

A comprehensive day-ahead scheduling strategy for electric vehicles operation

Mahsa Bagheri Tookanlou^a, S. Ali Pourmousavi Kani^b, Mousa Marzband^{a,c}

^a*Faculty of Engineering and Environment, Department of Maths, Physics and Electrical Engineering, Northumbria University Newcastle, Newcastle upon Tyne NE1 8ST, UK*

^b*School of Electrical and Electronic Engineering, University of Adelaide, Australia*

^c*Center of research excellence in renewable energy and power systems, King Abdulaziz University, Jeddah, Saudi Arabia*

Abstract

Distribution networks are envisaged to host significant number of electric vehicles and potentially many charging stations in the future to provide charging as well as vehicle-2-grid services to the electric vehicle owners. The main goal of this study is to develop a comprehensive day-ahead scheduling framework to achieve an economically rewarding operation for the ecosystem of electric vehicles, charging stations and retailers using a comprehensive optimal charging/discharging strategy that accounts for the network constraints. To do so, an equilibrium problem is solved using a three-layer iterative optimisation problem for all stakeholders in the ecosystem. EV routing problem is solved based on a cost-benefit analysis rather than choosing the shortest route. The proposed method can be implemented as a cloud scheduling system that is operated by a non-profit entity, e.g., distribution system operators or distribution network service providers, whose role is to collect required information from all agents, perform the day-ahead scheduling, and ultimately communicate the results to relevant stakeholders. To evaluate the effectiveness of the proposed framework, a simulation study, including three retailers, one aggregator, nine charging stations and 600 electric vehicles, is designed based on real data from San Francisco, the USA. The simulation results show that the total cost of electric vehicles decreased by 17.6%, and the total revenue of charging stations and retailers increased by 21.1% and 22.6%, respectively, in comparison with a base case strategy.

Keywords: Charging and discharging strategy, cloud scheduling system, electricity pricing, electric vehicles, three-layer optimisation problem

¹ 1. Introduction

A significant amount of private and public money has been invested in electric vehicles (EVs) in recent years in an attempt to reduce fossil fuel consumption and consequently lowering CO₂ emission in transportation sector [1–3]. While electrification of transportation sector has undeniable and significant environmental impacts, a large uptake of EVs introduces new challenges for the grid operation, the biggest of which is uncoordinated EV charging in grid-2-vehicle (G2V) mode. The system's operation will become more chal-

Email address: mahsa.tookanlou@northumbria.ac.uk (Mahsa Bagheri Tookanlou)

7 lencing when EVs operate in vehicle-2-grid (V2G) mode supporting the upstream grid operation. It has
8 been investigated in several studies [4–7] by showing that a proper coordinated operation of EVs in both
9 G2V and V2G modes can be beneficial for the grid operation. Considering other entities/agents involved in
10 the future electrified transportation sector, e.g., charging stations (CSs) and energy providers (retailers), we
11 will be faced with an unprecedented level of operational complexity. As a result, optimal scheduling of CSs
12 and EVs as well as determining V2G and G2V prices by accounting for EVs driving needs are deemed as
13 one of the significant challenges to facilitate transportation electrification. Also, distribution network service
14 providers are expected to face with extreme voltage violations, increased power losses and overload of trans-
15 mission lines and transformers [8–10] due to significant increase in demand by uncoordinated EV charging
16 [11–13]. Therefore, a comprehensive optimal day-ahead scheduling framework is needed to overcome the
17 outstanding economic and technical challenges by minimizing the cost of EVs operation while fulfilling their
18 requirements, and maximising the profit of CS operators and other entities/agents while respecting technical
19 limitations of the network.

20 Numerous studies partially investigated the different aspects of these challenges. Various EV's charg-
21 ing/discharging strategies have been proposed considering customers' preferences. In [14], an EV charg-
22 ing/discharging scheduling and control framework has been proposed to provide grid services considering
23 EV drivers travel requirements. In [15], a charging algorithm has been proposed for allocating power to a
24 large-scale plug-in hybrid EVs at a parking station. EV management and charging/discharging scheduling
25 model have been developed for an intelligent parking lot in [16] considering economical and technical aspects
26 of EV operation, simultaneously. In [17], a bi-level optimisation algorithm was developed based on multi-
27 agent systems to optimise the performance of an EV aggregator and to generate optimal bids for participation
28 in energy markets. The effects of EV's V2G and G2V operation on the power system demand profile as well
29 as the stability and reliability of the power system were investigated in [7]. Various power levels for V2G
30 and G2V operation were considered to estimate its impact on the system reliability. In [18], a coordination
31 algorithm for EVs' V2G and G2V operation was proposed considering the impact of penetration of EV fleets
32 into the power system. In [19], a multi-variant route optimisation model was presented for EVs operation
33 incorporating G2V and V2G options in the travel path. A steady-state analysis of a distribution network
34 was proposed in [20] to determine the nodal voltage variations considering different EVs' charging strategies.
35 A smart charging strategy of EVs at CSs has been introduced offering multiple charging options. In [21],
36 a combination of EV routing and charging/discharging scheduling strategy was proposed to operate an EV
37 fleet. A mixed-integer linear program (MILP) was formulated to maximise the revenue of EV owners subject
38 to EV and distribution network constraints. In [22], a mathematical model is developed for integration of
39 EVs and distributed generation units in energy market under a joint aggregator. Also, the performance
40 of the EV aggregator under the uncertainty of electricity market prices was studied through an stochastic
41 optimisation formulation. A two-stage scheduling framework at the distribution level was proposed in [23].
42 In the first stage, the charging/discharging schedules of EVs were obtained. In the second stage, the resource

43 were scheduled, i.e., usage profiles of the distributed generation units, strategy of buying electricity from the
44 market, and final charging/discharging patterns of the EVs were obtained. In [24], a framework was pre-
45 sented to develop the network equilibrium traffic and charge patterns in an electric transportation network.
46 In that study, the effects of individual CS on aggregate congestion and electricity costs were investigated. In
47 [25], the optimal traffic-power flow model was reformulated as a mixed integer second-order cone program
48 (MIQP) to optimise coordinated operation of transportation and electricity networks. A framework linking
49 power network with transportation system was proposed in [26] to navigate EVs to CSs using a hierarchical
50 game approach considering reliability of the distribution network and profit of CSs.

51 Furthermore, numerous studies offered approaches based on a multi-objective optimisation. In [27], a
52 multi-objective optimisation problem was developed for scheduling EV's V2G and G2V operation. Simulta-
53 neous optimisation of electricity cost, battery degradation, grid net exchange and CO₂ emissions have been
54 performed. Another multi-objective optimisation problem was developed in [6] to consider both power grid
55 and EV drivers' concerns. The stochastic modelling was proposed to take into account the inherent uncer-
56 tainty of EV driving activities and renewable energy output power. In [28], a day-ahead co-optimisation
57 problem was developed to minimise the negative impacts of plug-in EVs on the power system operation
58 by minimizing the cost of energy losses and transformer operation cost while managing active and reactive
59 powers. In [29], a multi-objective framework was proposed to schedule EVs' charging and discharging in a
60 smart distribution network, where total operation cost of the distribution network, including EVs and CO₂
61 emission from distributed generation units and the main grid, was minimised. A multi-objective optimisation
62 problem was proposed in [30] to find optimal charging schedule of a large EV fleet considering the operation
63 of the transportation network, power network, and CSs where the nearest CS was selected as the best option
64 regardless of the electricity prices. A two-stage multi-objective optimisation problem was offered in [31],
65 where the driving needs of EV owners were considered in the first stage. In that study, total energy and
66 emission costs were optimised in the second stage under the uncertainty of solar irradiation and wind speed.

67 On a relevant subject, an EV charging management system was developed in [32] to guide EVs to a CS
68 such that the negative impact of EVs on the grid is mitigated. The goal was to ensure a proper service to
69 EVs regarding availability of chargers and minimum waiting time at the CS considering user preferences and
70 needs. A CS selection method is proposed in [33] to minimise the travel time, waiting time, and charging
71 cost for an EV.

72 A review of the existing literature indicates several gaps in research related to G2V and V2G operation
73 as well as CSs operation, which are outlined below:

74 • The proposed strategies in [6, 7, 14–33] do not optimise the profit of all agents including retailers,
75 CSs, and EVs participating in charging/discharging scheduling, whether collectively or individually. In
76 other words, a comprehensive ecosystem has not been considered in these studies to address different
77 aspects of the G2V and V2G operation considering the effects of optimal operation of CSs and retailers
78 through an iterative process.

79 • V2G and G2V prices are considered as known parameters in [6, 21–23, 28–31] as opposed to calculating
80 the equilibrium prices as a part of the optimisation problem;
81 • In [21, 22, 30, 32], the nearest CSs were selected as the optimal option without considering the cost-
82 benefit of the services offered by CS operators.

83 The goal of this study is to develop a comprehensive day-ahead scheduling framework to guarantee economic
84 and energy-efficient routing of EVs, where each EV finds the best CSs for V2G and G2V operation based
85 on a cost-benefit analysis. It is done by proposing an ecosystem including three stakeholders (EVs, CSs
86 and retailers) and a three-layer optimisation problem. It is formulated and optimised as an equilibrium
87 problem such that the collective benefits of all three stakeholders are guaranteed simultaneously. The main
88 contributions of this paper can be summarised as follows:

89 • Proposing a comprehensive day-ahead scheduling strategy that represents an ecosystem including the
90 interaction between EVs, CSs, and retailers during EVs' V2G and G2V operation whilst optimising
91 the collective welfare of all agents;

92 • The coordinated EVs' V2G and G2V operation is formulated and solved such that the effects of optimal
93 operation of CSs and retailers are considered through an iterative process;

94 • Obtaining optimal day-ahead electricity prices of all agents during V2G and G2V operations such that
95 the collective benefit of all three stakeholders are achieved simultaneously by solving an equilibrium
96 problem iteratively;

97 • Combining cost/benefit and energy-efficient-routing problems (instead of choosing the shortest route)
98 for each EV to select the best CS, which is integrated with the CSs operation in purchasing electricity
99 from retailers.

100 This paper is organized as follows. Section 2 describes the structure of the proposed EV charging and
101 discharging strategy incorporating the three agents. Section 3 presents the proposed three-layer optimisation
102 formulation. Salp swarm algorithm (SSA) is used in this study for solving optimisation problems (and
103 compared with particle swarm optimisation (PSO) algorithm), which is explained in Section 4. The case
104 study is introduced in Section 5. The simulation results are presented and discussed in Section 6. Finally,
105 in Section 7, conclusion and recommendation of future work are given.

106 2. The structure of the proposed ecosystem

107 In this paper, a comprehensive ecosystem is envisaged for the future electrified transportation sector by
108 considering all three agents, as shown in Figure 1. In this ecosystem, retailers purchase electricity from the
109 wholesale market and sell it to CSs aiming to maximise their profit. The CSs are charging stations with
110 known locations in a given area and operate at the distribution system level as the point of connection of
111 EVs to the main grid in G2V and V2G modes. Similar to retailers, CS operators are looking to maximise
112 their profit in this framework. Both CSs and EVs are entitled to choose their energy providers based on
113 their economic benefits. For the sake of completeness, the CSs are assumed to have onsite conventional

114 generation unit (CGU), photovoltaic (PV), and energy storage system (ESS), which might be used to supply
115 electricity to EVs. An CGU could be a small gas turbine-generator. In this study, conventional retailers
116 are assumed; thus they are not able to sell energy back to the wholesale market by purchasing it from CS
117 operators. Therefore, V2G service is purchased from EVs by CS operators and sold in the wholesale market
118 through an aggregator. Please note that the aggregator optimal operation has not been considered in this
119 study to avoid further complexity and will be considered in our future work.

120 EVs are the end-users, as shown in Figure 1. During a typical day, EVs might have multiple trips with
121 different waiting times between each trip. EVs with known location and initial state of charge (SOC) plan
122 their charging/discharging depending on the shortest driving route and a cost/benefit analysis based on the
123 CSs prices. Please note that each EV can only be charged or discharged during each trip if there is an
124 economic benefit to do so while respecting the EV's constraints. In this case, EVs require an algorithm to
125 select proper CSs for G2V and V2G operation to minimise their cost.

126 In order to satisfy the objectives of different agents, a top-to-bottom coordinated method is proposed
127 that solves a day-ahead scheduling problem for all agents. The formulated problem is an equilibrium one
128 that is solved in three layers sequentially and iteratively, where the leader is the retailer agent. The solution
129 to the equilibrium problem is inspired by Walrasian tâtonnement, which leaves the price invariant if and only
130 if it is an equilibrium price [34, 35]. Through the iterative three-layer optimization problem, the operation
131 of each player in the framework is changed by receiving new information from other players to reach the
132 equilibrium point. The proposed solution can be offered to the agents as a cloud scheduling system, which is
133 operated by a non-profit entity (aka price-setter). Its role is to collect required information from all agents,
134 as shown in Figure 2, run the top-to-bottom coordinated scheduling method, and ultimately dispatch the
135 results to relevant agents. Since power system topology is needed to ensure the feasibility of the solutions
136 against network constraints, distribution system operators or distribution network service providers could
137 be the best candidates to take on this role. Since the scheduling system operator does not seek any profit
138 in the proposed framework, accessing to the information of the three stakeholders does not compromise fair
139 operation of the scheduling system. It is assumed that all agents have communication links with the cloud
140 scheduling system. All information exchanged between the stakeholders and the scheduling operator can be
141 end-to-end encrypted, so that it becomes more difficult to compromise the information. The information
142 exchanged between three agents and the cloud scheduling system are detailed in Figure 2. The following
143 assumptions are made in developing the proposed strategy:

- 144 • All agents are economically rational within their personal preferences and limitations, which means
145 that they change their behaviour in response to economic incentives;
- 146 • It is assumed that each EV can only be charged or discharged during each trip if there is an economic
147 benefit to do so while respecting the EV's constraints. Therefore, there is an implicit constraint in the
148 optimisation formulation that is limiting the number of charge/discharge events, which is based on the
149 EV owner's preferences (as in their day-ahead plan);

