C    (10) 

where T is the transpose operation of matrices. For more 

complicated power systems, the upper left partition of matrix 

A, and the left partitions of other matrices can be modified to 

represent the new power system model. The other partitions of 

the matrices should be properly resized based on the order of 

the new power system model. 

III. ANALYTICAL EVALUATION OF THE MODEL  

In this section, steady-state error evaluation, sensitivity 

analysis, and system stability of the LFC model with and 

without the DR control loop are presented.  

A. Steady-State Error Evaluation 

The primary control loop in Fig. 1, known as frequency 

droop control, is the fastest intentional control action in a 

power system but it is not enough to make the frequency 

deviation go to zero at steady-state. For this reason, the 

supplementary frequency control loop, as shown in Fig. 1, is 

required for further control. However, the DR control loop is 

also added to the problem in this study. Therefore, it is 

necessary to investigate the impact of the DR control loop on 

the steady-state error of the given power system in Fig. 1. 

Later in this sub-section, a synthesis of controller design, 

based on optimal sharing between DR and supplementary 

control loops, will be derived from the steady-state error 

evaluation.  

The conventional LFC steady-state equations are well-

documented, e.g. ‎[33], ‎[36]. Adding the DR control loop to the 

conventional LFC model, the system frequency deviation can 

be expressed as follows: 

 
1

( ) ( ) ( ) ( ). ( )
2 .

T L DRf s P s P s G s P s
H s D

     


  (11) 

where, 

1 1
( ) ( ). ( ) . ( ) , ( )

(1 . )(1 . )
T S

g t

P s H s P s f s H s
R s T s T

 
         

  (12) 

5 4 3 2

2 3 4 5

5 4 3 2

2 3 4 5

30 420 3360 15120 30240
. . . .

( )
30 420 3360 15120 30240

. . . .

d d d d d

d d d d d

s s s s s
T T T T T

G s

s s s s s
T T T T T

     



    

  (13) 

It can be seen that any type of power system model with 

equivalent turbine and governor can be represented by 

modifying H(s). Substituting Eq. (12) into Eq. (11) yields: 

           
1 1

. . .
2 .

S L DRf s H s P f s P s G s P s
H s D R

  
            

  (14) 

Solving Eq. (14) for ( )f s  will result in the frequency 

deviation equation as follows: 

 
1 1

( ) . ( ). ( ) ( ). ( ) . ( )
( ) ( )

S DR Lf s H s P s G s P s P s
s s

      
 

  (15) 

where, 

( )
( ) 2 .

H s
s H s D

R
       (16) 

In the LFC analysis, it is common to use a step load 

disturbance for ( )LP s  as: 

( ) L
L

P
P s

s


     (17) 

Based on the final value theorem, and substituting Eq. (17) 

into Eq. (15), the steady-state value of the system frequency 

deviation can be obtained as follows: 

, ,

0
lim . ( )

(0)

S SS DR SS L

SS
s

P P P
f s f s



    
   


   (18) 

where,  

,
0

lim . ( ). ( )S SS S
s

P s H s P s


      (19) 

,
0

lim . ( ). ( )DR SS DR
s

P s G s P s


      (20) 

(0) 1
(0)

H
D D B

R R
         (21) 

Therefore, (0)  is equivalent to the system frequency 

response characteristics, B, and the steady-state frequency 

deviation can be written as follows: 

, ,

1
S SS DR SS L

SS

P P P
f

D
R

    
 


   (22) 

It can be seen from Eq. (22) that the frequency deviation 

will not be zero unless the supplementary and/or DR controls 

exist. Also, DR control loop gives an extra degree of freedom 

for system frequency regulation. In addition, the following 

conclusions can be drawn from Eq. (22): 

 The steady-state error is not dependent on the delay and 

the order of its approximation, 

 With DR available in the LFC, a higher reliability of 

frequency regulation can be achieved, since the DR control 

loop can complement the supplementary control loop. In 

cases when the supplementary control is not available, the 

performance of the frequency regulation can be guaranteed 

by the DR loop, if enough DR resources are available.  

 In order to have zero frequency deviation at steady-state, 

the required control effort can be split between the 

supplementary and DR control loops. In other words, an 

ISO/RTO will have the opportunity to perform the 

regulation services in a cost effective way and analyze the 

frequency response of the system quickly. This goal can be 

achieved only in the proposed formulation (Eq. (22)) with an 

added control loop for DR (Fig. 1).  

