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Abstract

Distribution networks are envisaged to host significant number of electric vehicles and potentially many
charging stations in the future to provide charging as well as vehicle-2-grid services to the electric vehicle
owners. The main goal of this study is to develop a comprehensive day-ahead scheduling framework to achieve
an economically rewarding operation for the ecosystem of electric vehicles, charging stations and retailers
using a comprehensive optimal charging/discharging strategy that accounts for the network constraints. To
do so, an equilibrium problem is solved using a three-layer iterative optimisation problem for all stakeholders
in the ecosystem. EV routing problem is solved based on a cost-benefit analysis rather than choosing the
shortest route. The proposed method can be implemented as a cloud scheduling system that is operated
by a non-profit entity, e.g., distribution system operators or distribution network service providers, whose
role is to collect required information from all agents, perform the day-ahead scheduling, and ultimately
communicate the results to relevant stakeholders. To evaluate the effectiveness of the proposed framework,
a simulation study, including three retailers, one aggregator, nine charging stations and 600 electric vehicles,
is designed based on real data from San Francisco, the USA. The simulation results show that the total cost
of electric vehicles decreased by 17.6%, and the total revenue of charging stations and retailers increased by
21.1% and 22.6%, respectively, in comparison with a base case strategy.

Keywords: Charging and discharging strategy, cloud scheduling system, electricity pricing, electric

vehicles, three-layer optimisation problem

1. Introduction

A significant amount of private and public money has been invested in electric vehicles (EVs) in recent
years in an attempt to reduce fossil fuel consumption and consequently lowering CO5 emission in transporta-
tion sector [1-3]. While electrification of transportation sector has undeniable and significant environmental
impacts, a large uptake of EVs introduces new challenges for the grid operation, the biggest of which is

uncoordinated EV charging in grid-2-vehicle (G2V) mode. The system’s operation will become more chal-
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lenging when EVs operate in vehicle-2-grid (V2G) mode supporting the upstream grid operation. It has
been investigated in several studies [4-7] by showing that a proper coordinated operation of EVs in both
G2V and V2G modes can be beneficial for the grid operation. Considering other entities/agents involved in
the future electrified transportation sector, e.g., charging stations (CSs) and energy providers (retailers), we
will be faced with an unprecedented level of operational complexity. As a result, optimal scheduling of CSs
and EVs as well as determining V2G and G2V prices by accounting for EVs driving needs are deemed as
one of the significant challenges to facilitate transportation electrification. Also, distribution network service
providers are expected to face with extreme voltage violations, increased power losses and overload of trans-
mission lines and transformers [8-10] due to significant increase in demand by uncoordinated EV charging
[11-13]. Therefore, a comprehensive optimal day-ahead scheduling framework is needed to overcome the
outstanding economic and technical challenges by minimizing the cost of EVs operation while fulfilling their
requirements, and maximising the profit of CS operators and other entities/agents while respecting technical
limitations of the network.

Numerous studies partially investigated the different aspects of these challenges. Various EV’s charg-
ing/discharging strategies have been proposed considering customers’ preferences. In [14], an EV charg-
ing/discharging scheduling and control framework has been proposed to provide grid services considering
EV drivers travel requirements. In [15], a charging algorithm has been proposed for allocating power to a
large-scale plug-in hybrid EVs at a parking station. EV management and charging/discharging scheduling
model have been developed for an intelligent parking lot in [16] considering economical and technical aspects
of EV operation, simultaneously. In [17], a bi-level optimisation algorithm was developed based on multi-
agent systems to optimise the performance of an EV aggregator and to generate optimal bids for participation
in energy markets. The effects of EV’s V2G and G2V operation on the power system demand profile as well
as the stability and reliability of the power system were investigated in [7]. Various power levels for V2G
and G2V operation were considered to estimate its impact on the system reliability. In [18], a coordination
algorithm for EVs’ V2G and G2V operation was proposed considering the impact of penetration of EV fleets
into the power system. In [19], a multi-variant route optimisation model was presented for EVs operation
incorporating G2V and V2G options in the travel path. A steady-state analysis of a distribution network
was proposed in [20] to determine the nodal voltage variations considering different EVs’ charging strategies.
A smart charging strategy of EVs at CSs has been introduced offering multiple charging options. In [21],
a combination of EV routing and charging/discharging scheduling strategy was proposed to operate an EV
fleet. A mixed-integer linear program (MILP) was formulated to maximise the revenue of EV owners subject
to EV and distribution network constrains. In [22], a mathematical model is developed for integration of
EVs and distributed generation units in energy market under a joint aggregator. Also, the performance
of the EV aggregator under the uncertainty of electricity market prices was studied through an stochastic
optimisation formulation. A two-stage scheduling framework at the distribution level was proposed in [23].

In the first stage, the charging/discharging schedules of EVs were obtained. In the second stage, the resource
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were scheduled, i.e., usage profiles of the distributed generation units, strategy of buying electricity from the
market, and final charging/discharging patterns of the EVs were obtained. In [24], a framework was pre-
sented to develop the network equilibrium traffic and charge patterns in an electric transportation network.
In that study, the effects of individual CS on aggregate congestion and electricity costs were investigated. In
[25], the optimal traffic-power flow model was reformulated as a mixed integer second-order cone program
(MIQP) to optimise coordinated operation of transportation and electricity networks. A framework linking
power network with transportation system was proposed in [26] to navigate EVs to CSs using a hierarchical
game approach considering reliability of the distribution network and profit of CSs.