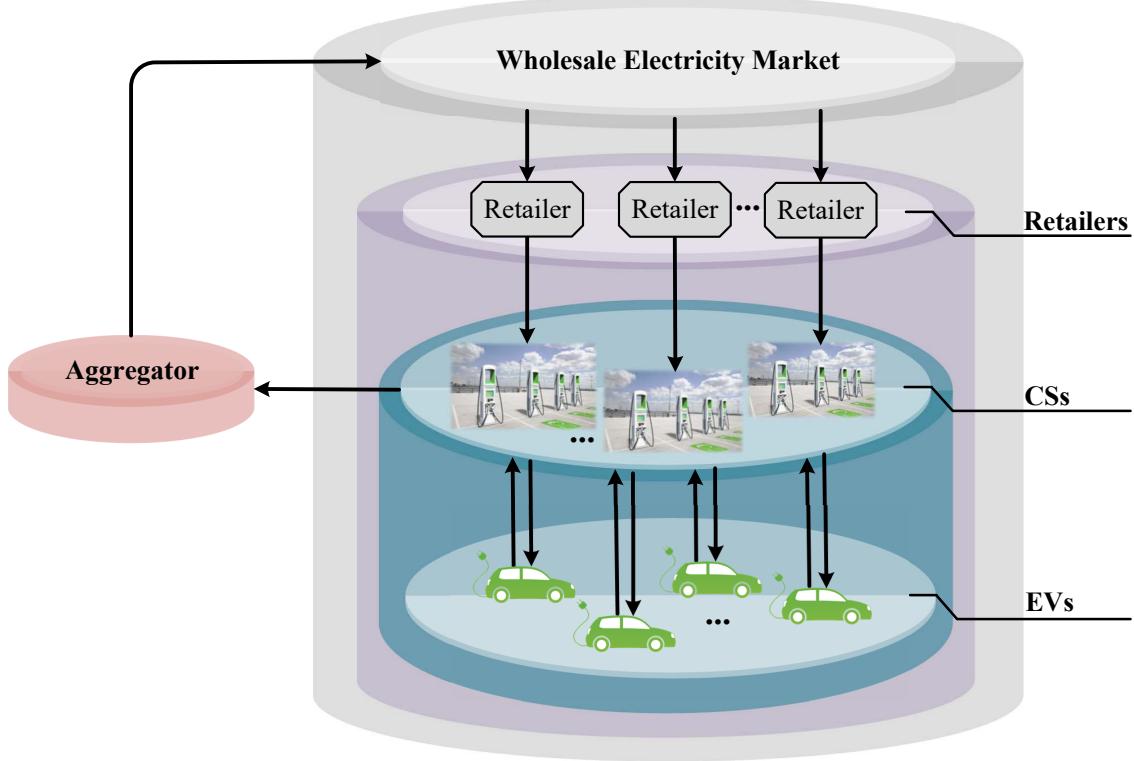


Figure 1: Conceptual structure of the proposed ecosystem including interactions between wholesale electricity market, retailers, aggregator, CSs, and EVs.

- 150 • In order to consider EV owners' preferences, a minimum SOC level is specified by the EV owner as
151 the minimum battery SOC at the end of the day;
- 152 • All CSs have fast DC charger (22kW and 50kW). This is to ensure that the scheduled G2V or V2G
153 operation will be fulfilled within an hour for any type of EVs;
- 154 • In each hour, the number of EVs assigned to a CS is smaller or equal to the number of EV chargers in
155 that station. Therefore, no queuing is required.

156 There are four steps to implement the proposed strategy, as depicted in Figure 3, that should be followed:

157 **Step 1:** At the beginning of the scheduling period, the cloud scheduling system collects required pa-
158 rameters and data from each agent for every hour of the next day. The input parameters that should be
159 communicated to the cloud scheduling system from each agent and decision variables of each agent are sum-
160 marized in Table 1. It is worth mentioning that some of the parameters do not change on a daily basis; they
161 will be updated when needed by the agent, e.g., number and capacity of available EV chargers in each CS.

162 This way, the amount of required communication bandwidth can be reduced significantly.

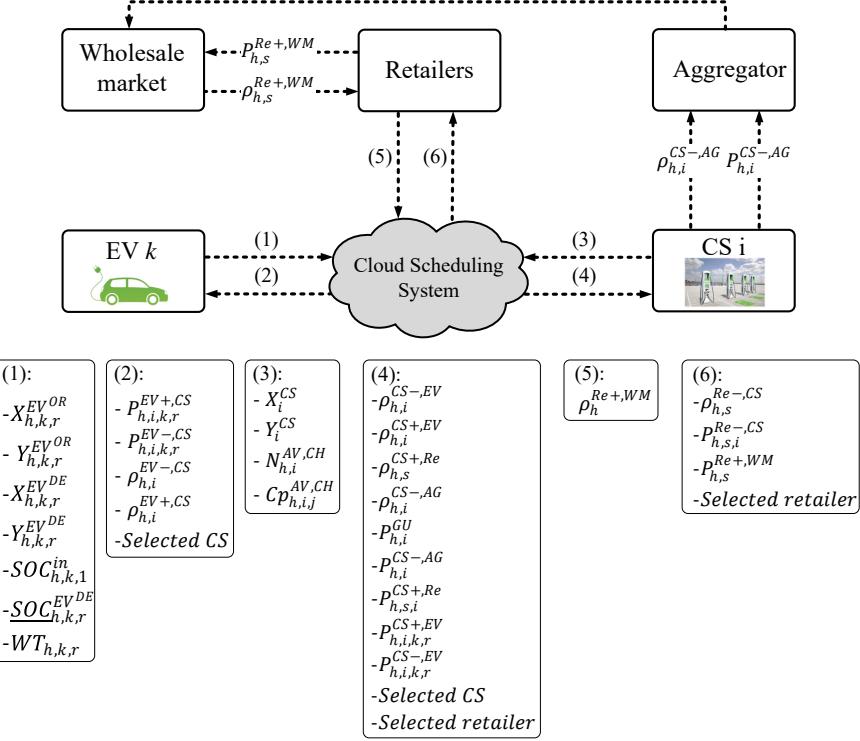


Figure 2: The cloud scheduling system and the required communication links with other agents.

Table 1: Input parameters and decision variables for each agent

Agent	Input Parameters	Decision Variables
Retailers	$\rho_{h,s}^{Re+WM}$	$\rho_{h,s}^{Re-CS}$
CSs	$X_i^{CS}, Y_i^{CS}, N_{h,i}^{AV,CH}, Cp_{h,i,j}^{AV,CH}$	$P_{h,i}^{GU}, P_{h,s,i}^{CS+Re}, P_{h,i}^{CS-AG}$
EVs	$X_{h,k,r}^{EV^{OR}}, Y_{h,k,r}^{EV^{OR}}, X_{h,k,r}^{EV^{DE}}, Y_{h,k,r}^{EV^{DE}}$ $SOC_{h,k,1}^{in}, WT_{h,k,r}, SOC_{h,k,r}^{EV^{DE}}$	$P_{h,i,k,r}^{EV-CS}, P_{h,i,k,r}^{EV+CS}$

163 **Step 2:** Let's assume that each EV is allowed to plan T trips per day where each trip $r \in \{1, \dots, r, r +$
164 $1, \dots, T\}$. The shortest driving route for each trip is determined by a network analyst toolbox called ArcGIS
165 [36] as a navigation platform in the cloud scheduling system. For each hour, the longitude and latitude of
166 each CS, origin and destination of each EV for each trip are used to determine the shortest route considering
167 the traffic pattern in each hour. Five potential shortest driving routes will be identified in step 2: **Route#1**:
168 the shortest driving route between the origin and destination of EV k for trip r ; **Route#2**: the shortest
169 driving route between the origin of EV k and the location of CS i for trip r /trip $r + 1$; **Route#3**: the
170 shortest driving route between the destinations/origin of EV k for trip r /trip $r + 1$ and destination of EV k
171 for trip $r + 1$; **Route#4**: the shortest driving route between the location of CS i and destination of EV k
172 for trip r ; **Route#5**: the shortest driving route between the location of CS i and the destination of EV k

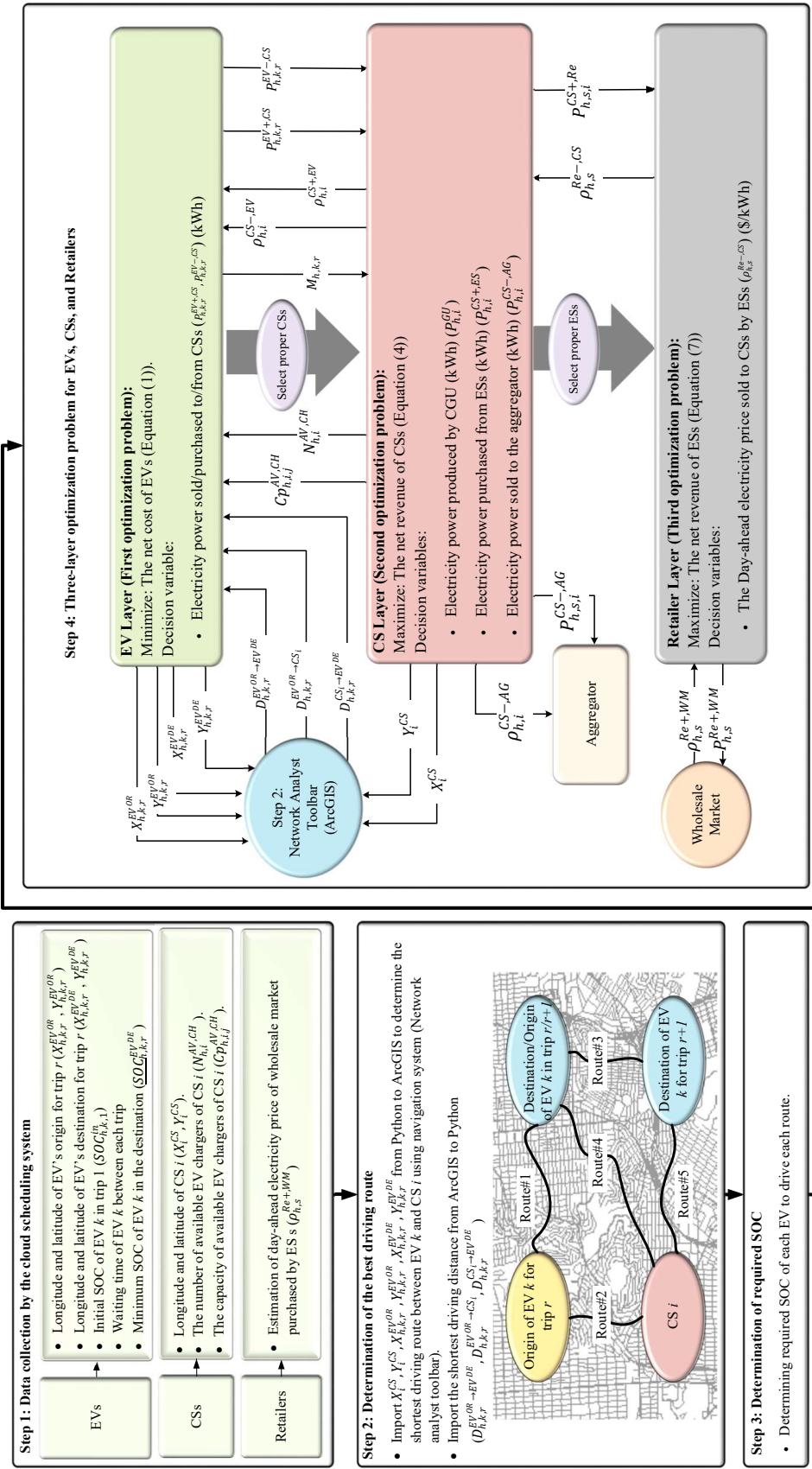


Figure 3: Step-by-step process of implementing the proposed strategy

173 for trip $r + 1$. As shown in Figure 3, the driving distances corresponding to the five possible driving routes
174 will be used in Step 3.

175 **Step 3:** Required energy (in terms of battery SOC changes) to drive each set of the five routes will be
176 calculated in this step for each EV.

177 **Step 4:** The framework of the three-layer optimisation problem for EVs, CSs, and retailers is imple-
178 mented in this step, as shown in Figure 3. Three layers in the framework correspond to the optimisation
179 problem that should be solved for each of the three agents. As shown in Figure 2, parameters are received by
180 the cloud scheduling system, as explained in Table 1. The three optimisation problems are solved iteratively
181 for 24 hours ahead, which is summarised in Algorithm 1. The optimisation problems formulation and the
182 optimisation technique are explained in Section 3 and 4, respectively. Through the iterative three-layer
183 optimisation problem, the profit of all agents are optimised as an equilibrium problem. It essentially leads to
184 collective optimisation which can be called social welfare optimisation of the ecosystem. In the equilibrium
185 problem, the iterative algorithm is used to solve, and consequently, update the position of each player in the
186 framework by receiving new information (e.g., new prices) from other players to find the equilibrium point
187 in which the prices do not change. This way, we are able to obtain the prices of V2G and G2V at different
188 level of the system. Since the scheduling system is operated in day-ahead, wholesale market price estimation
189 is needed for the entire next day.

190 In the first iteration, retailers generate the prices that they would like to offer to CSs based on their profit
191 margin. Then, the prices will be passed on to CS layer in this iteration. The prices increase in CS layer
192 considering their profit margin. Then, CSs communicate the prices to EV layer where the first optimisation
193 problem, i.e., (1)-(2c) with the constraints in (9a)-(14), will be solved for the first time. The optimisation
194 solutions, i.e., energy sold/purchased to/from CSs in each trip, will be sent to the CSs layer, where the
195 operation of CSs will be scheduled by solving the optimisation problem in (4)-(6c) with the constraints given
196 in (15a)-(19c). Ultimately, the optimisation solutions including energy produced by CGUs as well as the
197 electricity traded with retailers and aggregators will be used in Retailer layer to obtain optimal operation
198 of the retailers using the optimisation problem in (7)-(8b) and the constraints in (20a)-(26). As a result,
199 the optimal day-ahead electricity prices sold to CSs by retailers is determined in Retailer layer. The newly
200 generated prices will then be used in the second iteration to repeat the optimisation problems of the EV
201 and CS layers. This iterative process will go on until a certain convergence criterion is met. In this study,
202 the convergence criterion is defined as the change in the objective function in the two consecutive iterations,
203 which should be less than 10^{-3} for all three optimisation problems.