Further discussion to the last conclusion is: consider a 

situation where there is no DR available. The frequency error 

will be zero at steady-state if 
,S SS LP P   . It means that the 

supplementary control should provide enough spinning and/or 

non-spinning reserve at the time of disturbance. With DR 

available in the LFC, the required control effort, called   in 

this study, can be split between the two control loops based on 

their cost at real-time electricity market as follows: 

 

( ) .

( ) 1 .

S

DR

P s

P s





  

   

   (23) 

where 0 1   is the share of traditional regulation services in 

the required control effort. 1   means that the total required 

regulation will be provided by the traditional regulation 

services, i.e. spinning and non-spinning reserve, and 0   is 

for the time when all the required control would be provided 

by DR. The decision on the value of  should be made by the 

ISO/RTO, based on the price of DR and the traditional 

regulation services in a real-time market, explored by the 

authors in ‎[21]. Then, it is possible for the ISO/RTO to 

effectively and quickly assess the different scenarios of LFC to 
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evaluate the system performance under various circumstances. 

Finally, the steady-state value of the two inputs should be: 

,

,

.

(1 ).

S SS L

DR SS L

P P

P P





  

   
   (24) 

B. Sensitivity Analysis for the Feedback System with and 

without DR 

In this sub-section, an analytical method is utilized to study 

the impact of the DR control loop on the overall sensitivity of 

the closed-loop system w.r.t. the open-loop system. It is also 

desired to measure the sensitivity of the closed-loop system 

w.r.t. the coefficient . The first sensitivity analysis is quite 

important since it shows the robustness of the closed-loop 

system performance when the system parameters are subjected 

to any change or variation. The second sensitivity analysis is 

also necessary since  is an important parameter in the 

performance of the LFC-DR model.  

The power system model shown in Fig. 1 is modified for 

this part with a single integral controller (with gain K) for both 

the supplementary and DR control loops, and also for the rest 

of this paper, as shown in Fig. 4. This modification will also 

allow us to split the required control effort between the DR 

and supplementary control loops, as was discussed in sub-

section III-A.  


( )M s LP

f

 ( )H s

R

K

s

   1 . ( ) . ( )G s H s







Primary control

Supp. and DR control

 
Fig. 4. Modified power system model with integral controller for DR and 

supplementary control loops 

For the power system shown in Fig. 4, the closed-loop 

transfer function relating the system frequency deviation to a 

step change in the load can be derived as follows: 

 

 

( ) ( )

( ). ( )( )
1 . . ( ). ( ) . 1 . ( ). ( )

( ) ( )

( ). ( )( )
1 . ( ). ( )

L DR

L S

f s M s

H s M s K KP s
H s M s G s M s

R s s

f s M s

H s M s KP s
H s M s

R s

 

  
 

     

  
 

   

  (25) 

 

where K is integral feedback gain of the system and ( )M s  is 

1
( )

2 .
M s

D H s



   (26) 

 

In Eq. (25), the first expression is the closed-loop transfer 

function when both DR and supplementary control loops are 

available, whereas the second equation shows the closed-loop 

transfer function for conventional LFC (with no DR). The 

open-loop transfer function, where only the primary control 

exists, can be derived as follows: 

( ) ( )
( )

( ). ( )( )
1

OL

L OL

f s M s
T s

H s M sP s

R

  
  

  

   (27) 

In order to derive the sensitivity function of the closed-loop 

system w.r.t. the open-loop system, Eq. (25) can be simplified 

and rearranged using Eq. (27): 

 

   

 

1

1

( ) 1

( )
( ) . . ( ) . 1 . ( )

( ) 1

( )
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OL

S
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OL

f s
T

K KP s
T s H s G s

s s

f s
T

KP s
T s H s

s

 




 
  

    

 
  

  

  (28) 

Therefore, the unitless sensitivity function of the closed-loop 

system w.r.t. the open-loop system, for systems with and 

without DR, can be written as follows: 

 

 

   

 

 

1

1
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T sT
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
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  
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  (29) 

It is noted from Eq. (29) that the closed-loop system is 

highly sensitive to the changes in the open-loop system, i.e. 

any change in the value of 
OLT  will have a large effect on DR

OL
 

and S

OL
. From Eq. (29), the ratio of sensitivity functions can 

be expressed as: 

 

 
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( ) . ( )
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  (30) 

Eq. (30) can be rearranged as follows: 
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





   
 

   


  (31) 

Therefore, it can be observed from Eq. (31) that the closed-

loop LFC-DR is slightly less sensitive than the system without 

DR only if ( ) ( )H s G s , assuming   and   have the same sign. 