Furthermore, numerous studies offered approaches based on a multi-objective optimisation. In [27], a
multi-objective optimisation problem was developed for scheduling EV’s V2G and G2V operation. Simulta-
neous optimisation of electricity cost, battery degradation, grid net exchange and COy emissions have been
performed. Another multi-objective optimisation problem was developed in [6] to consider both power grid
and EV drivers’ concerns. The stochastic modelling was proposed to take into account the inherent uncer-
tainty of EV driving activities and renewable energy output power. In [28], a day-ahead co-optimisation
problem was developed to minimise the negative impacts of plug-in EVs on the power system operation
by minimizing the cost of energy losses and transformer operation cost while managing active and reactive
powers. In [29], a multi-objective framework was proposed to schedule EVs’ charging and discharging in a
smart distribution network, where total operation cost of the distribution network, including EVs and COq
emission from distributed generation units and the main grid, was minimised. A multi-objective optimisation
problem was proposed in [30] to find optimal charging schedule of a large EV fleet considering the operation
of the transportation network, power network, and CSs where the nearest CS was selected as the best option
regardless of the electricity prices. A two-stage multi-objective optimisation problem was offered in [31],
where the driving needs of EV owners were considered in the first stage. In that study, total energy and
emission costs were optimised in the second stage under the uncertainty of solar irradiation and wind speed.

On a relevant subject, an EV charging management system was developed in [32] to guide EVs to a CS
such that the negative impact of EVs on the grid is mitigated. The goal was to ensure a proper service to
EVs regarding availability of chargers and minimum waiting time at the CS considering user preferences and
needs. A CS selection method is proposed in [33] to minimise the travel time, waiting time, and charging
cost for an EV.

A review of the existing literature indicates several gaps in research related to G2V and V2G operation
as well as CSs operation, which are outlined below:

e The proposed strategies in [6, 7, 14-33] do not optimise the profit of all agents including retailers,
CSs, and EVs participating in charging/discharging scheduling, whether collectively or individually. In
other words, a comprehensive ecosystem has not been considered in these studies to address different
aspects of the G2V and V2G operation considering the effects of optimal operation of CSs and retailers

through an iterative process.
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e V2G and G2V prices are considered as known parameters in [6, 21-23, 28-31] as opposed to calculating
the equilibrium prices as a part of the optimisation problem:;

e In [21, 22, 30, 32], the nearest CSs were selected as the optimal option without considering the cost-
benefit of the services offered by CS operators.

The goal of this study is to develop a comprehensive day-ahead scheduling framework to guarantee economic
and energy-efficient routing of EVs, where each EV finds the best CSs for V2G and G2V operation based
on a cost-benefit analysis. It is done by proposing an ecosystem including three stakeholders (EVs, CSs
and retailers) and a three-layer optimisation problem. It is formulated and optimised as an equilibrium
problem such that the collective benefits of all three stakeholders are guaranteed simultaneously. The main
contributions of this paper can be summarised as follows:

e Proposing a comprehensive day-ahead scheduling strategy that represents an ecosystem including the
interaction between EVs, CSs, and retailers during EVs’ V2G and G2V operation whilst optimising
the collective welfare of all agents;

e The coordinated EVs’ V2G and G2V operation is formulated and solved such that the effects of optimal
operation of CSs and retailers are considered through an iterative process;

e Obtaining optimal day-ahead electricity prices of all agents during V2G and G2V operations such that
the collective benefit of all three stakeholders are achieved simultaneously by solving an equilibrium
problem iteratively;

e Combining cost/benefit and energy-efficient-routing problems (instead of choosing the shortest route)
for each EV to select the best CS, which is integrated with the CSs operation in purchasing electricity
from retailers.

This paper is organized as follows. Section 2 describes the structure of the proposed EV charging and
discharging strategy incorporating the three agents. Section 3 presents the proposed three-layer optimisation
formulation. Salp swarm algorithm (SSA) is used in this study for solving optimisation problems (and
compared with particle swarm optimisation (PSO) algorithm), which is explained in Section 4. The case
study is introduced in Section 5. The simulation results are presented and discussed in Section 6. Finally,

in Section 7, conclusion and recommendation of future work are given.

2. The structure of the proposed ecosystem

In this paper, a comprehensive ecosystem is envisaged for the future electrified transportation sector by
considering all three agents, as shown in Figure 1. In this ecosystem, retailers purchase electricity from the
wholesale market and sell it to CSs aiming to maximise their profit. The CSs are charging stations with
known locations in a given area and operate at the distribution system level as the point of connection of
EVs to the main grid in G2V and V2G modes. Similar to retailers, CS operators are looking to maximise
their profit in this framework. Both CSs and EVs are entitled to choose their energy providers based on

their economic benefits. For the sake of completeness, the CSs are assumed to have onsite conventional
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generation unit (CGU), photovoltaic (PV), and energy storage system (ESS), which might be used to supply
electricity to EVs. An CGU could be a small gas turbine-generator. In this study, conventional retailers
are assumed; thus they are not able to sell energy back to the wholesale market by purchasing it from CS
operators. Therefore, V2G service is purchased from EVs by CS operators and sold in the wholesale market
through an aggregator. Please note that the aggregator optimal operation has not been considered in this
study to avoid further complexity and will be considered in our future work.