Algorithm 1 Three-layer optimisation problem for EVs, CSs, and Retailers

```

204    > Retailer layer
1   $it^{Re} = 1$ 
2  while  $it^{Re} \leq \bar{it}^{Re}$  do
3      Initialize the decision variables in Retailer layer.
4      > CS layer
5       $it^{CS} = 1$ 
6      while  $it^{CS} \leq \bar{it}^{CS}$  do
7           $it^{CS} = 1$ 
8          Initialize the decision variables in CS layer.
9          > EV layer
10          $it^{EV} = 1$ 
11         while  $it^{EV} \leq \bar{it}^{EV}$  do
12             if  $it^{EV} = 1$  then
13                 Initialize the decision variables in EV layer.
14                 Calculate the objective function in EV layer (Eq. (1))
15             else
16                 Determine the best value of decision variables in EV layer
17                 Solving optimisation problem of EV layer
18                  $it^{EV} = it^{EV} + 1$ 
19             Import the optimal value of decision variables from EV layer.
20             Calculate the objective function in CS layer (Eq. (4)).
21             Determine the best value of decision variables in CS layer
22             Solving optimisation problem of CS layer
23              $it^{CS} = it^{CS} + 1$ 
24             Import the optimal value of decision variables from CS layer
25             Calculate the objective function in Retailer layer (Eq. (7)) for each salp
26             Determine the best value of decision variables in Retailer layer
27             Solving optimisation problem of Retailer layer
28              $it^{Re} = it^{Re} + 1$ 

```

205 The cloud scheduling system finds the charging/discharging schedules of all EVs at once, which depends
206 on the V2G and G2V prices in each trip throughout a day and the minimum expected SOC level of EVs by
207 the owners. To identify V2G and G2V mode of each EV during a day, a rule-based approach is developed
208 in this study as follows:

209 • If G2V prices in trip r is less than V2G prices in trip $r+1$, EV k will be charged in trip r and discharged
210 in trip $r+1$ with regards to the minimum expected SOC level of EV k throughout a day;

211 • If V2G prices in trip r is more than G2V prices in trip $r+1$, EV k will be discharged in trip r and
212 charged in trip $r+1$ with regards to the minimum SOC level of EV k at the end of the trip.

213 **3. Mathematical modeling**

214 In this section, objective functions and technical constraints for each layer in Step 4 of Figure 3, namely
215 EVs, CSs, and retailers, are presented and explained. For the sake of clarity, objective functions and
216 constraints are presented in separate sub-sections for the three agents.

217 **3.1. Objective function of EV layer**

218 The net cost of EV operation must be minimised in this layer, which is the difference between the cost of
219 EVs (including electricity purchased from CSs, $\mathbb{C}^{EV+,CS}$, and battery degradation cost during V2G operation,
220 $\mathbb{C}^{DEG,EV}$) and the revenue from selling electricity to CSs, $\mathbb{R}^{EV-,CS}$, as per below equation:

$$\mathbb{C}^{EV} = \mathbb{C}^{EV+,CS} + \mathbb{C}^{DEG,EV} - \mathbb{R}^{EV-,CS} \quad (1)$$

222 The individual cost and revenue terms can be computed as follows:

$$\mathbb{C}^{EV+,CS} = \sum_{h=1}^{24} \sum_{k=1}^{N^{EV}} \sum_{r=1}^{N^T} \frac{1}{2} \times M_{h,k,r} \times (M_{h,k,r} + 1) \times P_{h,i,k,r}^{EV+,CS} \times \rho_{h,i}^{EV+,CS} \quad (2a)$$

$$223 \quad \mathbb{C}^{\text{DEG,EV}} = \sum_{h=1}^{24} \sum_{k=1}^{N^{\text{EV}}} \sum_{c=1}^{N^{\text{CYC}}} \sum_{r=1}^{N^{\text{T}}} \frac{1}{2} \times M_{h,k,r} \times (M_{h,k,r} - 1) \times c_{p,u}^{\text{BAT}} \times C p_k^{\text{nom}} \times \frac{\mathbb{D}_{h,k,r}^{\text{EV}}(T^{\text{CYC}})}{C p_k^{\text{nom}} - C p_k^{\text{re}}} \quad (2b)$$

$$224 \quad \mathbb{R}^{\text{EV-},\text{CS}} = \sum_{h=1}^{24} \sum_{i=1}^{N^{\text{CS}}} \sum_{k=1}^{N^{\text{EV}}} \sum_{r=1}^{N^{\text{T}}} \frac{1}{2} \times M_{h,k,r} \times (M_{h,k,r} - 1) \times P_{h,i,k,r}^{\text{EV-},\text{CS}} \times \rho_{h,i}^{\text{EV-},\text{CS}} \quad (2c)$$

225 To avoid uneconomical V2G operation, battery degradation should be quantified and its cost should be
 226 included in the objective function. As a result, EV owners will be remunerated for V2G services only if they
 227 can recover the cost of battery degradation and make some profit. In (2b), the battery degradation cost is
 228 considered for EVs during discharging period, which is obtained from the cycling degradation for a given
 229 discharge profile using the following equations [37]. The cost considers cycle number, depth of discharge,
 230 and discharge rates in optimal scheduling:

$$231 \quad C p_k^{\text{re}} = 0.8 \times C p_k^{\text{nom}} \quad (3a)$$

$$232 \quad \mathbb{D}_{h,k,r}^{\text{EV}}(T_c^{\text{CYC}}) = (\sigma_1 \times [DOD_{h,k,r}^{\text{EV}}(T_c^{\text{CYC}})]^2 + \sigma_2 \times DOD_{h,k,r}^{\text{EV}}(T_c^{\text{CYC}}) + \sigma_3) \\ \times (\phi_1 \times [DR_{h,k}^{\text{EV}}(T_c^{\text{CYC}})]^3 + \phi_2 \times [DR_{h,k}^{\text{EV}}(T_c^{\text{CYC}})]^2 + \phi_3 \times DR^{\text{EV}}(T_c^{\text{CYC}}) + \phi_4) \quad (3b)$$

233 3.2. Objective function of CS layer

234 As it was explained in Section 2, it is assumed that CS operators purchase electricity from retailers only
 235 if the onsite generation and storage is not sufficient to meet EVs charging demand, or the onsite generation
 236 is more expensive compared to the electricity supplied from retailers. In addition, to provide services to
 237 the upper grid for added revenue, CS operators are allowed to purchase electricity from EVs and sell to
 238 the wholesale market through aggregators. Therefore, the objective function in this layer is defined as the
 239 net revenue of CS operators, which has to be maximised. The net revenue (profit) of CS operators can be
 240 calculated by subtracting revenues of selling energy to the aggregators, $\mathbb{R}^{\text{CS-},\text{AG}}$, and EVs, $\mathbb{R}^{\text{CS-},\text{EV}}$, from
 241 the expenses including onsite operational costs, $\mathbb{C}^{\text{Op,CS}}$, cost of energy purchased from retailers, $\mathbb{C}^{\text{CS+},\text{Re}}$,
 242 and EVs, $\mathbb{C}^{\text{CS+},\text{EV}}$, expressed by:

$$243 \quad \mathbb{R}^{\text{CS}} = \mathbb{R}^{\text{CS-},\text{AG}} + \mathbb{R}^{\text{CS-},\text{EV}} - \mathbb{C}^{\text{Op,CS}} - \mathbb{C}^{\text{CS+},\text{Re}} - \mathbb{C}^{\text{CS+},\text{EV}} \quad (4)$$

244 The revenue terms in (4) can be calculated as follows:

$$245 \quad \mathbb{R}^{\text{CS-},\text{AG}} = \sum_{h=1}^{24} \sum_{i=1}^{N^{\text{CS}}} \sum_{s=1}^{N^{\text{Re}}} P_{h,i}^{\text{CS-},\text{AG}} \times \rho_{h,i}^{\text{CS-},\text{AG}} \quad (5a)$$

$$246 \quad \mathbb{R}^{\text{CS-},\text{EV}} = \sum_{h=1}^{24} \sum_{i=1}^{N^{\text{CS}}} \sum_{k=1}^{N^{\text{EV}}} \sum_{r=1}^{N^{\text{T}}} \frac{1}{2} \times M_{h,k,r} \times (M_{h,k,r} + 1) \times P_{h,i,k,r}^{\text{CS-},\text{EV}} \times \rho_{h,i}^{\text{CS-},\text{EV}} \quad (5b)$$

247 Various cost terms are calculated by:

$$248 \quad \mathbb{C}^{\text{Op,CS}} = \sum_{h=1}^{24} \sum_{i=1}^{N^{\text{CS}}} \frac{P_{h,i}^{\text{GU}} \times \rho_h^{\text{gas}}}{\eta_{h,i}^{\text{GU}} \times HV} + \sum_{i=1}^{N^{\text{CS}}} c_{p,u,i}^{\text{PQ}} \times \lambda_i \times \kappa_i \sum_{j=1}^{N_i^{\text{CH}}} \beta_{i,j} \times \alpha_{i,j} \times \frac{P_{i,j}^{\text{CH}}}{\eta_{i,j}^{\text{CH}} \times PF_{i,j}^{\text{CH}}} \quad (6a)$$

246

$$\mathbb{C}^{\text{CS+},\text{Re}} = \sum_{h=1}^{24} \sum_{i=1}^{N^{\text{CS}}} P_{h,i,s}^{\text{CS+},\text{Re}} \times \rho_{h,s}^{\text{CS+},\text{Re}} \quad (6b)$$

247

$$\mathbb{C}^{\text{CS+},\text{EV}} = \sum_{h=1}^{24} \sum_{i=1}^{N^{\text{CS}}} \sum_{k=1}^{N^{\text{EV}}} \sum_{r=1}^{N^{\text{T}}} \frac{1}{2} \times M_{h,k,r} \times (M_{h,k,r} - 1) \times P_{h,i,k,r}^{\text{CS+},\text{EV}} \times \rho_{h,i}^{\text{CS+},\text{EV}} \quad (6c)$$

248 The operation cost of each CS in (6a) includes the operation costs of the CGU and chargers related to
 249 active power filtering and reactive power compensation cost, as given in [25, 38, 39]. Charger efficiency is
 250 considered because of the internal conversion losses, where input power to the charger is more than the power
 251 sold to EVs. For the other terms, the cost is simply the product of the traded energy by the prices obtained
 252 from previous optimisation layer.

253 **3.3. Objective function of Retailer layer**

254 The net revenue of retailers in this layer must be maximised, which is defined as the difference between
 255 the revenue obtained by selling electricity to CSs and the cost of electricity purchased from the wholesale
 256 market, as given by:

$$\mathbb{R}^{\text{Re}} = \mathbb{R}^{\text{Re-},\text{CS}} - \mathbb{C}^{\text{Re+},\text{WM}} \quad (7)$$

258 The collective daily revenue and cost of retailers are expressed in the following equations:

$$\mathbb{R}^{\text{Re-},\text{CS}} = \sum_{h=1}^{24} \sum_{s=1}^{N^{\text{Re}}} \sum_{i=1}^{N^{\text{CS}}} P_{h,s,i}^{\text{Re-},\text{CS}} \times \rho_{h,s}^{\text{Re-},\text{CS}} \quad (8a)$$

259

$$\mathbb{C}^{\text{Re+},\text{WM}} = \sum_{h=1}^{24} \sum_{s=1}^{N^{\text{Re}}} P_{h,s}^{\text{Re+},\text{WM}} \times \rho_h^{\text{Re+},\text{WM}} \quad (8b)$$

260 **3.4. Constraints of EV layer**

261 The SOC evolution after each charge and discharge and each trip for hour h can be determined by (9a),
 262 while (9b) ensures that the battery SOC level is maintained within a lower and upper bound for EV k for
 263 the safety and longevity of the battery:

$$SOC_{h,k,r}^{\text{EV}} = SOC_{h-1,k,r}^{\text{EV}} + \frac{P_{h,k,r}^{\text{EV+},\text{CS}} \times \eta^{\text{BAT+}} \times \Delta t}{Cp_k^{\text{EV}}} - \frac{P_{h,k,r}^{\text{EV-},\text{CS}} \times \Delta t}{Cp_k^{\text{EV}} \times \eta^{\text{BAT-}}} \quad (9a)$$

264

$$\underline{SOC}_k^{\text{EV}} \leq SOC_{h,k,r}^{\text{EV}} \leq \overline{SOC}_k^{\text{EV}} \quad (9b)$$

265 Charging and discharging power of the chargers at each CS are limited, which is enforced by (10a) and
 266 (10b). At each hour h , an EV can only adopt one of the charging or discharging mode, which is achieved by
 267 (10c).

268

$$0 \leq P_{h,k,r}^{\text{EV+},\text{CS}} \leq Cp_{h,i,j}^{\text{CH}} \quad (10a)$$

269

$$0 \leq P_{h,k,r}^{\text{EV-},\text{CS}} \leq Cp_{h,i,j}^{\text{CH}} \quad (10b)$$

$$P_{h,k,r}^{\text{EV+},\text{CS}} \times P_{h,k,r}^{\text{EV-},\text{CS}} = 0 \quad (10c)$$

270 During charging period, the required energy (in terms of battery SOC) is calculated by (11) in a way to
 271 guarantee the minimum SOC level, $\underline{SOC}_{h,k,r}^{EV^{DE}}$, at the next destination, which is specified by the EV owner.