In order to compare the sensitivity functions, a simulation 

study was carried out for an arbitrary integral feedback gain. 

The sensitivity values for both closed-loop systems are shown 

in Fig. 5. The values of the different parameters for this 

simulation study are given in Table II.  

 

TABLE II 

POWER SYSTEM PARAMETERS FOR THE SIMULATION STUDY ‎[33]. 

gT  
tT  R  2H  D  dT  

LP  K  

0.08 

sec 

0.4 

sec 

3.0 

Hz/p.u. 

0.1667 

pu. sec 

0.015 

p.u./Hz 

0.1 

sec 

0.01 

p.u. 
0.2 
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Fig. 5. The closed-loop system w.r.t. the open-loop system sensitivity values 

of a simulation study for LFC with and without DR 

Two different values for  are used in Fig. 5 to show that a 

higher DR share (smaller ) will result in less sensitivity of the 

closed-loop system w.r.t the open-loop system. That is, the 

closed-loop system becomes less sensitive to the variation of 

uncertain parameters of the open-loop system. When =0.8 

(i.e., 80% of the required regulation would be provided by the 

supplementary control and 20% is from DR), the sensitivity 

values for both the closed-loop systems, with and without DR, 

are almost similar. This is a good indication that the 5
th

-order 

Padé approximation, used for linearizing the time delay in the 

DR loop, doesn’t have any negative impact on the system 

performance. A similar study has been carried out to 

investigate the sensitivity of the closed-loop system w.r.t. the 

integral feedback gain, and similar results have been obtained. 

Since  is an important parameter in the performance of the 

closed-loop system with DR, it is useful to evaluate the 

sensitivity of the closed-loop system w.r.t. this coefficient. The 

sensitivity function can be written as follows: 

 

   
1

. . ( ) ( )

( ) . . ( ) . 1 . ( )
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OL
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

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
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 
     

  (32) 

The previous simulation setup was utilized for two different 

values of . Sensitivity results are shown in Fig. 6. 
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Fig. 6. The closed-loop system w.r.t.  sensitivity values for the LFC-DR 

model, =0.1 and =0.8 

It can be seen from Fig. 6 that the closed-loop system is less 

sensitive to  when the DR control loop takes a higher share in 

the frequency regulation, i.e. smaller  values. 

C. Stability Analysis of the Closed-Loop Systems 

A prerequisite for satisfactory control of a feedback control 

system is its stability, and gain and phase margins are two 

criteria commonly used for stability evaluation ‎[37]. The gain 

and phase margins can be obtained from the Bode diagrams of 

the open-loop transfer function of the closed-loop system since 

the zeros of the characteristic equation are poles of the closed-

loop system ‎[37]. Using the load disturbance, ( )LP s  as the 

system input, the open-loop transfer functions are: 

( ). ( )
1 . . ( ). ( ) .(1 ). ( ). ( ) 0

( ). ( )
1 . ( ). ( ) 0

DR

S

H s M s K K
H s M s G s M s

R s s

H s M s K
H s M s

R s





     

  

  (33) 

where DR  and S  are the open-loop transfer function for the 

closed-loop systems with and without DR, respectively. Here, 

the control characteristics of the closed-loop systems (Eq. (33)

) can be obtained by taking the feedback gain as a variable 

parameter. From Eq. (33), it is possible to calculate the new 

open-loop transfer functions, DR  and S . These transfer 

functions have the same root-locus properties as of DR  and 
S as follows: 

 

 

 

. . ( ). ( ) 1 . ( ). ( )
1 . 0

. ( ). ( )

. ( ). ( )
1 . 0

. ( ). ( )

DR

S

R H s M s G s M s
K

s R H s M s

R H s M s
K

s R H s M s





     


 


  (34) 

The Bode plots of the systems of Eq. (34) are shown in Fig. 