EVs are the end-users, as shown in Figure 1. During a typical day, EVs might have multiple trips with
different waiting times between each trip. EVs with known location and initial state of charge (SOC) plan
their charging/discharging depending on the shortest driving route and a cost/benefit analysis based on the
CSs prices. Please note that each EV can only be charged or discharged during each trip if there is an
economic benefit to do so while respecting the EV’s constraints. In this case, EVs require an algorithm to
select proper CSs for G2V and V2G operation to minimise their cost.

In order to satisfy the objectives of different agents, a top-to-bottom coordinated method is proposed
that solves a day-ahead scheduling problem for all agents. The formulated problem is an equilibrium one
that is solved in three layers sequentially and iteratively, where the leader is the retailer agent. The solution
to the equilibrium problem is inspired by Walrasian tatonnement, which leaves the price invariant if and only
if it is an equilibrium price [34, 35]. Through the iterative three-layer optimization problem, the operation
of each player in the framework is changed by receiving new information from other players to reach the
equilibrium point. The proposed solution can be offered to the agents as a cloud scheduling system, which is
operated by a non-profit entity (aka price-setter). Its role is to collect required information from all agents,
as shown in Figure 2, run the top-to-bottom coordinated scheduling method, and ultimately dispatch the
results to relevant agents. Since power system topology is needed to ensure the feasibility of the solutions
against network constraints, distribution system operators or distribution network service providers could
be the best candidates to take on this role. Since the scheduling system operator does not seek any profit
in the proposed framework, accessing to the information of the three stakeholders does not compromise fair
operation of the scheduling system. It is assumed that all agents have communication links with the cloud
scheduling system. All information exchanged between the stakeholders and the scheduling operator can be
end-to-end encrypted, so that it becomes more difficult to compromise the information. The information
exchanged between three agents and the cloud scheduling system are detailed in Figure 2. The following
assumptions are made in developing the proposed strategy:

e All agents are economically rational within their personal preferences and limitations, which means

that they change their behaviour in response to economic incentives;

e It is assumed that each EV can only be charged or discharged during each trip if there is an economic

benefit to do so while respecting the EV’s constraints. Therefore, there is an implicit constraint in the
optimisation formulation that is limiting the number of charge/discharge events, which is based on the

EV owner’s preferences (as in their day-ahead plan);
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Figure 1: Conceptual structure of the proposed ecosystem including interactions between wholesale electricity market, retailers,

aggregator, CSs, and EVs.

e In order to consider EV owners’ preferences, a minimum SOC level is specified by the EV owner as
the minimum battery SOC at the end of the day;
e All CSs have fast DC charger (22kW and 50kW). This is to ensure that the scheduled G2V or V2G
operation will be fulfilled within an hour for any type of EVs;
e In each hour, the number of EVs assigned to a CS is smaller or equal to the number of EV chargers in
that station. Therefore, no queuing is required.
There are four steps to implement the proposed strategy, as depicted in Figure 3, that should be followed:
Step 1: At the beginning of the scheduling period, the cloud scheduling system collects required pa-
rameters and data from each agent for every hour of the next day. The input parameters that should be
communicated to the cloud scheduling system from each agent and decision variables of each agent are sum-
marized in Table 1. It is worth mentioning that some of the parameters do not change on a daily basis; they
will be updated when needed by the agent, e.g., number and capacity of available EV chargers in each CS.

This way, the amount of required communication bandwidth can be reduced significantly.
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Figure 2: The cloud scheduling system and the required communication links with other agents.

Table 1: Input parameters and decision variables for each agent

Agent Input Parameters Decision Variables
. Re+, WM Re-,CS
Retailers Ph.s Ph.s
cSs cs AV.CH AV,CH GU CS+,Re CS-AG
CSs X7, Y Ny , C hyi,j Py Py By
EVOE , EVOE < EVPE ,EVDPP EV-,CS pEV+,CS
Xh,k,r ’ YhJc,r ) Xh,k:,r ’ Yh,kJ‘ hyi,k,r 7 hyk,r
EVs . EVDPE
m
SOC}LJ@-J’ WTh,k,r> Mh,k,r

Step 2: Let’s assume that each EV is allowed to plan T trips per day where each trip r € {1,...,r,r +
1,...,T}. The shortest driving route for each trip is determined by a network analyst toolbox called ArcGIS
[36] as a navigation platform in the cloud scheduling system. For each hour, the longitude and latitude of
each CS, origin and destination of each EV for each trip are used to determine the shortest route considering
the traffic pattern in each hour. Five potential shortest driving routes will be identified in step 2: Route#1:
the shortest driving route between the origin and destination of EV k for trip r; Route#2: the shortest
driving route between the origin of EV k and the location of CS i for trip r/trip r + 1; Route#3: the
shortest driving route between the destinations/origin of EV k for trip r/trip r + 1 and destination of EV k
for trip r + 1; Route#4: the shortest driving route between the location of CS ¢ and destination of EV k
for trip r; Route#5: the shortest driving route between the location of CS ¢ and the destination of EV k