272 The required SOC of EV is determined by the minimum driving distance obtained in Step 2 of Section 2.

$$\begin{aligned} SOC_{h,k,r}^{R,EV+} &= SOC_{h,k,r}^{R,EV^{OR} \rightarrow CS^{SE}} + SOC_{h,k,r}^{R,CS^{SE} \rightarrow EV^{DE}} + SOC_{h,k,r}^{R,EV^{OR} \rightarrow EV^{DE}} \\ &\quad + \underline{SOC}_{h,k,r}^{EV^{DE}} - SOC_{h,k,r}^{in} \\ &= \frac{(D_{h,k,r}^{EV^{OR} \rightarrow CS^{SE}} + D_{h,k,r}^{CS^{SE} \rightarrow EV^{DE}} + D_{h,k,r}^{EV^{OR} \rightarrow EV^{DE}}) \times \gamma_k}{Cp_k^{EV}} \\ &\quad + SOC_{h,k,r}^{EV^{DE}} - SOC_{h,k,r}^{in} \end{aligned} \quad (11)$$

273 Similarly, the maximum available energy of an EV that can be sold to a CS, depends on the EV's travel
 274 plan and the distance of the routes, which is calculated in (12).

$$\begin{aligned} SOC_{h,k,r}^{R,EV-} &= SOC_{h,k,r}^{in} - SOC_{h,k,r}^{R,EV^{OR} \rightarrow CS^{SE}} - SOC_{h,k,r}^{R,CS^{SE} \rightarrow EV^{DE}} \\ &\quad - SOC_{h,k,r}^{R,EV^{OR} \rightarrow EV^{DE}} - \underline{SOC}_{h,k,r}^{EV^{DE}} \\ &= SOC_{h,k,r}^{in} - \frac{(D_{h,k,r}^{EV^{OR} \rightarrow CS^{SE}} + D_{h,k,r}^{CS^{SE} \rightarrow EV^{DE}} + D_{h,k,r}^{EV^{OR} \rightarrow EV^{DE}}) \times \gamma_k}{Cp_k^{EV}} \\ &\quad - \underline{SOC}_{h,k,r}^{EV^{DE}} \end{aligned} \quad (12)$$

275 For EV k in both charging or discharging mode, the SOC at the departure time from selected CS must
 276 be higher than the required SOC of the EV to reach the next destination, as expressed in (13):

$$SOC_{h,k,r}^{DP,EV} \geq SOC_{h,k,r}^{R,EV\pm} \quad (13)$$

277 At the final destination, the SOC of EV k must be more than the final SOC level that is specified by the
 278 EV owner, which is achieved by:

$$SOC_{h,k,r}^{EV^{DE}} \geq \underline{SOC}_{h,k,r}^{EV^{DE}} \quad (14)$$

283 3.5. Constraints of CS layer

284 Balance between supply and demand within a CS should be maintained at all times during charging and
 285 discharging, which is achieved by (15a). Charger efficiency is considered for the sake of accuracy. Equation
 286 (15b) ensures that the number of operational chargers in a CS does not exceed the number of existing
 287 chargers in that station.

$$P_{h,i}^{PV} + P_{h,i}^{GU} \pm P_{h,i}^{ESS\pm} + \sum_{k=1}^{N^{EV}} P_{h,i,k,r}^{CS+,EV} + \sum_{s=1}^{N^{Re}} P_{h,s,i}^{CS+,Re} = \frac{P_{h,i}^{CS-,AG}}{\eta_i^{CH}} + \sum_{k=1}^{N^{EV}} \frac{P_{h,i,k,r}^{CS-,EV}}{\eta_i^{CH}} \quad (15a)$$

$$N_{h,i}^{AV,CH} \leq \bar{N}_i^{CH} \quad (15b)$$

288 The onsite PV generation is estimated by (16a) from meteorological data and PV panel specifications.

289 Equation (16b) ensures that the PV dispatch at time h is lower than or equal to the maximum available PV
 290 at the same time. Therefore, PV curtailment is allowed in the CS operation.

$$P_{h,i}^{PV} = \eta_i^{PV} \times A_i^{PV} \times Ra_h \times (1 - 0.005 \times (Tm_h^{am} - 25)) \quad (16a)$$

291

$$P_{h,i}^{\text{PV}} \leq P_i^{\text{PV,nom}} \quad (16\text{b})$$

292 In (17a), onsite stationary ESS operation and its SOC evolution is characterised. The SOC upper and
 293 lower limits are enforced by (17b). Moreover, simultaneous operation of the ESS in the two modes (i.e.,
 294 charge and discharge) is prohibited by (17c).

$$SOC_{h,i}^{\text{ESS}} = SOC_{h-1,i}^{\text{ESS}} + \frac{P_{h,i}^{\text{ESS+}} \times \eta^{\text{ESS+}} \times \Delta t}{Cp_i^{\text{ESS}}} - \frac{P_{h,i}^{\text{ESS-}} \times \Delta t}{Cp_i^{\text{ESS}} \times \eta^{\text{ESS-}}} \quad (17\text{a})$$

295

$$\underline{SOC}_i^{\text{ESS}} \leq SOC_{h,i}^{\text{ESS}} \leq \overline{SOC}_i^{\text{ESS}} \quad (17\text{b})$$

296

$$P_{h,i}^{\text{ESS+}} \times P_{h,i}^{\text{ESS-}} = 0 \quad (17\text{c})$$

297 Equation (18a) ensures that electricity produced by a CGU at time h does not exceed its nominal capacity
 298 [40]. Moreover, based on (18b), it is not reasonable to operate the CGU below 30% of its rated power due
 299 to low efficiency and high greenhouse gas emission at the lower operating ranges. Therefore, the CGU will
 300 be turned off, as in [40].

301

$$P_{h,i}^{\text{GU}} \leq Cp_i^{\text{GU}} \quad (18\text{a})$$

$$P_{h,i}^{\text{GU}} = \begin{cases} P_{h,i}^{\text{GU}} & P_{h,i}^{\text{GU}} \geq 0.3 \times Cp_i^{\text{GU}} \\ 0 & P_{h,i}^{\text{GU}} < 0.3 \times Cp_i^{\text{GU}} \end{cases} \quad (18\text{b})$$

302 Total charge/discharge capacity of CS i is calculated by (19a) [33]. Electricity purchased from retailers
 303 by CS i at the point of common coupling is limited by (19b). Based on (19c), CS i is not allowed to sell
 304 CGU power to the aggregator. In other words, the power sold to the aggregator should be equal or lower
 305 than the power purchased from EVs. This is because of the existing regulations in many electricity markets
 306 and the desire to limit emissions from CGU.

307

$$Cp_i^{\text{CS}} = \lambda_i \times \sum_{j=1}^{N^{\text{CH}}} \frac{P_{i,j}^{\text{CH}}}{\eta_{i,j}^{\text{CH}} \times PF_{i,j}^{\text{CH}}} \quad (19\text{a})$$

308

$$P_{h,s,i}^{\text{CS+},\text{Re}} \leq Cp_i^{\text{CS}} \quad (19\text{b})$$

$$P_{h,i}^{\text{CS-},\text{AG}} \leq \sum_{k=1}^{N^{\text{EV}}} P_{h,i,k,r}^{\text{CS+},\text{EV}} \times \eta_i^{\text{CH}} \quad (19\text{c})$$

309 3.6. Constraints of Retailer layer

310 Active and reactive power should be balanced at all times. Therefore, sum of the electricity purchased
 311 from the wholesale electricity market through retailers must be equal to the sum of the electricity purchased
 312 by CSs from retailers, load demand and power losses of the distribution network for active and reactive
 313 power at hour h :

$$\sum_{s=1}^{N^{\text{Re}}} P_{h,s}^{\text{Re+},\text{WM}} = \sum_{s=1}^{N^{\text{Re}}} \sum_{i=1}^{N^{\text{CS}}} P_{h,s,i}^{\text{Re-},\text{CS}} + \sum_{b=1}^{N^{\text{b}}} P_{D_b,h} + P_{L_h}^{\text{DN}} \quad (20\text{a})$$

314

$$\sum_{s=1}^{N^{\text{Re}}} Q_{h,s}^{\text{Re+},\text{WM}} = \sum_{s=1}^{N^{\text{Re}}} \sum_{i=1}^{N^{\text{CS}}} Q_{h,s,i}^{\text{Re-},\text{CS}} + \sum_{b=1}^{N^{\text{b}}} Q_{D_b,h} + Q_{L_h}^{\text{DN}} \quad (20\text{b})$$

315 Active and reactive power demands at bus b and hour h are determined by:

316

$$P_{D_b,h} = \frac{S_{D_0,b}}{\sum_{b=1}^{N^{\text{b}}} S_{D_0,b}} \times P_{D_0,h} \quad (21\text{a})$$

317

$$Q_{D_b,h} = \tan(\cos^{-1}(PF_{h,b})) \times P_{D_b,h} \quad (21\text{b})$$

318 Power losses are given by:

$$P_{L_h}^{\text{DN}} = \sum_{m=1}^{N^{\text{M}}} |I_{h,m}|^2 \times R_m \quad (22)$$

320 Total electricity purchased from the wholesale electricity market must not exceed substation transformation capacity [41]:

$$\sum_{s=1}^{N^{\text{Re}}} P_{h,s}^{\text{Re+},\text{WM}} \leq Cp^{\text{TR}} \quad (23)$$

323 Bus voltages must be within permissible range in order to guarantee a secure operation of the distribution network while maintaining power quality at a standard level:

$$\underline{V}_b \leq |V_{h,b}| \leq \overline{V}_b \quad (24)$$

326 Active and reactive power balance are maintained for bus b at hour h by [42]:

$$P_{G_b,h} - P_{D_b,h} = V_{b,h} \sum_{a=1}^{N^{\text{b}}} V_{a,h} (G_{ba} \cos(\theta_{b,h} - \theta_{a,h}) + B_{ba} \sin(\theta_{b,h} - \theta_{a,h})) \quad (25\text{a})$$

327

$$Q_{G_b,h} - Q_{D_b,h} = V_{b,h} \sum_{a=1}^{N^{\text{b}}} V_{a,h} (G_{ba} \sin(\theta_{b,h} - \theta_{a,h}) + B_{ba} \cos(\theta_{b,h} - \theta_{a,h})) \quad (25\text{b})$$

328 The electricity price offered by retailers to CSs is limited by minimum and maximum bounds for the 329 optimisation problem at this layer.

$$\underline{\rho}_{h,s}^{\text{Re-},\text{CS}} \leq \rho_{h,s}^{\text{Re-},\text{CS}} \leq \overline{\rho}^{\text{Re-},\text{CS}} \quad (26)$$

331 4. Optimisation Model

332 Despite the fact that evolutionary algorithms might not be able to guarantee global optimal solutions
 333 and that they might only reach near-optimal solutions, an evolutionary algorithm, called SSA, is preferred
 334 in this study because of the non-linear nature of the three optimisation problems. SSA is an evolutionary
 335 computation technique that is inspired by swarming behaviour of salps when they navigate in deep oceans
 336 within chains of salp searching for a food source as the swarm's target. In literature, the most popular
 337 swarm-inspired algorithms are Particle Swarm Optimisation (PSO) and Ant Colony Optimisation (ACO)
 338 [33, 43–45]. However, it was discovered in a few studies. e.g., [46, 47], that the SSA is able to explore
 339 the search space more effectively, and that the optimisation technique benefits from high exploration and

340 convergence speed to obtain the true global solutions [46]. In order to obtain a mathematical model of salp
 341 chains, the population of salps is divided into two groups: the first group is the leader where the salp at
 342 the front of the chain guides the swarm and the second group includes the followers, as the rest of salps,
 343 chasing the leader. In every iteration, the leader changes its position around the food source and the followers
 344 chase the leader. The position of salps is defined as an n -dimensional search space, where n is the number
 345 of decision variables of the optimisation problem at hand. The position of all salps are stored in a two-
 346 dimensional matrix, $x_{n,it}$. The position of the first salp as the leader is updated with respect to the food
 347 source, $F_{n,it}$, based on [46, 48]:

$$x_{n,it}^L = \begin{cases} F_{n,it} + c_{1,it} ((ub_n - lb_n) c_{2,it} + lb_n) & c_{3,it} \geq 0 \\ F_{n,it} - c_{1,it} ((ub_n - lb_n) c_{2,it} + lb_n) & c_{3,it} < 0 \end{cases} \quad (27)$$

349 where $c_{1,it}$ is a variable that will exponentially decrease throughout the iterations, as obtained by (28); and
 350 $c_{2,it}$ and $c_{3,it}$ are random numbers uniformly distributed on the interval of $[0,1]$ at iteration it .

$$c_{1,it} = 2e^{-\left(\frac{4 \times it}{it}\right)^2} \quad (28)$$

353 The position of the follower f in the dimension n is updated by:

$$x_{n,it}^f = \frac{1}{2}(x_{n,it}^f + x_{n,it}^{f-1}) \quad (29)$$

354 To determine optimal day-ahead electricity prices sold to CS operators by retailers, we have $N^{\text{Re}} \times 24$
 355 decision variables to optimise in Retailer layer. The number of decision variables in the CS layer is $3 \times N^{\text{CS}} \times 24$
 356 considering three sets of variables that correspond to the power produced by CGU, power purchased from
 357 retailers, and power sold to the aggregator for 24 hours ahead. In the EV layer, the optimisation problem
 358 includes $2 \times 24 \times N^{\text{EV}}$ decision variables that correspond to the power sold/purchased to/from EVs.

359 5. Simulation Study

360 In order to examine the performance of the proposed method, a comprehensive simulation study is carried
 361 out, as shown in Figure 4, using a selected area of San Francisco [49]. The IEEE 37-bus distribution test
 362 system [50] is mapped over the area to represent the CSs connection to the upper grid. It is assumed that
 363 there are three retailers to provide electricity to CSs and one aggregator is considered to sell energy back
 364 to the wholesale market by purchasing it from CSs. The nominal voltage of the network is 480 V and the
 365 minimum and maximum voltage limits are 0.95 and 1.05 p.u., respectively. Node 1 is connected to the
 366 distribution transformer as the slack bus. Total active and reactive power demand (without EV) at the peak
 367 hour are equal to 8.7 MW and 4.3 MVAr, respectively. As depicted in Figure 4, the CSs are randomly placed
 368 at nodes 2, 8, 10, 11, 16, 22, 29, 32, and 35. The origin and destination of EVs in each trip is assumed to be
 369 contained in this area. 600 EVs are randomly situated over the area, each of which is assumed to complete
 370 two trips per day with different waiting times between each trip, without loss of generality. Furthermore,
 371 four types of EVs with battery capacity of 14.5kWh, 16kWh, 28kWh, and 40kWh are considered. In this

372 study, the base case is defined in such a way that no optimisation is carried out for scheduling and every
 373 EV selects the closest CS without considering prices. Also, V2G and G2V prices in the base case strategy
 374 are equal to the initial prices in the first iteration of the proposed three-layer optimisation problem for each
 375 agent.

376 Input parameters and their corresponding values for the distribution network, CSs, and EVs are given in
 377 Table 2. Due to lack of daily load profile at each node in the IEEE 37-bus distribution test system, the daily
 378 hourly load profile of California ISO [51] is used by re-scaling the values in proportion to the test network
 379 load demand using (21a) and (21b). Also, day-ahead electricity prices of the wholesale electricity market for
 380 a typical day are extracted from California ISO [51], which are used in the simulation studies.