7. The parameters of the case study are given in Table II. It 

can be seen from Fig. 7 that both systems (with and without 

DR) are relatively stable; however, larger gain and phase 

margins have been achieved when the DR control loop is 

added to the system. The phase and gain margins are given in 

Table III. It can be noticed from this table that a higher share 

of control effort for the DR control loop, i.e. smaller , will 

provide a higher gain and phase margin, indicating a more 

stable system. In addition, the table shows that the 5
th

-order 

Padé approximation has no negative impacts on the stability of 

the system, as discussed in sub-section II-A.  
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Fig. 7. Bode plot of the closed-loop systems for stability analysis, (a) 

magnitude, and (b) phase 
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TABLE III 

PHASE AND GAIN MARGINS FOR THE OPEN-LOOP TRANSFER FUNCTION 

ASSOCIATED WITH EACH CLOSED-LOOP SYSTEMS. 

 , 0.1DR    , 0.8DR    S  

Gain margin, dB 14.1 11.3 10.3 

Phase margin, degree 83.5 74.8 72.2 

IV. GENERAL APPROACH FOR CONTROLLER DESIGN FOR THE 

LFC-DR MODEL 

Several different classical and modern control theories have 

been utilized for the LFC problem ‎[32]. In this section, a 

general controller design approach for the LFC problem with 

the DR control loop is presented. Here, we use the widely used 

linear quadratic regulator (LQR) for controller design. We will 

examine other effective control design approaches, which will 

include parameter uncertainty and measurement noise, in our 

future work.  

The simplified version of the LQR problem is to design the 

controller such that the performance index, Eq. (35), is 

minimized for the system given in Eq. (3) ‎[39]: 

0

. . . . . .x Q x u R u
T T dt



        (35) 

where   is a weighting factor chosen by the designer, 

considering the trade-off between system transient 

performance and control effort. Q  is an n-by-n semidefinite 

symmetric state cost matrix (n is the number of system states), 

R  is an m-by-m positive definite symmetric control cost matrix 

(m is the number of control inputs), and  1 8, ,x
T x x  

(where
1 2 3, ,gx f x P x P      , and

4 8, ,x x are the states 

associated with the 5
th

-order Padé approximation).  

Using Eq. (23), it can be shown that the control input to the 

supplementary controller (
1 Su P  ) and to the DR controller 

(
2 DRu P  ) are related as follows: 

1 2 2 1

1
. .

1
u u or u u

 

 


 


  (36) 

For the system with unified control inputs, all the state-space 

matrices will remain unchanged, except the control input 

matrix B, where Eq. (8) is modified to include 
2 1( )u F u as 

follows: 

1 1 16(1 )
0 0 0 0 0

2 .

T

g

B
H T

 

 

  
  
  

  (37) 

It is also possible to use
1 2( )u F u  in Eq. (8). However, as 

will be shown in the simulation results in Section V, the 

system performances in the two cases are nearly identical.  

It is also noted that all the system states are non-zero 

except f , where the goal is to keep f as close to zero as 

possible. As a result, the full-state feedback controller cannot 

guarantee zero steady-state error for frequency deviation. 

Therefore, an integral controller is necessary to ensure zero 

steady-state error in the system frequency. In the early works 

on the application of optimal control to the LFC problems, e.g. 

‎[40]-‎[43], it was common to fix this problem with redefining 

the states in terms of their steady-state values, which 

essentially needs a prior knowledge of the disturbance. 

However, in most real-world cases the disturbance to the 

power system is an unknown parameter. Therefore, in this 

study, an ad hoc solution to the integral control problem is 

utilized by augmenting the state vector ‎[39]. The design will 

also be robust against any changes in the system parameters. 

Modifying the state-space model in Eq. (3) to include the 

integrator, the augmented state equations become: 

 

0
. . .

0 00

0 .

x xA B

C

x
C

I I

I

u w
x x

y
x

       
         
        

 
  

 

   (38) 

where 
2u u . The augmented state-space equation can be 

written as follows: 

. . .

.

x A x B

C x

u w

y

  


   (39) 

where the states are defined as 4 8, , , , , , .x
T

g tf P P x x f dt     
  . 