£807e1s pasodoid oty Surjuewejdwr Jo sseooid dois-£q-deg :¢ oan3ig

UMN/$) (s-249) SSH £q SO 03 plos 2oud A)d1noaje pesye-Ae YL *

1ONIEN
Q[ESA[OYA

:SO[qeLIBA UOISIOd WM'+2Y
((2) uonrenbq) SSH JO ONUOARI JoU Y], :OZIWIXBIA
:(wapqoad uoneziundo pary 1) 19Ke] I3[1eIdYy

101232133y

1's sy,
mt....rm,%ﬂw mu_MmQ. 5§ 1odoxd 199105 1
' V=
(S mufv (yy) 103e30133e o) 0) pjos Jomod A)oINoS[g o
( & +M%mv (ym) ssq wouij paseyoind 1omod £101nod[g
(pd) (Um) NDD £q paonpoid zomod Komoorg ”
:SO[qBLIBA UOISIOJ , 52
((1) uonenbs) SSD) JO SNUIAI JOU Y [, :AZIWIXBIA 594
:(wdpqoad uoneziumndo puodag) 1LeT SO
LAy
| 1
g 70492 (S19017)
AT48) AUy E.\N%Z g Ieq[o0],
fry 1S0€ yodd 1sATeuy YI0mMION
k%:& oy sgD 1odoid 10995 mu.‘\.;\RU y 1z doig
sy=a19 sy+4q g g R
A7-$2 a4 yo AT

I ]

(UMD (23 "3 134) SSO wioxy/0) paseyond plos 1omod AOody
:9[qBLIBA UOISIOd(]

*((1) uonenbs) SAH JO 1509 JoU OY ], :OZIUTUIA

:(waqoad uonezimndo ysaiy) 19Ke T A

SII[IE)IY PuUE ‘s ‘SAH 10§ wdfqoad uoneziundo 14e-3day L :p doIS

*2)N0I YOBI DAL 0} AF OB Jo DOS pormbar Sururuopg  «

D0S paambai Jo uopeuruLd( :€ dajyg

ooy

LAY 7 oy a1y
( EEL%Q s0e xn\,mQ gqAd< xe\,me
uoy)Ad 01 SIHOIY WOy due)SIp SUIALIP 1S2)I0ys Y odw]

*(1eq[00} IsATRUR
J10MI9N) Wd)sAs uoneSiaeu Suisn 7 §O) pue ¥ Aq U2IMIOQ NOI SUIALIP 1SA)I0YS
QYY) QUIULIONAP 0} SIDIIY 0} UOYIKJ WOy m“m@: ‘mm ﬁxz“\ﬁ\ﬂ ‘ xm TAX A g X Wodw] e

AIN0.J SUIALIP 1$3q 3Y) JO UoneUIULINA( :7 dNS

[}

Az\s{wwnv s gq £q paseyond
Josprew ofesajoym Jo 2oud AoLnoa]e peaye-Aep Jo uoneumsy o ¥ SOLERY

.Azuﬁm&uv 18D Jo s1081eyd AF d]qe[ieae jo Kjoededs oy, e |
( "UN) 1§D JO S108IBYD AT S[qR[IBAR JO JOqUINU O], o g o)

HO'AV
(594 ‘s7X) 1 SO JO Spmue| pue spmySuo e

(,+4D0S) uonpunsap oy ut y A Jo DOS WU

din yoeo usomiaq ¥ A9 Jo swn Suniep

(M 0s) 1 dm uty A9 Jo DOS [eniu

(g« AUy 4 ding 103 uOLRUNSIP S, A JO SpMINE] pue dpmISuo

[)

SAd

2034 gq08
( xmw@\w ¢ xm 14x) 4 din 105 w10 s A Jo opryne| pue pmyISuo] e

w)sAS SuInpayds pnopd 3y) Aq uonddjed eye( 1 das

[}




173

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

for trip r + 1. As shown in Figure 3, the driving distances corresponding to the five possible driving routes
will be used in Step 3.

Step 3: Required energy (in terms of battery SOC changes) to drive each set of the five routes will be
calculated in this step for each EV.

Step 4: The framework of the three-layer optimisation problem for EVs, CSs, and retailers is imple-
mented in this step, as shown in Figure 3. Three layers in the framework correspond to the optimisation
problem that should be solved for each of the three agents. As shown in Figure 2, parameters are received by
the cloud scheduling system, as explained in Table 1. The three optimisation problems are solved iteratively
for 24 hours ahead, which is summarised in Algorithm 1. The optimisation problems formulation and the
optimisation technique are explained in Section 3 and 4, respectively. Through the iterative three-layer
optimization problem, the profit of all agents are optimised as an equilibrium problem. It essentially leads to
collective optimisation which can be called social welfare optimisation of the ecosystem. In the equilibrium
problem, the iterative algorithm is used to solve, and consequently, update the position of each player in the
framework by receiving new information (e.g., new prices) from other players to find the equilibrium point
in which the prices do not change. This way, we are able to obtain the prices of V2G and G2V at different
level of the system. Since the scheduling system is operated in day-ahead, wholesale market price estimation
is needed for the entire next day.