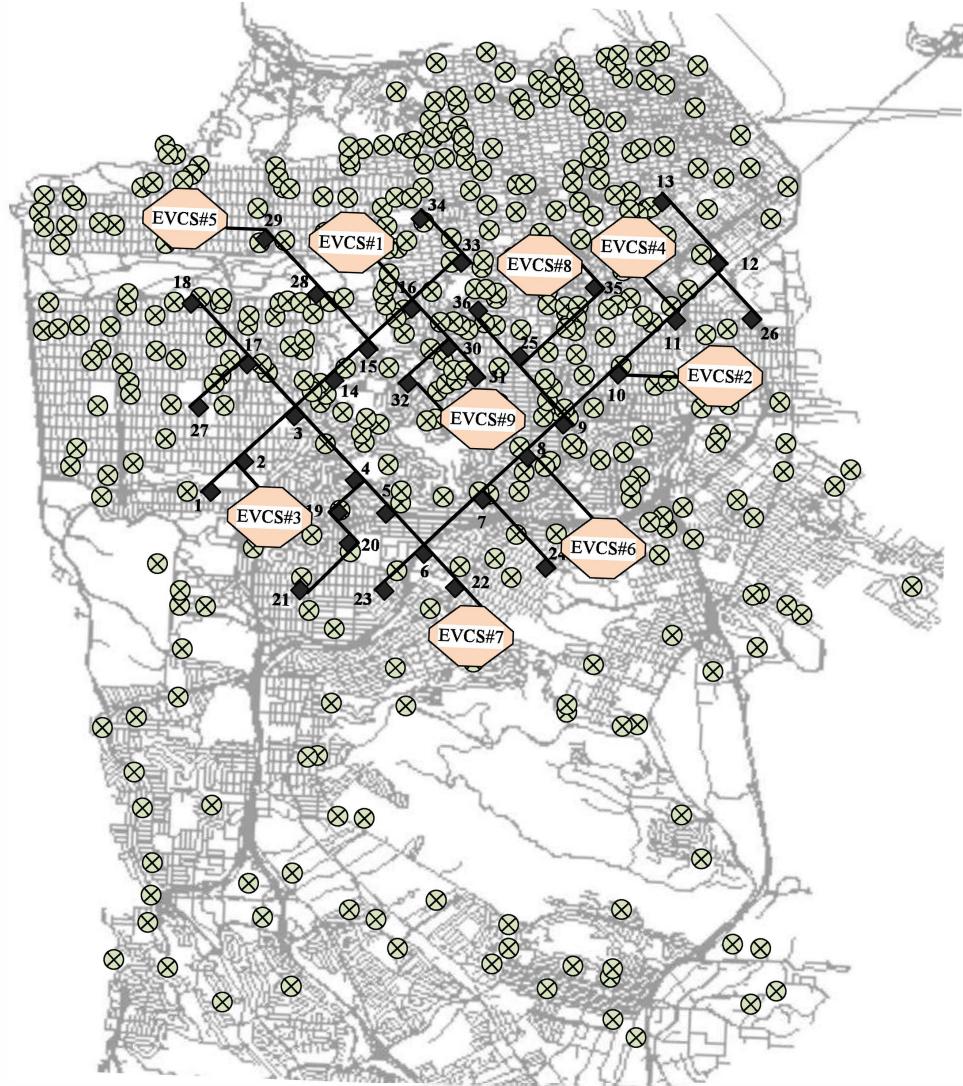


Figure 4: IEEE 37-bus distribution test network and location of some of the EVs and all CSs in San Francisco, the USA [49] and [50].

381 In order to take into account ancillary services costs, network maintenance costs, taxes, and etc. (which

Table 2: Input parameters of distribution network, CSs, and EVs [39, 52, 53]

Parameter	Value	Parameter	Value
$M_{h,k,r}$	$\pm 1 (+1: \text{G2V}, -1: \text{V2G})$	Cp^{EV}	14.5, 16, 28, 40 (kWh)
Δt	1 hr	$\underline{V}_b/\bar{V}_b$	0.95/1.05
$c_{p,u}^{\text{PQ}}$	10.16 (\$/kVA)	HV	0.7 (kWh/m ³)
η^{CH}	0.9	η^{PV}	0.157
PF^{CH}	0.95	A^{PV}	800 (m ²)
Cp^{GU}	65 (kW)	Cp^{ESS}	50 (kWh)
\bar{N}_i^{CH}	5	ρ^{gas}	13.07 (cents/m ³)
α	0.03	β	1.05
κ	0.61	λ	1
$\underline{SOC}^{\text{ESS}} / \bar{SOC}^{\text{ESS}}$	0.1/0.9	γ	0.2 (kWh/km)

382 are normally included in the retail electricity tariffs), the day-ahead electricity prices of the wholesale market
 383 is multiplied by 4.5 homogeneously. The new prices will serve as the electricity prices that is paid by CS
 384 operators to the retailers. The electricity prices sold to EVs by CSs and electricity prices purchased from
 385 EVs by CSs are obtained by:

$$\rho_{h,i}^{\text{CS-},\text{EV}} = \text{rand}(1.1, 1.5) \times \rho_{h,i}^{\text{Re-},\text{CS}} \quad (30)$$

386 In (30), it is assumed that CSs' asking prices are 10–50% more than what they pay to the retailers in
 387 order to make profit. In addition, CS operators offer prices to EVs for V2G services that will be sold to the
 388 wholesale market through aggregators. The performance of a CS in this case depends on the prices offered
 389 to the EVs. Therefore, a sensitivity analysis is carried out using the following three scenarios:

$$\text{Scenario I (Low-price scenario):} \quad \rho_{h,i}^{\text{CS+},\text{EV}} = \frac{1}{4.5} \times \rho_{h,i}^{\text{Re-},\text{CS}} \times \text{rand}(0.1, 0.9)$$

$$\text{Scenario II (Medium-price scenario):} \quad \rho_{h,i}^{\text{CS+},\text{EV}} = \rho_{h,i}^{\text{Re-},\text{CS}} \times \text{rand}(0.6, 0.85)$$

$$\text{Scenario III (High-price scenario):} \quad \rho_{h,i}^{\text{CS+},\text{EV}} = \rho_{h,i}^{\text{Re-},\text{CS}} \times \text{rand}(1.05, 1.3)$$

390 It can be seen that the optimal day-ahead electricity prices for discharging EVs increase from scenario I
 391 to scenario III. In fact, in scenario I to scenario III, V2G prices are getting closer to G2V prices to encourage
 392 more EVs in V2G operation, and consequently, determine the range of V2G prices in which the collective
 393 benefit of all agents is maximised. In all scenarios, $\rho_{h,i}^{\text{CS-},\text{AG}} = 1.1 \times \rho_{h,i}^{\text{CS+},\text{EV}}$ where the aggregator expects
 394 maximum of 10% profit based on the price offered by CSs.

395 It is assumed that different retailers are looking for up to 30% profit. As a result, the minimum and
 396 maximum value of the day-ahead electricity prices sold to CSs by retailers are expressed as:

$$1.05 \times 4.5 \times \rho_h^{\text{Re+},\text{WM}} \leq \rho_{h,s}^{\text{Re-},\text{CS}} \leq 1.3 \times 4.5 \times \rho_h^{\text{Re+},\text{WM}} \quad (31)$$

397 The cloud scheduling system specifies the charging/discharging plan of all EVs at once. Four plans can
 398 be expected for EV charging and discharging with two trips. The flowchart for choosing a proper plan for
 399 EVs is shown in Figure 5, which are explained below:

- 400 • **Plan 1:** The initial SOC of EV k at the beginning of trip 1 is not sufficient to complete this trip.
 401 Therefore, EV k must be charged in trip 1. If it is profitable, it will be discharged in trip 2.
- 402 • **Plan 2:** The initial SOC of EV k at the start of trip 1 is more than the total energy needed to finish
 403 trip 1 and the minimum SOC of the EV at the end of the trip. If charging prices in trip 1 are less than
 404 discharging prices in trip 2, EV k will be charged in trip 1 and discharged in trip 2.
- 405 • **Plan 3:** The initial SOC of EV k at the beginning of trip 1 is more than the total energy required for
 406 the trip and the minimum SOC of EV at the end of the trip. If discharging prices in trip 1 are more
 407 than charging prices in trip 2, EV k will be discharged in trip 1 and charged in trip 2.
- 408 • **Plan 4:** The initial SOC of EV k at the beginning of trip 1 is more than the required energy to
 409 complete the trip and minimum SOC of EV at the end of the trip. However, charging prices in trip 1
 410 are more than discharging prices in trip 2. In addition, discharging price in trip 1 is less than charging
 411 price in trip 2. In this case, EV k will not be charged nor discharged. However, if the initial SOC of EV
 412 k at the beginning of trip 2 is not more than the required energy to complete the trip and minimum
 413 SOC of EV at the end of the trip, the EV k must be charged in trip 2.

414 **6. Simulation Results and Discussion**

415 In this section, simulation results for a typical day will be presented and explained for the case study
 416 introduced in Section 5.

417 *6.1. V2G and G2V operation and prices*

418 The optimal day-ahead electricity prices offered by the most and least profitable CS are shown in Figure 6.
 419 It can be seen that the most profitable CS is CS#8 in scenario II and the the least profitable CS is CS#1
 420 in scenario I. The number of EVs charged and discharged in each scenario for each hour is depicted in
 421 Figure 7. No EVs is planned for V2G service in Scenario I due to the extremely low prices offered by the
 422 CSs. However, by increasing the V2G prices (assuming that the cost of ancillary services, taxes, etc. are
 423 reduced or we experience high prices in the wholesale market), the number of EVs participating in V2G
 424 increases and reaches its maximum in Scenario III. Also, it can be seen from Figure 7 that the number of
 425 EVs in charging mode has increased substantially because it is economically beneficial for the EVs to charge
 426 in one trip and discharge in the next one (i.e., energy arbitrage).

427 The number of EVs in each charge and discharge mode in each scenario for **Plan 1**, **2**, and **3** is depicted
 428 in Figure 8. For **Plan 1**, the number of EVs planned for V2G service in the second trip is raised by increasing
 429 V2G prices because it is economically rewarding for EVs to make profit from the high SOC level of batteries
 430 in the second trip. For **Plan 2**, the results show that by increasing V2G prices, when G2V prices in the first
 431 trip is lower than V2G prices in the second trip, the number of EVs that prefer to charge in the first trip
 432 and discharge in the second trip increases because they can make more profit. As explained in Section 5, for
 433 **Plan 1**, EVs must be charged in trip 1, and if it is profitable, they will be discharged in trip 2. However, for
 434 **Plan 2**, EVs are charged in trip 1 and discharged in trip 2 to make profit if the prices are right. Furthermore,
 435 in **Plan 3**, more EVs discharged in the first trip with higher prices and charge in the second trip with lower
 436 prices.

437 Figure 9 depicts the routes for an EV that is specified by ArcGIS in the base case and the proposed
 438 strategy in this study. In this example, EV k selects the nearest CSs (CS#8 and CS#3) in the base case
 439 without running a cost-benefit analysis, which leads to \$4 extra cost for EV k in comparison with the
 440 proposed three-layer optimal strategy.

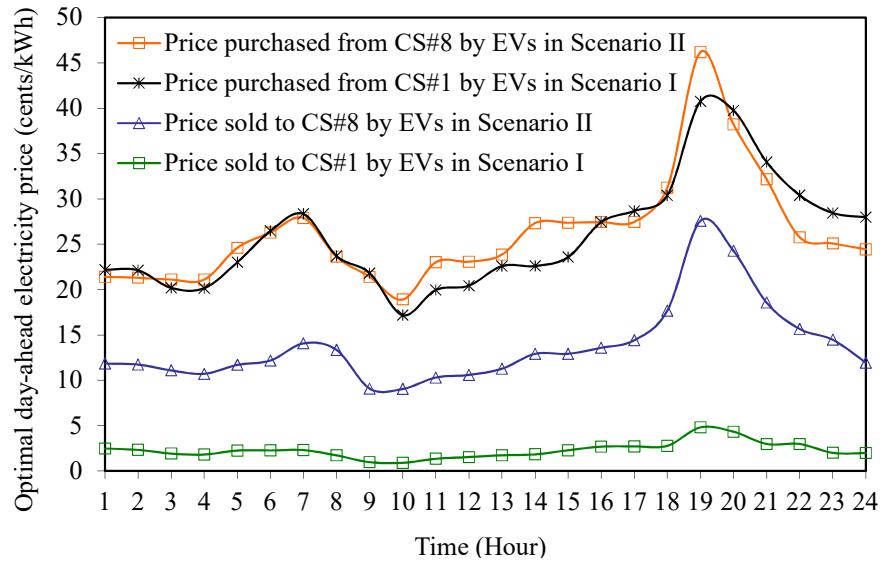
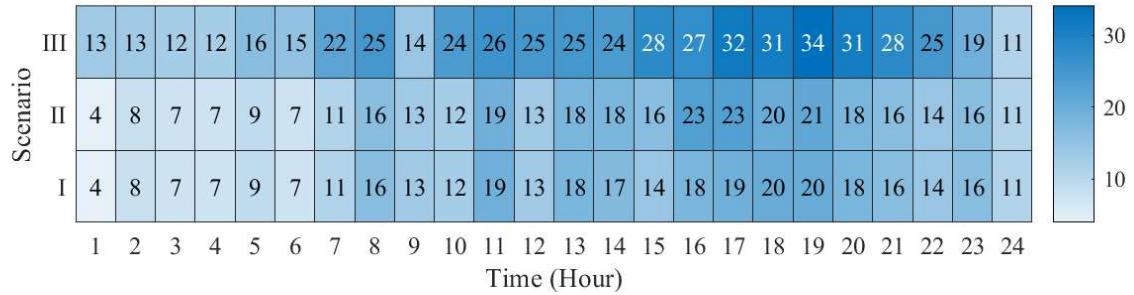
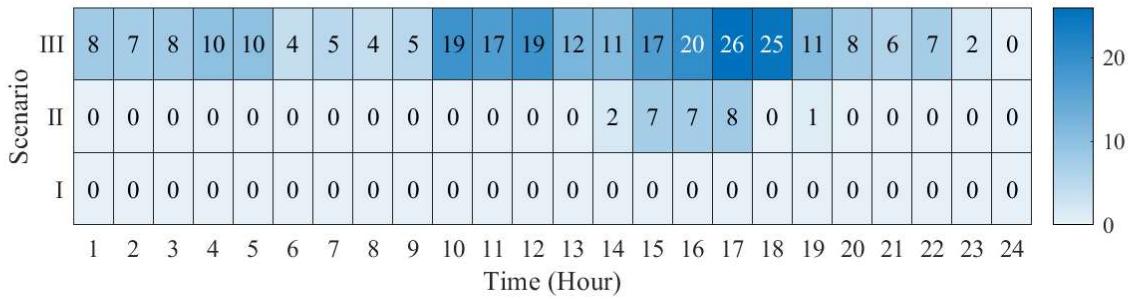
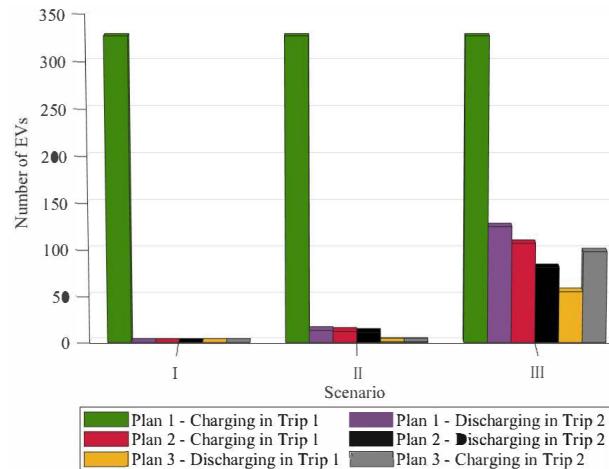




Figure 6: Optimal day-ahead electricity prices offered by the least (CS#1) and the most profitable CS (CS#8) during charging and discharging of EVs among all Scenarios.