The matrices for the modified system are: 

 
   

8 1

1 7

, 0 , 0 , 0
1 0

A 0
A B B C = C

0
T T  





 
     

  
  (40) 

If the augmented system matrix is controllable, then the 

control law and the state feedback can be defined as: 

 .
x

K K.xI

I

u K
x

 
    

 
   (41) 

To employ the LQR method, it is required to define the state 

and control weighting matrices, Q and R (scalar quantity) 

respectively. Before defining the weighting matrices, a set of 

frequency response requirements should be defined: 

 The steady-state frequency deviation following a step-

change in the load must be zero, i.e.  
2

f ‎[40]. 

 The time error represented by the integral of the 

frequency deviation should not exceed ±3 seconds, i.e. 
2

.f dt 
  ‎[40]. 

Eventually, the weighting matrices considering the above 

requirements will be as follows: 

 1 71 1 , [1]Q 0diag R     (42) 

In the next section, simulation results for the LFC-DR model 

of a single-area power system are presented to verify the 

effectiveness of the proposed model.  

V. SIMULATION RESULTS FOR SINGLE-AREA POWER SYSTEM 

In order to show some important features of the proposed 

LFC-DR model, the results of several different simulation 

studies are reported in this section for a single-area power 

system. In order to make a fair comparison, similar LQR 

design procedure has been employed for controller design for 

both systems, with and without DR. The parameters used in 

the simulation studies are given in Table II. The LQR problem 

has been solved using MATLAB
®
/Control System Toolbox. 

In the first simulation study, a 0.01 pu load disturbance was 

applied to the single-area power system with conventional 

LFC and the proposed LFC-DR model. The system frequency 

deviation is shown in Fig. 8.  
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Fig. 8. Frequency deviation for conventional LFC and LFC-DR models 

It can be seen that when =0.1 (i.e., 10% of the required 

regulation is provided by the supplementary control and 90% 

from DR), the LFC-DR model has a superior performance 

over the conventional LFC during the transient period. 

Specifically, the overshoot in the system frequency deviation is 

decreased by about 42.5%. The results show improvement in 

the settling time as well. The same simulation was repeated for 

=0.8. As expected, the lower DR control effort resulted in 

less improvement in the system dynamic performance. It can 

be observed that the dynamic performance of the system 

approaches that of conventional LFC for higher values of . 

The supplementary and DR control inputs are shown in Fig. 

9, for the same simulation. As discussed in Section III.A, the 

steady-state values of the control inputs are based on the share 

between the DR and the supplementary control loops, i.e. the 

value of , which is decided by the regional ISO/RTO based 

on the real-time electricity market. The steady-state value 

calculations are also shown in Fig. 9 which match with Eq. 

(24). 
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Fig. 9. Steady-state values of the control inputs for the LFC-DR model 

A simulation study was carried out to show the impact of the 

order of Padé approximation on the performance of the 

system, the results of which are shown in Fig. 10. 2
nd

- and 5
th

-

order Padé approximations are considered in the proposed 

LFC-DR model and compared with the conventional LFC, for 

=0.1. It can be seen from Fig. 10 that the results from the 2
nd

- 

and 5
th

-order Padé approximation are almost identical. It is 

mainly because the simplified governor and turbine models are 

low pass filters which restrict the system response to lower 

frequency ranges, where Padé approximation is exactly the 

same as pure time delay, as discussed in Section II. Therefore, 

for simplicity, 2
nd

-order Padé approximation can be employed 

for more complicated power systems without negative impacts 

on the final results. 
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Fig. 10. Controller performance for different order of Padé approximation 

As discussed in Section IV, the two control inputs are 

unified as a single input for the controller design as a function 

of . The control input unification can be done in two ways: 

unifying u1(t) as a function of u2(t) or vice versa ( 1 2.
1

u u






 or 

2 1

1
.u u






 ). To show the impact of unification, a simulation 

study was carried out to compare the performance of the 

system for both unification cases, and the results are shown in 

Fig. 11. It can be observed that the difference between the two 

unifying approaches is negligible. In other words, the unifying 

control input can be chosen arbitrarily without any negative 

impact on the performance of the LFC-DR model.  
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Fig. 11. The impact of different unified inputs on the performance of the 

LFC-DR model 

One significant feature of the proposed LFC-DR model is 

the possibility for the ISO/RTO to evaluate the impact of 

communication delay of the DR control loop on the system 

performance for frequency stabilization. In order to show the 

impact of latency, a simulation study was performed for 

different values of communication latency for =0.1. 