In the first iteration, retailers generate the prices that they would like to offer to CSs based on their profit
margin. Then, the prices will be passed on to CS layer in this iteration. The prices increase in CS layer
considering their profit margin. Then, CSs communicate the prices to EV layer where the first optimisation
problem, i.e., (1)-(2c) with the constraints in (9a)-(14), will be solved for the first time. The optimisation
solutions, i.e., energy sold/purchased to/from CSs in each trip, will be sent to the CSs layer, where the
operation of CSs will be scheduled by solving the optimisation problem in (4)-(6¢) with the constraints given
in (15a)-(19¢). Ultimately, the optimisation solutions including energy produced by CGUs as well as the
electricity traded with retailers and aggregators will be used in Retailer layer to obtain optimal operation
of the retailers using the optimisation problem in (7)-(8b) and the constraints in (20a)-(26). As a result,
the optimal day-ahead electricity prices sold to CSs by retailers is determined in Retailer layer. The newly
generated prices will then be used in the second iteration to repeat the optimisation problems of the EV
and CS layers. This iterative process will go on until a certain convergence criterion is met. In this study,
the convergence criterion is defined as the change in the objective function in the two consecutive iterations,

which should be less than 1072 for all three optimisation problems.
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Algorithm 1 Three-layer optimisation problem for EVs, CSs, and Retailers
> Retailer layer

1 itfe =1

2 while it < “ do

a Imtlahze the decision variables in Retailer layer.

> CS layer

5 it¢S =1

6 W hll (%(‘S < 1t do

7 Inltlahze the decision variables in CS layer.

> EV layer

s itPV =1

9 while LiE“j < 1tEV do

2 W HInltlahzght%g decision variables in EV layer.

12 Calculate the objective function in EV layer (Eq. (1))
13 ereDetermine the best value of decision variables in EV layer
14 Solving optimisation problem of EV layer

15 itPV = itFV 41

16 Import the optimal value of decision variables from EV layer.
17 Calculate the objective function in CS layer (Eq. (4)).

18 Determine the best value of decision variables in CS layer

19 Solving optimisation problem of CS layer

20 L at©5 =it¢S +1
21 Import the optimal value of decision variables from CS layer
22 Calculate the objective function in Retailer layer (Eq. (7)) for each salp
23 Determine the best value of decision variables in Retailer layer
24 Solving optimisation problem of Retailer layer

25 ithe = jtfte 41

The cloud scheduling system finds the charging/discharging schedules of all EVs at once, which depends
on the V2G and G2V prices in each trip throughout a day and the minimum expected SOC level of EVs by
the owners. To identify V2G and G2V mode of each EV during a day, a rule-based approach is developed

in this study as follows:

e If G2V prices in trip r is less than V2G prices in trip r+1, EV k will be charged in trip r and discharged
in trip 7 + 1 with regards to the minimum expected SOC level of EV k throughout a day;

e If V2@ prices in trip r is more than G2V prices in trip » + 1, EV &k will be discharged in trip r and
charged in trip r + 1 with regards to the minimum SOC level of EV k at the end of the trip.

3. Mathematical modeling

In this section, objective functions and technical constraints for each layer in Step 4 of Figure 3, namely
EVs, CSs, and retailers, are presented and explained. For the sake of clarity, objective functions and

constraints are presented in separate sub-sections for the three agents.

3.1. Objective function of EV layer

The net cost of EV operation must be minimised in this layer, which is the difference between the cost of

EVs (including electricity purchased from CSs, CEV*©S and battery degradation cost during V2G operation,
CPEGEV) and the revenue from selling electricity to CSs, REV™C5as per below equation:
CEV _ CEV+.CS | 0DEG,EV _ pEV-,CS (1)

The individual cost and revenue terms can be computed as follows:
24 N®V NT 4

CEV+CS Z Z Z*Xthr (thr+1) fVZSSXpEXJr,CS (23)
hlklrl

10
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EV A/CYC T CYC
2NN g h k, r(T )

(CDEGEV ZZ Z Z*XM}L]CTX(M}L]CT—I)XCBATXC nom

Aol hol =1 1=12 Cppo™ - Cpy’

24 NCS NEV NT

REV-CS = 55 5 S 5 M (M= 1) x B 20)
=1 i=1 17‘1

To avoid uneconomical V2G operation, battery degradation should be quantified and its cost should be
included in the objective function. As a result, EV owners will be remunerated for V2G services only if they
can recover the cost of battery degradation and make some profit. In (2b), the battery degradation cost is
considered for EVs during discharging period, which is obtained from the cycling degradation for a given
discharge profile using the following equations [37]. The cost considers cycle number, depth of discharge,

and discharge rates in optimal scheduling:

Cpy =08 x Cpp°™ (3a)
h,k,r(TCYC) =(o1 x [DODh k T(TCYC)] + 02 % DODh k r(TcCYC) +03)

x (1 x [DREYATSY ) + ¢ x [DREL(TEY )] + ¢3 x DRPV(TEYC) + ¢4)