(a)

(b)

Figure 7: Number of EVs planned to participate in (a) G2V and (b) V2G in each scenario.

Figure 8: Total number of EVs for **Plan 1**, **Plan 2**, and **Plan 3** in each scenario.

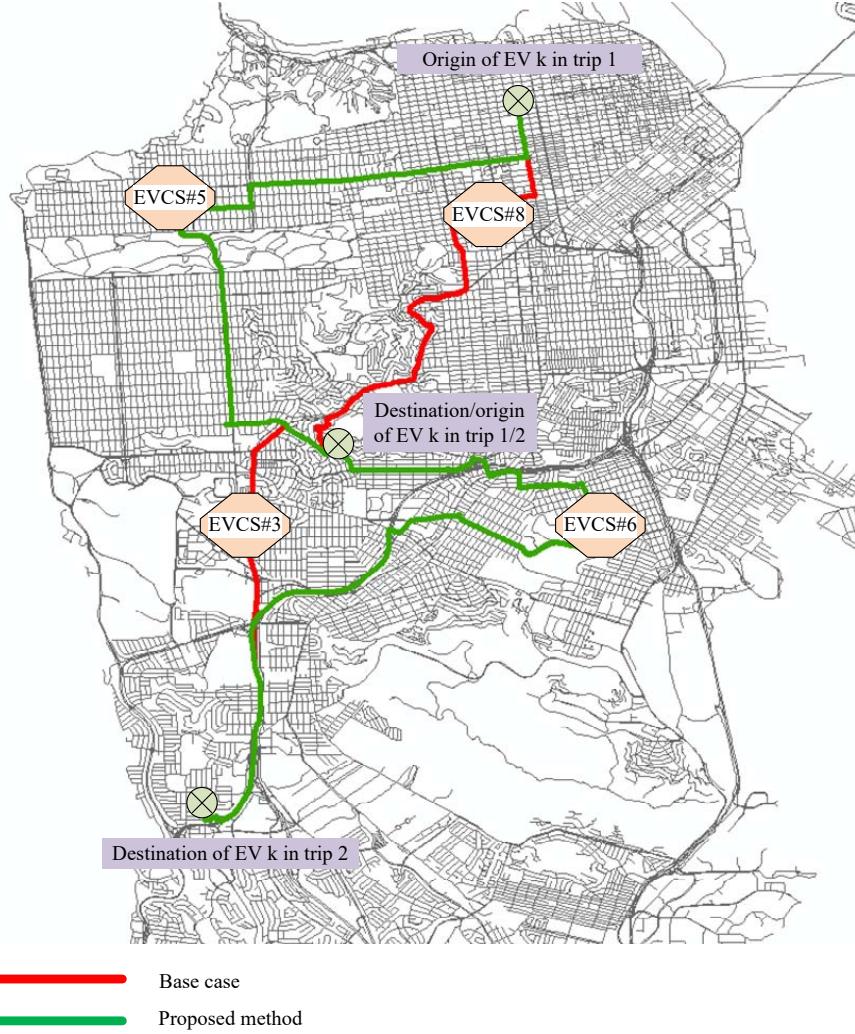


Figure 9: Scheduling results for a sample EV in the base case (red line) and the proposed strategy (green line).

441 6.2. CS and retailers operation

442 In Table 3, optimal day-ahead electricity prices offered by three retailers to CSs are reported. The
 443 cheapest retailer is selected in each hour, which are specified in the Table. Off-peak and peak periods with
 444 minimum and maximum electricity prices occur in hours 10 and 19, respectively, and Retailer#1 is selected
 445 by CSs in both off-peak and peak periods.

446 As reported in Table 4, by increasing the number of EVs participating in V2G program from scenario I
 447 to III, the net cost of EVs decreases and the net revenue of CS operators and retailers increases. However, in
 448 Scenario III, while more EVs participated in the V2G program, the net revenue of retailers and CS operators
 449 as well as the net cost of EVs decreased compared to Scenario II. The main reason is that the cost of
 450 electricity purchased by CS operators from EVs participating in V2G services increased while the electricity
 451 purchased from retailers by CS operators decreased. Based on the results presented in Table 4, the most

Table 3: Optimal day-ahead electricity prices offered by retailers and the selected retailer in each hour (cents/kWh)

Time (Hour)	Retailer#1	Retailer#2	Retailer#3	Selected retailer
t=1	18.74	19.35	21.12	Retailer#1
t=2	18.66	17.48	19.96	Retailer#2
t=3	16.74	17.46	16.43	Retailer#3
t=4	16.73	17.39	16.33	Retailer#3
t=5	17.73	18.24	18.13	Retailer#1
t=6	20.62	18.75	19.25	Retailer#2
t=7	24.34	24.42	22.51	Retailer#3
t=8	20.03	19.49	22.31	Retailer#2
t=9	16.58	15.16	16.72	Retailer#2
t=10	14.25	15.11	16.03	Retailer#1
t=11	16.52	15.55	16.12	Retailer#2
t=12	16.60	18.53	16.20	Retailer#3
t=13	18.06	18.62	17.38	Retailer#3
t=14	18.78	21.16	19.68	Retailer#1
t=15	19.93	21.16	19.96	Retailer#1
t=16	21.56	22.1	21.00	Retailer#3
t=17	22.73	22.19	21.94	Retailer#3
t=18	25.16	27.39	27.81	Retailer#1
t=19	35.64	38.03	39.52	Retailer#1
t=20	32.75	35.15	33.59	Retailer#1
t=21	28.69	29.07	25.67	Retailer#3
t=22	25.22	22.96	25.27	Retailer#2
t=23	22.48	21.57	21.51	Retailer#3
t=24	21.74	19.45	19.00	Retailer#3

Table 4: Objective function values in three layers and the number of EVs discharged in all scenarios

Scenario	Total net cost of EVs (\$)	Total net revenue of CSs (\$)	Total net revenue of retailers (\$)	No. of EVs discharged
Scenario I	1835.1	291.7	643.9	0
Scenario II	1800.4	453	654.7	25
Scenario III	1219.3	378.1	639.7	261

452 profitable operation is achieved in Scenario II for all three agents, i.e., EV, CS, and retailer.

453 *6.3. The proposed algorithm performance and convergence*

454 To verify the simulation results obtained by SSA, the three-layer optimisation problem is also solved by
455 PSO approach. The optimisation algorithms convergence rates of prices for both optimisation techniques
456 are shown in Figure 10 for each scenario in the three layers, where optimal results are reached after about
457 70 and 75 iterations in most cases using SSA and PSO, respectively. The optimal values are obtained by
458 SSA and PSO in 1683 and 1829 seconds, respectively. Therefore, it shows that SSA is outperforming PSO
459 in terms of computational time. All computations are executed on a laptop with Intel Core i7 CPU with
460 1.80GHz processor and 8GB RAM.

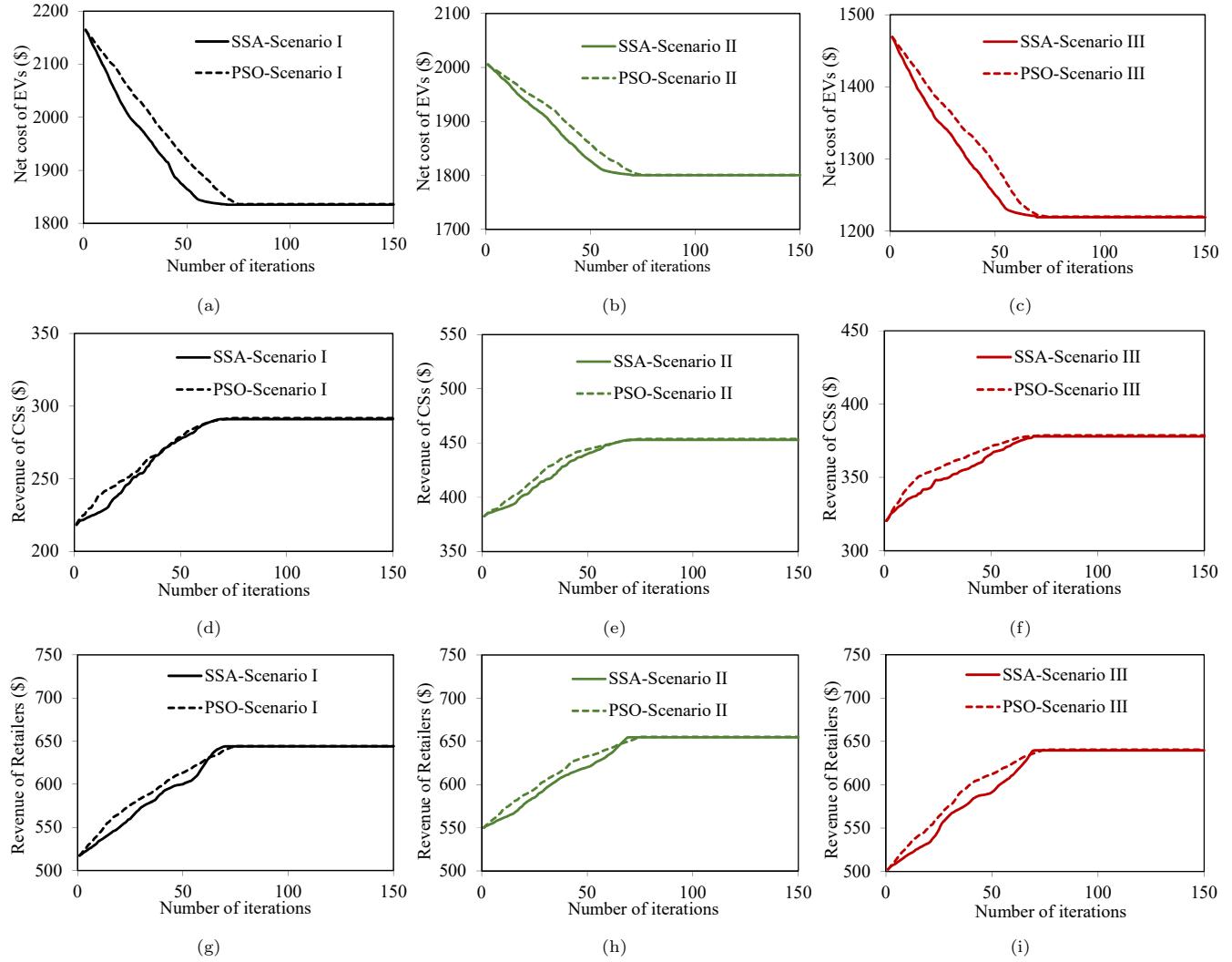


Figure 10: Convergence of the optimisation problems in (a-c) EV layer, (d-f) CS layer, and (g-i) Retailer layer for all scenarios.

461 In Table 5, the cost/revenue of EVs, CS operators, and retailers are reported for the base case and the
462 proposed three-layer optimisation problem in scenario II, obtained by SSA and PSO. It can be seen that

463 the cost of EVs decreased by 17.6%, and the revenue of CS operators and retailers raised by 21.1% and
 464 22.6%, respectively, in the proposed method solved by SSA in comparison with the base case. The results
 465 obtained by SSA and PSO are quite close, with SSA performing slightly better in most instances. It shows
 466 the effectiveness of SSA in solving these complex optimisation problems in a reasonable time. To better
 467 show the effectiveness of the proposed method, another simulation study is performed, called “Individual
 468 optimisation problem”, in which the optimisation problem of each stakeholder is solved individually without
 469 iterative process. It can be seen from Table 5 that if the our proposed method yields 10.2% reduction in
 470 EVs operation cost and 18.4% and 19% increase in revenue of CSs and retailers, respectively, compared to
 471 “Individual optimisation problem” in scenario II.

Table 5: Comparing the simulation results for the base case, the proposed three-layer optimisation problem and the individual optimisation problems in Scenario II

Parameters		Optimal Value	
		SSA	PSO
C^{EV} (\$)	Three-layer optimisation problem	1800.4	1801.3
	Base case	2185.7	2185.7
	Individual optimisation problem	2005.7	2006.2
R^{CS} (\$)	Three-layer optimisation problem	453	453.7
	Base case	374.1	374.1
	Individual optimisation problem	382.6	382.9
R^{Re} (\$)	Three-layer optimisation problem	654.7	655.2
	Base case	534.1	534.1
	Individual optimisation problem	550.2	550.8

472 7. Conclusions and Recommendations

473 In this study, a day-ahead scheduling framework is presented to guarantee economic and energy-efficient
 474 routing of electric vehicles. Based on the proposed strategy, each electric vehicle and charging station finds
 475 optimal charging stations and retailers, respectively, for vehicle-2-grid and grid-2-vehicle services by solving
 476 an equilibrium problem. The proposed method can be offered as a cloud service to all stakeholders, which
 477 facilitates day-ahead electric vehicle scheduling considering objectives and preferences of all stakeholders.
 478 In this method, electric vehicles independently plan their charging/discharging depending on the minimum
 479 driving routes and cost/benefit analysis based on the prices offered by charging stations. Also, charging
 480 stations select optimal retailers to purchase energy while utilising onsite generation and stationary storage
 481 in the most economic way. In addition, charging stations are able to facilitate vehicle-2-grid operation
 482 by purchasing energy from electric vehicles and selling back to the wholesale market through aggregators.

483 Comprehensive simulations are conducted on a real test system. Simulation results confirm that the cost-
484 effective operation is achieved for all agents, and it is highly dependant on the level of participation of
485 electric vehicles in the vehicle-2-grid program and the cost of energy in the wholesale market. The optimal
486 solutions are obtained for all stakeholders by respecting physical limits of the network, avoiding queuing at
487 the charging stations, and preserving electric vehicle owners comfort and preferences during the scheduling.