Simulation results are shown in Fig. 12. The lowest 

communication delay (lowest Td) is for a small power system 

with fast two-way communication link, such as wireless 

communication, between the Lagcos and individual loads. It 

can be seen that the LFC-DR model gives a better performance 

compared to the conventional LFC when Td≤0.2 sec. When 

the time delay exceeds 0.2 sec, it deteriorates the performance 

of the LFC-DR, and the response is even worse than that of 

conventional LFC for Td=0.4 sec. This is not surprising since 

the single-area power system under study has a very fast 

dynamic response. In larger power systems with generation 

rate limiters and slow turbine-governor systems, a slower 

DR loop, =0.1 

SS=0.90.01=0.009 p.u. Supplementary, =0.8 

SS=0.80.01=0.008 p.u. 

DR loop, =0.8 

SS=0.20.01=0.002 p.u. 
Supplementary, =0.1 

SS=0.10.01=0.001 p.u. 
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dynamic behavior would be expected from the supplementary 

control. But, the LFC-DR will keep its superior performance 

even for higher communication latencies (discussed below). 
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Fig. 12. The impact of latency on the performance of the LFC-DR model 

To show the impact of the DR latencies on a larger power 

system with high inertia and slower response, another 

simulation study was conducted with the parameters given in 

Table IV. It can be seen from Fig. 13 that for a larger and 

consequently slower power system, the performance of the 

LFC-DR model is superior to that of conventional LFC even 

for larger communication latencies. It has been shown in ‎[6] 

that even with the current Internet infrastructure, a latency of 

500 msec can be achieved easily. Therefore, it can be 

concluded that the DR with the largest available latency (500 

msec) still can be effective for large power systems. 

TABLE IV 

POWER SYSTEM PARAMETERS FOR THE SIMULATION STUDY ‎[44]. 

gT  
tT  R  2H  D  LP  

0.3 

sec 

0.8 

sec 

2.4 

Hz/p.u. 

3.0 

pu. sec 

0.0083 
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0.01 
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Fig. 13. The impact of DR latency on the performance of a slower single-area 

power system 

VI. DISCUSSION AND FUTURE WORK 

Our proposed LFC-DR model responds to all frequency 

deviations as is the case in the traditional LFC model ‎[33], 

‎[36]. However, if it is desired to prevent the LFC-DR model to 

respond to small frequency deviations, and also keep the 

linearity of the model, a deadband could be added to the input, 

∆PL. ∆PL could include the variation in any renewable 

generation that might be available in the power system as 

negative load.  This is because of the fast dynamics of the 

common variable generation (wind, solar PV) compared to 

those of traditional power plants in the LFC model. 

In this paper, we have explored the effectiveness of the 

LFC-DR model for frequency regulation at the transmission 

level in a single-area power system. However in general, large 

power systems are multi-area where different Gencos and 

Lagcos are available in each area. In our future work, we will 

report the application of LFC-DR in multi-area power systems. 

VII. CONCLUSIONS 

In this paper, a general framework is proposed to include 

DR into the LFC problem (LFC-DR). The proposed 

formulation can be expanded easily for any type of power 

system in size and characteristics. The framework adapts a 

real-time electricity market with existing load aggregators. It 

balances the power between generation and demand and 

stabilizes the system frequency by utilizing a percentage of 

available controllable loads and/or conventional 

supplementary control, based on the real-time market price. It 

also includes communication latencies in DR for controller 

design, using Padé approximation. It is shown through 

different analytical studies that the proposed LFC-DR 

framework will improve the stability margins in the 

conventional LFC model and is slightly less sensitive to the 

variation in the system parameters, such as changes in the 

open-loop transfer function. Similar results have also been 

obtained for the sensitivity of the closed-loop system w.r.t. the 

parameter . Finally, the well-known LQR design is applied 

for full-state feedback controller design for a single-area 

power system. Simulation results show the effectiveness of the 

LFC-DR model in improving stabilization of the system 

frequency.  
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