3.2. Objective function of CS layer

As it was explained in Section 2, it is assumed that CS operators purchase electricity from retailers only
if the onsite generation and storage is not sufficient to meet EVs charging demand, or the onsite generation
is more expensive compared to the electricity supplied from retailers. In addition, to provide services to
the upper grid for added revenue, CS operators are allowed to purchase electricity from EVs and sell to
the wholesale market through aggregators. Therefore, the objective function in this layer is defined as the
net revenue of CS operators, which has to be maximised. The net revenue (profit) of CS operators can be

calculated by subtracting revenues of selling energy to the aggregators, R®S>4G and EVs, R®-EV  from

the expenses including onsite operational costs, COP*S, cost of energy purchased from retailers, CCS*Re
and EVs, CO5+EV  expressed by:
ROS = RCS-AG | RCS-EV _ 0p,CS _ CS+Re _ :CS+,EV (4)
The revenue terms in (4) can be calculated as follows:
CS—,AG A NTNT pCS—AG CS AG
R hz:l Z; Z h,i hi ’ (5&)
1 s=1

CS-EV _ e NN CS-,EV _ CS-,EV
R = 2 Z*XthTX(thVrl)xphzkr X Py (5b)
h=1 =1 k=1 r=

Various cost terms are calculated by:

opcs 2 N°S p pias NCS NEH CH
D) B2 B Ak 3 B x i % e (62)
p.u,i 7 7 2,J 2,J CH CH
h=1 i=1 nhszV i= j=1 55 XPF
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NCS

CS+,Re _ CS+ R CS+,R
C e hz:l Z; h,i,s ° h s ‘ (Gb)
%

CS+,EV _ & NCSNEVNT CS+,EV CS+,EV
cH>* Z Z Z Z*XthrX(thr_l) P}”ZT Xﬂh,f’ (6¢)
h=1 i=1 Iclrl

The operation cost of each CS in (6a) includes the operation costs of the CGU and chargers related to
active power filtering and reactive power compensation cost, as given in [25, 38, 39]. Charger efficiency is
considered because of the internal conversion losses, where input power to the charger is more than the power
sold to EVs. For the other terms, the cost is simply the product of the traded energy by the prices obtained

from previous optimisation layer.

3.3. Objective function of Retailer layer

The net revenue of retailers in this layer must be maximised, which is defined as the difference between
the revenue obtained by selling electricity to CSs and the cost of electricity purchased from the wholesale
market, as given by:

RRe — RRe—,CS _ (CRe+,WM (7)

The collective daily revenue and cost of retailers are expressed in the following equations:

RRe—,CS 24: NZ: NZ: Re—,CS (8&)
Z 2 49 h EX) h s
Re+,WM _ AN Re+ WM Re+ WM
C =3 Z P, pn" (8b)

h=1 s=
3.4. Constraints of EV layer

The SOC evolution after each charge and discharge and each trip for hour i can be determined by (9a),
while (9b) ensures that the battery SOC level is maintained within a lower and upper bound for EV k& for
the safety and longevity of the battery:

EV+,CS BAT+ EV-,CS
ke X0 x At by, k U x At

Sochkr _SOC 1,k T Cp}k«]\/ - C k 77BAT_

(9a)

SOCEY < SOCEY  <50C; " 9b
h,k, k

Charging and discharging power of the chargers at each CS are limited, which is enforced by (10a) and
(10b). At each hour h, an EV can only adopt one of the charging or discharging mode, which is achieved by
(10c).

0< P}];::X?CS < Cph,l,] (1084)
0< P,EX;’CS < Cpit (10b)
PRV « PhEXT CS_o (10c)
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During charging period, the required energy (in terms of battery SOC) is calculated by (11) in a way to
guarantee the minimum SOC level, Mf ‘,;[;E, at the next destination, which is specified by the EV owner.
The required SOC of EV is determined by the minimum driving distance obtained in Step 2 of Section 2.

SOCREVH = GOCREVT=CS™ | gOORCS™=EVEE | go0 PV ~EVPE
+S0CTY " - 50CiT,
(DY =05 4 DEY=BVPE L DEVOIEVIRy oy (11)
Cp%v

+S0CEY " —soCk, .,

Similarly, the maximum available energy of an EV that can be sold to a CS, depends on the EV’s travel
plan and the distance of the routes, which is calculated in (12).
SOCREV= - S0Ciy,  ~ SOCKEV" =™ _ goofiCs™~EvDE
- SO P - s0CRY T
_socp,, - PR A DETRT L DR, (12
R, Cpkv

-socEy"
For EV k in both charging or discharging mode, the SOC at the departure time from selected CS must
be higher than the required SOC of the EV to reach the next destination, as expressed in (13):
SOC, Y > S0CHT (13)
At the final destination, the SOC of EV k must be more than the final SOC level that is specified by the

EV owner, which is achieved by:
SOCEY," > socy (14)

3.5. Constraints of CS layer

Balance between supply and demand within a CS should be maintained at all times during charging and
discharging, which is achieved by (15a). Charger efficiency is considered for the sake of accuracy. Equation
(15b) ensures that the number of operational chargers in a CS does not exceed the number of existing

chargers in that station.