488 In our future works, we are planning to improve the proposed model by incorporating electric vehicle
489 owners' preferences, and unpredictable and economically-irrational behavior. Also, various sources of
490 uncertainty will be added to the model and stochastic/robust optimisation will be used to deal with the
491 uncertainties. Furthermore, it is recommended to study the cooperative and non-cooperative game theory
492 in order to model the interaction between different agents.

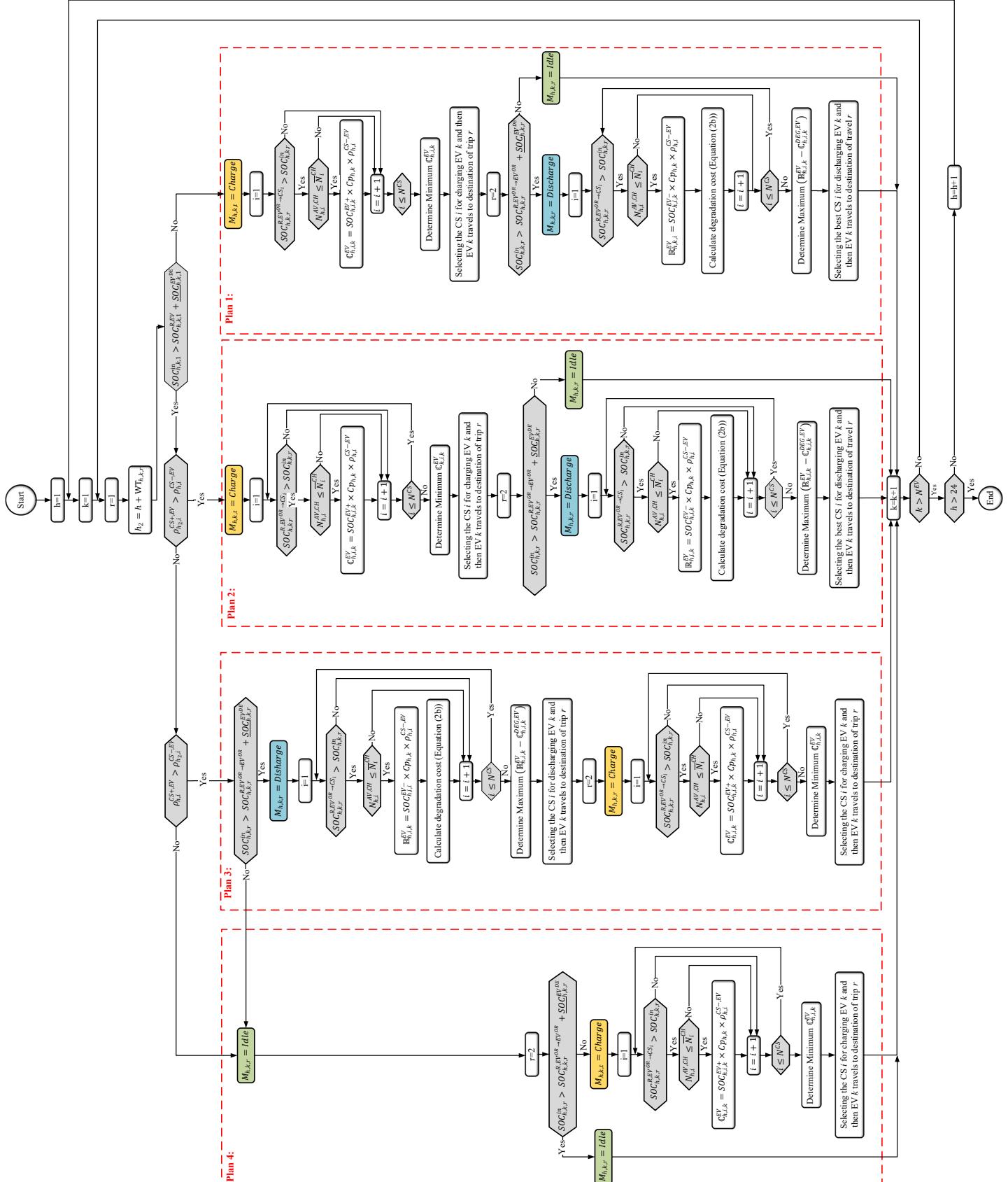


Figure 5: Flowchart of the rule-based process to determine the charging/discharging modes at the end of each trip.

493 **Nomenclature**

Indices

a, b	Index of buses in the distribution network
h	Index of number of cycles of EV's battery
h	Index of hours of a day
i	Index of CS
it	Number of iterations
j	Index of chargers
k	Index of EV
m	Branch of the distribution network
n	Dimension of search space
r	Index of trip
s	Index of retailer

Parameters

494

A_i^{PV}	Area of PV in CS i (m^2)
B_{ba}	Susceptance of overhead line between bus b and a (mho)
$c_{p.u}^{\text{BAT}}$	Per-unit capacity cost of battery
$c_{p.u,i}^{\text{PQ}}$	Per-unit capacity cost of the active power filtering and reactive power compensation in CS i
$Cp_{h,i,j}^{\text{AV,CH}}$	Capacity of available charger j in CS i (kWh)
$Cp_{h,i,j}^{\text{CH}}$	Capacity of charger j in CS i at time h (kWh)
Cp_i^{ESS}	Capacity of ESS of CS i (kWh)
Cp_k^{EV}	Capacity of EV's battery k (kWh)
Cp_i^{GU}	Capacity of CGU of CS i (kWh)
Cp_k^{nom}	Nominal capacity of EV k (kWh)
Cp_k^{re}	Real capacity of EV k (kWh)
Cp^{TR}	Substation transformer capacity (kWh)

$D_{h,k,r}^{\text{EV}^{\text{OR}} \rightarrow \text{CS}^{\text{SE}}}$	Shortest driving distance of EV k between its origin and the selected CS in trip r at time h (km)
$D_{h,k,r}^{\text{CS}^{\text{SE}} \rightarrow \text{EV}^{\text{DE}}}$	Shortest driving distance of EV k between the selected CS and its destination in trip r at time h (km)
$D_{h,k,r}^{\text{EV}^{\text{OR}} \rightarrow \text{EV}^{\text{DE}}}$	Shortest driving distance of EV k between its origin and destination in trip r at time h (km)
G_{ba}	Conductance of overhead line between bus b and a (mho)
HV	Heat value fuel on the operation of gas turbine-generator (kWh/m^3)
\overline{it}	Maximum number of iterations
N^b	Number of distribution network nodes
N^{CS}	Number of charging stations
N^{CYC}	Number of cycles of EV's battery
N^{EV}	Number of electric vehicles
N^{Re}	Number of retailers
N^T	Number of trips
$P_i^{\text{PV},\text{nom}}$	Nominal power of PV system of CS i
$PF_{i,j}^{\text{CH}}$	Power factor of charger j in CS i
R_m	Resistance of overhead line (Ω)
Ra_h	Solar radiation at time h (W/m^2)
$S_{D_0,b}$	Nominal apparent electrical load of the distribution network (kVA)
$SOC_{h,k,1}^{in}$	Initial SOC of EV k at the beginning of first trip (%)
$\overline{SOC}_i^{\text{ESS}} / \underline{SOC}_i^{\text{ESS}}$	Maximum/Minimum SOC of ESS in CS i (%)
$\overline{SOC}_k^{\text{EV}} / \underline{SOC}_k^{\text{EV}}$	Maximum/ Minimum SOC of EV k (%)
$\underline{SOC}_{h,k,r}^{\text{EV}^{\text{DE}}}$	Minimum SOC of EV k at the destination of trip r (%)
Tm_h^{am}	Ambient temperature at time h ($^{\circ}\text{C}$)
Δt	Time step (s)
ub_n / lb_n	Upper/Lower bound of variables in SSA

$\underline{V}_b/\bar{V}_b$	Minimum/Maximum nodal voltage of the distribution network (V)
$WT_{h,k,r}$	Waiting time of EV k for trip r at time h (s)
X_i^{CS}	Longitude of CS i
$X_{h,k,r}^{\text{EV}^{\text{DE}}}$	Longitude of destination of EV k in trip r at time h
$X_{h,k,r}^{\text{EV}^{\text{OR}}}$	Longitude of origin of EV k in trip r at time h
Y_i^{CS}	Latitude of CS i
$Y_{h,k,r}^{\text{EV}^{\text{OR}}}$	Latitude of origin of EV k in trip r at time h
$\alpha_{i,j}$	Harmonic current containing rate in the AC power input terminal of the charger j of CS i
$\beta_{i,j}$	Reliability coefficient of the charger j of CS i
γ_k	Power consumed by EV k per km (kWh/km)
η_i^{PV}	Efficiency of PV system of CS i at time h
$\eta_{i,j}^{\text{CH}}$	Efficiency of charger j of CS i
$\eta_{h,i}^{\text{GU}}$	Efficiency of CGU of CS i at time h
$\eta^{\text{ESS+}}$	Efficiency of ESS in charging period
$\eta^{\text{ESS-}}$	Efficiency of ESS in discharging period
$\eta^{\text{Bat+}}$	Efficiency of EV's battery in G2V operation
$\eta^{\text{Bat-}}$	Efficiency of EV's battery in V2G operation
κ_i	Overall correction coefficient of CS i
λ_i	Simultaneity coefficient of the chargers of CS i
ρ_h^{gas}	Natural gas price at time h
$\rho_{h,s}^{\text{Re+},\text{WM}}$	Electricity price purchased from wholesale market by retailer s at time h (\$/kWh)
$\bar{\rho}^{\text{Re-},\text{CS}}/\underline{\rho}^{\text{Re-},\text{CS}}$	Maximum/Minimum electricity price sold to CSs by retailers (\$/kWh)
$\sigma_1, \sigma_2, \sigma_3$	Fitting parameters for cycling degradation related to DOD
$\phi_1, \phi_2, \phi_3, \phi_4$	Fitting parameters for cycling degradation related to discharge rate

Variables

497

$c_{1,it}$	Coefficient for balancing exploration in SSA for iteration it
$c_{2,it}, c_{3,it}$	Random number generated uniformly between 0 and 1 in SSA for iteration it
$\mathbb{C}^{\text{CS+}, \text{EV}}$	Cost of energy purchased from EVs (\$)
$\mathbb{C}^{\text{CS+}, \text{Re}}$	Cost of energy purchased from retailers (\$)
\mathbb{C}^{D}	Battery degradation cost (\$)
\mathbb{C}^{EV}	The net cost of EVs operation (\$)
$\mathbb{C}^{\text{EV+}, \text{CS}}$	The cost of electricity purchased from CSs by EVs (\$)
$\mathbb{C}^{\text{Op}, \text{CS}}$	Operation cost of CSs (\$)
$\mathbb{C}^{\text{Re+}, \text{WM}}$	Cost of electricity purchased from the wholesale market by retailers (\$)
$\mathbb{D}_{h,k,r}^{\text{EV}}$	Battery degradation of EV k in trip r at time h
$DOD_{h,k,r}^{\text{EV}}(T)$	Depth of charge of EV's battery k in trip r
$DR_{h,k}^{\text{EV}}(T)$	Discharging rate of EV's battery k in trip r
$F_{n,it}$	Position of food source in SSA for iteration it
$I_{h,m}$	Current of overhead line m at time h (A)
it	Number of iterations
$it^{\text{EV}}/it^{\text{CS}}/it^{\text{Re}}$	Number of iterations in EV/CS/Retailer layer
$M_{h,k,r}$	Mode of electric vehicle k in trip r at time h
$N_{h,i}^{\text{AV,CH}}$	The number of available chargers in CS i
$P_{h,i,k,r}^{\text{CS+}, \text{EV}}$	Power purchased from EV k by CS i in trip r at time h (kW)
$P_{h,i,k,r}^{\text{CS-}, \text{EV}}$	Power sold to EV k by CS i in trip r at time h (kW)
$P_{D_b,h}$	Calculated active electrical load at bus b of the distribution network at time h (kW)
$P_{L_h}^{\text{DN}}$	Power loss of distribution network at time h (kW)
$P_{h,i}^{\text{ESS+}}$	Charging power of ESS of CS i at time h (kW)
$P_{h,i}^{\text{ESS-}}$	discharging power of ESS of CS i at time h (kW)
$P_{G_b,h}$	Power generation at bus b of the distribution network at time h (kW)

$P_{h,i}^{\text{PV}}$	PV generation of CS i at time h (kW)
$P_{h,i}^{\text{CS-},\text{AG}}$	Power sold to the aggregator by CS i at time h (kW)
$P_{h,s,i}^{\text{CS+},\text{Re}}$	Power purchased from retailer s by CS i at time h (kW)
$P_{h,i,k,r}^{\text{EV+},\text{CS}}$	Power purchased from CS i by EV k in trip r in trip r at time h (kW)
$P_{h,i,k,r}^{\text{EV-},\text{CS}}$	Power sold to CS i by EV k in trip r at time h (kW)
$P_{h,i}^{\text{GU}}$	Power produced by CGU of CS i at time h (kW)
$P_{h,s,i}^{\text{Re-},\text{CS}}$	Power sold to CS i by retailer s at time h
$P_{h,s}^{\text{Re+},\text{WM}}$	Power purchased from wholesale market by retailer s at time h (kW)
$PF_{h,b}$	Power factor at bus b and time h
$Q_{D_b,h}$	Calculated reactive electrical load at bus b of the distribution network at time h (kVar)
$Q_{L_h}^{\text{DN}}$	Reactive power loss of distribution network at time h (kVar)
\mathbb{R}^{CS}	Net revenue of CS operators (\$)
$\mathbb{R}^{\text{CS-},\text{AG}}$	Revenues of CSs from selling energy to the aggregators (\$)
$\mathbb{R}^{\text{CS-},\text{EV}}$	Revenues CSs from selling energy to EVs (\$)
$\mathbb{R}^{\text{EV-},\text{CS}}$	Revenue of EVs from selling electricity to CSs (\$)
\mathbb{R}^{Re}	Net revenue of retailers (\$)
$\mathbb{R}^{\text{Re-},\text{CS}}$	Revenue of retailers obtained by selling electricity to CSs (\$)
$S_{D_b,h}$	Calculated apparent electrical load at bus b of the distribution network at time h (kVA)
$SOC_{h,k,r}^{\text{DP},\text{EV}}$	SOC of EV k in trip r at time h (%)
$SOC_{h,i}^{\text{ESS}}$	SOC of ESS of CS i at time h (%)
$SOC_{h,k,r}^{\text{EV}}$	SOC of EV k in trip r at time h (%)
$SOC_{h,k,r}^{\text{EVDE}}$	SOC of EV k at its destination in trip r at time h (%)
$SOC_{h,k,r}^{\text{in}}$	Initial SOC of EV k at the beginning of trip r and time h (%)
$SOC_{h,k,r}^{\text{R,EV+}}$	Required SOC of EV k in trip r at time h during charging period (%)

$SOC_{h,k,r}^{R, EV^{OR} \rightarrow CS^{SE}}$	Required SOC of EV k in order to reach the selected CS from its origin in trip r at time h (%)
$SOC_{h,k,r}^{R, EV^{OR} \rightarrow EV^{DE}}$	Required SOC of EV k in order to reach its destination from its origin in trip r at time h (%)
$SOC_{h,k,r}^{R, CS^{SE} \rightarrow EV^{DE}}$	Required SOC of EV k in order to reach its destination from the selected CS in trip r at time h (%)
T^{CYC}	Period of cycle
$V_{h,b}$	Voltage at bus b and time h (V)
$x_{n,it}^f$	Position of the follower f in the dimension n in SSA
$\theta_{b,h}$	Voltage angle of the bus b at time h
$\rho_{h,i}^{CS-, AG}$	Electricity price sold to the aggregator by CS i at time h (\$/kWh)
$\rho_{h,i}^{CS+, EV}$	Electricity price purchased from EVs by CS i at time h (\$/kWh)
$\rho_{h,s}^{Re-, CS}$	Electricity price sold to CSs by retailer s at time h (\$/kWh)
$\rho_{h,i}^{CS-, EV}$	Electricity price sold to EVs by CS i at time h (\$/kWh)
$\rho_{h,s}^{CS+, Re}$	Electricity price purchased from retailer s by CS i at time h (\$/kWh)
$\rho_{h,i}^{EV+, CS}$	Electricity price purchased from CS i by EVs at time h (\$/kWh)
$\rho_{h,i}^{EV-, CS}$	Electricity price sold to charging station i by EVs at time h (\$/kWh)

500 **Acknowledgment**

501 The work is funded by PGR scholarship at Northumbria University and supported by a project funded
 502 by the British Council under grant contract No: IND/CONT/GA/18-19/22.