NEV NRe CS—,AG NEV PCS—,EV
PV GU ESS+ CS+,EV CS+,Re _ ~ hi hik,r
Pyl + Py £+ B+ Y Py + >, Py T —em— t > CH (15a)
k=1 s=1 n; k=1
AV,CH _ +7CH
Nh,i <N, (15b)

The onsite PV generation is estimated by (16a) from meteorological data and PV panel specifications.
Equation (16b) ensures that the PV dispatch at time h is lower than or equal to the maximum available PV

at the same time. Therefore, PV curtailment is allowed in the CS operation.
PEY =iV x APV x Ray, x (1-0.005 x (Tm§™ - 25)) (16a)

13
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P}ﬁy < PiPV,norn (16b)
202 In (17a), onsite stationary ESS operation and its SOC evolution is characterised. The SOC upper and
23 lower limits are enforced by (17b). Moreover, simultaneous operation of the ESS in the two modes (i.e.,

+ charge and discharge) is prohibited by (17c).

2

©

PESS+ x nESS+ x At P}]IE]ZSS— x At

SOCESS = SOCFSS, + 1t - (17a)
; 1, Cp}iESS OPFSS « nESS—
295
—ESS
SOCTSS < SOCFS® < SOC; (17b)
296
PSSt x PSS =0 (17¢)
207 Equation (18a) ensures that electricity produced by a CGU at time h does not exceed its nominal capacity

28 [40]. Moreover, based on (18b), it is not reasonable to operate the CGU below 30% of its rated power due
29 to low efficiency and high greenhouse gas emission at the lower operating ranges. Therefore, the CGU will

w0 be turned off, as in [40].

P <cpfv (18a)
301
PEY PEY > 0.3 x CpPY
pey =" & (18b)
0 PPU<03xCpfY
302 Total charge/discharge capacity of CS ¢ is calculated by (19a) [33]. Electricity purchased from retailers

3 by CS ¢ at the point of common coupling is limited by (19b). Based on (19c), CS i is not allowed to sell
sm  CGU power to the aggregator. In other words, the power sold to the aggregator should be equal or lower
s than the power purchased from EVs. This is because of the existing regulations in many electricity markets

s and the desire to limit emissions from CGU.

NOH PCH
CpS=hix ¥ (19a)
B = P o
o CS+,R CS
,Re
Pyei <Cp; (19Db)
308
EV
CS—,AG CS+EV _ CH
Py <> Ph,i,Jlrc,r X0, (19¢)
k=1
w0 3.6. Constraints of Retailer layer
310 Active and reactive power should be balanced at all times. Therefore, sum of the electricity purchased

su from the wholesale electricity market through retailers must be equal to the sum of the electricity purchased
sz by CSs from retailers, load demand and power losses of the distribution network for active and reactive

a3 power at hour h:

N Re+,WM NN Re-,CS N7 DN

e+, e—,
Z Ph,s = Z Z Ph7s,i + Z PDbyh + PLh (203‘)
s=1 s=1 4=1 b=1
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Z Qu M = Z Z Quei S+ Z Qpyh+ QL (20b)

Active and reactive power demands at bus b and hour h are determined by:

SDoab
Nb

> Sposw
b=1

Ppy.h= x Ppgsn (21a)

Qp,n = tan(cos™ (PFy)) x Pp, » (21b)

Power losses are given by:
Nl\l )
PEhN = Z | Ingm [” % R (22)

m=1

Total electricity purchased from the wholesale electricity market must not exceed substation transforma-
tion capacity [41]:
NRG
Z PRe+ WM CpTR (23)
Bus voltages must be within permissible range in order to guarantee a secure operation of the distribution

network while maintaining power quality at a standard level:

ES|Vh,b|va (24)

Active and reactive power balance are maintained for bus b at hour h by [42]:

Nb

Pa,n = Poyn = Vo Y, Var(Goacos(Oy = 0an) + Boasin(0p,n — 0a,1)) (25a)
a=1
Nb

Qcyh = Qpyh = Vo 2, Van (Grasin(Op,n = ba,n) + Boacos(pn — 0an)) (25b)
a=1

The electricity price offered by retailers to CSs is limited by minimum and maximum bounds for the
optimisation problem at this layer.
Re-,CS ,CS e-,CS
YRy (26)

4. Optimisation Model

Despite the fact that evolutionary algorithms might not be able to guarantee global optimal solutions
and that they might only reach near-optimal solutions, an evolutionary algorithm, called SSA, is preferred
in this study because of the non-linear nature of the three optimisation problems. SSA is an evolutionary
computation technique that is inspired by swarming behaviour of salps when they navigate in deep oceans
within chains of salp searching for a food source as the swarm’s target. In literature, the most popular
swarm-inspired algorithms are Particle Swarm Optimisation (PSO) and Ant Colony Optimisation (ACO)
[33, 43-45]. However, it was discovered in a few studies. e.g., [46, 47], that the SSA is able to explore

the search space more effectively, and that the optimisation technique benefits from high exploration and
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convergence speed to obtain the true global solutions [46]. In order to obtain a mathematical model of salp
chains, the population of salps is divided into two groups: the first group is the leader where the salp at
the front of the chain guides the swarm and the second group includes the followers, as the rest of salps,
chasing the leader. In every iteration, the leader changes its position around the food source and the followers
chase the leader. The position of salps is defined as an n-dimensional search space, where n is the number
of decision variables of the optimisation problem at hand. The position of all salps are stored in a two-
dimensional matrix, x, ;. The position of the first salp as the leader is updated with respect to the food
source, Fy, 1, based on [46, 48]:

xﬁﬁ _ Fo it +c1i ((uby, = 1by,) coip +1by) €3.420 @)

Fo it —c1,i ((uby, —1by) coip +1by) €34 <0

where ¢; ;; is a variable that will exponentially decrease throughout the iterations, as obtained by (28); and

¢2,it and cs ;¢ are random numbers uniformly distributed on the interval of [0,1] at iteration it.