503 **References**

504 [1] Z. Ding, Y. Lu, K. Lai, M. Yang, W. J. Lee, Optimal coordinated operation scheduling for electric
505 vehicle aggregator and charging stations in an integrated electricity-transportation system, International
506 Journal of Electrical Power & Energy Systems 121 (2020) 1–11.

507 [2] M. Moradijoz, M. P. Moghaddam, M. Haghifam, E. Alishahi, A multi-objective optimization problem
508 for allocating parking lots in a distribution network, International Journal of Electrical Power & Energy
509 Systems 46 (2013) 115–122.

510 [3] C. G. Hoehne, M. V. Chester, Optimizing plug-in electric vehicle and vehicle-to-grid charge scheduling
511 to minimize carbon emissions, Energy 115 (2016) 646–657.

512 [4] Y. R. Rorigues, A. C. Z. de Souza, P. F. Ribeiro, An inclusive methodology for Plug-in electrical vehicle
513 operation with G2V and V2G in smart microgrid environments, International Journal of Electrical
514 Power & Energy Systems 102 (2018) 312–323.

515 [5] P. Jain, A. Das, T. Jain, Aggregated electric vehicle resource modelling for regulation services commit-
516 ment in power grid, Sustainable Cities and Society 45 (2019) 439–450.

517 [6] L. Wang, S. Sharkh, A. Chipperfield, Optimal decentralized coordination of electric vehicles and renew-
518 able generators in a distribution network using A^* search, International Journal of Electrical Power &
519 Energy Systems 98 (2018) 474–487.

520 [7] M. R. Mozafar, M. H. Amini, M. H. Moradi, Innovative appraisement of smart grid operation considering
521 large-scale integration of electric vehicles enabling V2G and G2V systems, Electric Power Systems
522 Research 154 (2018) 245–256.

523 [8] S. Pirouzi, J. Aghaei, T. Niknam, H. Farahmand, M. Korpås, Exploring prospective benefits of electric
524 vehicles for optimal energy conditioning in distribution networks, Energy 157 (2018) 679–689.

525 [9] J. Zhao, J. Wang, Z. Xu, C. Wang, C. Wan, C. Chen, Distribution network electric vehicle hosting
526 capacity maximization: A chargeable region optimization model, IEEE Transactions on Power Systems
527 32 (2017) 4119–4130.

528 [10] F. Manríquez, E. Sauma, J. Aguado, S. de la Torre, J. Contreras, The impact of electric vehicle charging
529 schemes in power system expansion planning, Applied Energy 262 (2020) 1–15.

530 [11] Y. Zhao, X. He, Y. Yao, J. Huang, Plug-in electric vehicle charging management via a distributed
531 neurodynamic algorithm, Applied Soft Computing 80 (2019) 557–566.

532 [12] K. Clement-Nyns, E. Haesen, J. Driesen, The impact of vehicle-to-grid on the distribution grid, Electric
533 Power Systems Research 81 (2011) 185–192.

534 [13] N. Neyestani, M. Y. Damavandi, M. Shafie-Khah, J. Contreras, J. P. S. Catalao, Allocation of plug-in
535 vehicles' parking lots in distribution systems considering network-constrained objectives, *IEEE Transactions on Power Systems* 30 (2015) 2643–2656.

537 [14] D. Wu, N. Radhakrishnan, S. Huang, A hierarchical charging control of plug-in electric vehicles with
538 simple flexibility model, *Applied Energy* 253 (2019) 1–9.

539 [15] W. Su, M.-Y. Chow, Performance evaluation of an EDA-based large-scale plug-in hybrid electric vehicle
540 charging algorithm, *IEEE Transactions on Smart Grid* 3 (2011) 308–315.

541 [16] M. Honarmand, A. Zakariazadeh, S. Jadid, Optimal scheduling of electric vehicles in an intelligent
542 parking lot considering vehicle-to-grid concept and battery condition, *Energy* 65 (2014) 572–579.

543 [17] M. Shafie-Khah, M. Moghaddam, M. Sheikh-El-Eslami, J. Catalão, Optimised performance of a plug-in
544 electric vehicle aggregator in energy and reserve markets, *Energy Conversion and Management* 97 (2015)
545 393–408.

546 [18] Farnaz Safdarian and Logan Lamonte and Amin Kargarian and Mehdi Farasat, Distributed
547 optimization-based hourly coordination for V2G and G2V, in: 2019 IEEE Texas Power and Energy
548 Conference (TPEC), 2019, pp. 1–6.

549 [19] Ahmed Abdulaal and Mehmet H Cintuglu and Shihab Asfour and Osama A Mohammed, Solving
550 the multivariant EV routing problem incorporating V2G and G2V options, *IEEE Transactions on
551 Transportation Electrification* 3 (2016) 238–248.

552 [20] A. G. Anastasiadis, G. P. Kondylis, A. Polyzakis, G. Vokas, Effects of increased electric vehicles into a
553 distribution network, *Energy Procedia* 157 (2019) 586–593.

554 [21] A. Triviño-Cabrera, J. A. Aguado, S. de la Torre, Joint routing and scheduling for electric vehicles in
555 smart grids with v2g, *Energy* 175 (2019) 113–122.

556 [22] S. S. Barhagh, B. Mohammadi-Ivatloo, A. Anvari-Moghaddam, S. Asadi, Risk-involved participation of
557 electric vehicle aggregator in energy markets with robust decision-making approach, *Journal of Cleaner
558 Production* 239 (2019) 118076.

559 [23] Shafiee, Mehdi and Ghazi, Reza and Moeini-Aghaie, Moein, Day-ahead Resource Scheduling in Distri-
560 bution Networks with Presence of Electric Vehicles and Distributed Generation Units, *Electric Power
561 Components and Systems* 47 (2019) 1450–1463.

562 [24] A. Moradipari, N. Tucker, M. Alizadeh, Mobility-aware electric vehicle fast charging load models with
563 geographical price variations, *IEEE Transactions on Transportation Electrification* (2020).

564 [25] W. Wei, S. Mei, L. Wu, M. Shahidehpour, Y. Fang, Optimal traffic-power flow in urban electrified
565 transportation networks, *IEEE Transactions on Smart Grid* 8 (2016) 84–95.

566 [26] J. Tan, L. Wang, Real-time charging navigation of electric vehicles to fast charging stations: A hierar-
567 chical game approach, *IEEE Transactions on Smart Grid* 8 (2015) 846–856.

568 [27] Das, Ridoy and Wang, Yue and Putrus, Ghanim and Kotter, Richard and Marzband, Mousa and
569 Herteleer, Bert and Warmerdam, Jos, Multi-objective techno-economic-environmental optimisation of
570 electric vehicle for energy services, *Applied Energy* 257 (2020) 113965.

571 [28] Madahi, Seyed Soroush Karimi and Nafisi, Hamed and Abyaneh, Hossein Askarian and Marzband,
572 Mousa, Co-Optimization of Energy Losses and Transformer Operating Costs Based on Smart Charging
573 Algorithm for Plug-in Electric Vehicle Parking Lots, *IEEE Transactions on Transportation Electrifica-
574 tion* (2020).

575 [29] A. Zakariazadeh, S. Jadid, P. Siano, Multi-objective scheduling of electric vehicles in smart distribution
576 system, *Energy Conversion and Management* 79 (2014) 43–53.

577 [30] Y. Luo, G. Feng, S. Wan, S. Zhang, V. Li, W. Kong, Charging scheduling strategy for different electric
578 vehicles with optimization for convenience of drivers, performance of transport system and distribution
579 network, *Energy* 194 (2020) 116807.

580 [31] Shafiee, Mehdi and Ghazi, Reza and Moeini-Aghaie, Moein, A multi-objective framework for energy
581 resource scheduling in active distribution networks, *International Journal of Ambient Energy* 40 (2019)
582 504–516.

583 [32] A. Moradipari, M. Alizadeh, Pricing and routing mechanisms for differentiated services in an electric
584 vehicle public charging station network, *IEEE Transactions on Smart Grid* 11 (2019).

585 [33] Z. Moghaddam, I. Ahmad, D. Habibi, Q. V. Phung, Smart charging strategy for electric vehicle charging
586 stations, *IEEE Transactions on Transportation Electrification* 4 (2017) 76–88.

587 [34] V. Dvorkin, J. Kazempour, P. Pinson, Chance-constrained equilibrium in electricity markets with asym-
588 metric forecasts, *arXiv preprint arXiv:2005.11749* (2020).

589 [35] H. Uzawa, Walras' tatonnement in the theory of exchange, *The Review of Economic Studies* 27 (3)
590 (1960) 182–194.

591 [36] "ArcGIS 10.5.1 desktop." Available: <https://desktop.arcgis.com/en/>. [Accessed: 01-oct-2018]. (2019).

592 [37] A. Ahmadian, M. Sedghi, B. Mohammadi-ivatloo, A. Elkamel, M. A. Golkar, M. Fowler, Cost-benefit
593 analysis of V2G implementation in distribution networks considering pevs battery degradation, *IEEE
594 Transactions on Sustainable Energy* 9 (2017) 961–970.

595 [38] X. Chen, H. Lei, R. Xiong, W. Shen, R. Yang, A novel approach to reconstruct open circuit voltage
596 for state of charge estimation of lithium ion batteries in electric vehicles, *Applied Energy* 255 (2019)
597 113758.

598 [39] Z. Liu, F. Wen, G. Ledwich, Optimal planning of electric-vehicle charging stations in distribution
599 systems, *IEEE Transactions on Power Delivery* 28 (2013) 102–110.

600 [40] S.G.Tichi, M.M.Ardehali, M.E.Nazari, Examination of energy price policies in iran for optimal config-
601 uration of chp and cchp systems based on particle swarm optimization algorithm, *Energy Policy* 38
602 (2010) 6240–6250.

603 [41] A. Algarni, K. Bhattacharya, A generic operations framework for discos in retail electricity markets,
604 *IEEE Transactions on Power Systems* 24 (2009) 356–367.

605 [42] J. Zhang, Y. Wu, Y. Guo, B. Wang, H. Wang, H. Liu, A hybrid harmony search algorithm with
606 differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow
607 constraints, *Applied Energy* 183 (2016) 791–804.

608 [43] S. P. Simon, N. P. Padhy, R. Anand, An ant colony system approach for unit commitment problem,
609 *International Journal of Electrical Power & Energy Systems* 28 (2006) 315–323.

610 [44] Z. Chen, R. Xiong, J. Cao, Particle swarm optimization-based optimal power management of plug-in
611 hybrid electric vehicles considering uncertain driving conditions, *Energy* 96 (2016) 197–208.

612 [45] B. Amirhosseini, S. H. Hosseini, Scheduling charging of hybrid-electric vehicles according to supply and
613 demand based on particle swarm optimization, imperialist competitive and teaching-learning algorithms,
614 *Sustainable cities and society* 43 (2018) 339–349.

615 [46] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, M. Mirjalili, Salp swarm algorithm: A
616 bio-inspired optimizer for engineering design problems, *Advances in Engineering Software* 114 (2017)
617 163–191.

618 [47] R. A. El Sehiemy, F. Selim, B. Bentouati, M. Abido, A novel multi-objective hybrid particle swarm and
619 salp optimization algorithm for technical-economical-environmental operation in power systems, *Energy*
620 193 (2019) 116817.

621 [48] H. Faris, M. M. Mafarja, A. A. Heidari, I. Aljarah, A. M.Al-Zoubi, S. ali Mirjalili, H. Fujita, An efficient
622 binary salp swarm algorithm with crossover scheme for feature selection problems, *Knowledge-Based
623 Systems* 154 (2018) 43–67.

624 [49] San francisco map, available at:
625 <https://www.arcgis.com/home/item.html?id=e66bb5dac376457b9f721b083572712c>.

627 [50] K. Shaloudegi, N. Madinehi, S. H. Hosseiniyan, H. A. Abyaneh, A novel policy for locational marginal
628 price calculation in distribution systems based on loss reduction allocation using game theory, *IEEE
629 Transactions on Power Systems* 27 (2012) 811–20.

630 [51] California ISO, available at: <http://www.oasis.caiso.com> (2019).

631 [52] U.s. environmental protection agency combined heat and power partnership, catalog of chp technologies
632 section 5. technology characterization - microturbines (2015).

633 [53] J. Jannati, D. Nazarpour, Optimal performance of electric vehicles parking lot considering environmental
634 issue, Journal of cleaner production 206 (2019) 1073–1088.