(4 x z‘t)2
Cl,it = 2e B (28)
The position of the follower f in the dimension n is updated by:
1
af 5 (xﬁth + mf;zlt (29)

nit = 9

To determine optimal day-ahead electricity prices sold to CS operators by retailers, we have NT¢ x 24
decision variables to optimise in Retailer layer. The number of decision variables in the CS layer is 3x NS x 24
considering three sets of variables that correspond to the power produced by CGU, power purchased from
retailers, and power sold to the aggregator for 24 hours ahead. In the EV layer, the optimisation problem

includes 2 x 24 x N®V decision variables that correspond to the power sold /purchased to/from EVs.

5. Simulation Study

In order to examine the performance of the proposed method, a comprehensive simulation study is carried
out, as shown in Figure 4, using a selected area of San Francisco [49]. The IEEE 37-bus distribution test
system [50] is mapped over the area to represent the CSs connection to the upper grid. It is assumed that
there are three retailers to provide electricity to CSs and one aggregator is considered to sell energy back
to the wholesale market by purchasing it from CSs. The nominal voltage of the network is 480 V and the
minimum and maximum voltage limits are 0.95 and 1.05 p.u., respectively. Node 1 is connected to the
distribution transformer as the slack bus. Total active and reactive power demand (without EV) at the peak
hour are equal to 8.7 MW and 4.3 MVAr, respectively. As depicted in Figure 4, the CSs are randomly placed
at nodes 2, 8, 10, 11, 16, 22, 29, 32, and 35. The origin and destination of EVs in each trip is assumed to be
contained in this area. 600 EVs are randomly situated over the area, each of which is assumed to complete
two trips per day with different waiting times between each trip, without loss of generality. Furthermore,

four types of EVs with battery capacity of 14.5kWh, 16kWh, 28kWh, and 40kWh are considered. In this
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study, the base case is defined in such a way that no optimisation is carried out for scheduling and every
EV selects the closest CS without considering prices. Also, V2G and G2V prices in the base case strategy
are equal to the initial prices in the first iteration of the proposed three-layer optimisation problem for each
agent.

Input parameters and their corresponding values for the distribution network, CSs, and EVs are given in
Table 2. Due to lack of daily load profile at each node in the IEEE 37-bus distribution test system, the daily
hourly load profile of California ISO [51] is used by re-scaling the values in proportion to the test network
load demand using (21a) and (21b). Also, day-ahead electricity prices of the wholesale electricity market for

a typical day are extracted from California ISO [51], which are used in the simulation studies.
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Figure 4: IEEE 37-bus distribution test network and location of some of the EVs and all CSs in San Francisco, the USA [49]
and [50].

In order to take into account ancillary services costs, network maintenance costs, taxes, and etc. (which
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Table 2: Input parameters of distribution network, CSs, and EVs [39, 52, 53]

Parameter Value Parameter Value

My e + 1(4+1: G2V, -1: V2G) | Cp®Y 14.5, 16, 28, 40 (kWh)
At 1 hr V,/Vy 0.95/1.05

s 10.16 ($/kVA) HV 0.7 (kWh/m3)
n°H 0.9 ntVv 0.157

PFCH 0.95 APV 800 (m?)

CpBY 65 (kW) CpBSS 50 (kWh)

N?H 5 pBes 13.07 (cents/m?)
a 0.03 B 1.05

K 0.61 A 1

SOCESS) 500 0.1/0.9 y 0.2 (kWh/km)

are normally included in the retail electricity tariffs), the day-ahead electricity prices of the wholesale market
is multiplied by 4.5 homogeneously. The new prices will serve as the electricity prices that is paid by CS
operators to the retailers. The electricity prices sold to EVs by CSs and electricity prices purchased from

EVs by CSs are obtained by:

pif_’EV = rand(1.1,1.5) x pje s (30)

h,i
In (30), it is assumed that CSs’ asking prices are 10-50% more than what they pay to the retailers in
order to make profit. In addition, CS operators offer prices to EVs for V2G services that will be sold to the
wholesale market through aggregators. The performance of a CS in this case depends on the prices offered

to the EVs. Therefore, a sensitivity analysis is carried out using the following three scenarios:

1 _
Scenario I (Low-price scenario): S_?’EV =15 Pﬁi % x rand(0.1,0.9)
Scenario IT (Medium-price scenario): p,?‘?’EV = pfi_’cs x rand(0.6,0.85)
Scenario IIT (High-price scenario): pi?’EV = pfj_’cs x rand(1.05,1.3)

It can be seen that the optimal day-ahead electricity prices for discharging EVs increase from scenario I
to scenario III. In fact, in scenario I to scenario III, V2G prices are getting closer to G2V prices to encourage
more EVs in V2G operation, and consequently, determine the range of V2G prices in which the collective
benefit of all agents is maximised. In all scenarios, piff’AG =1.1x pi?’EV where the aggregator expects

maximum of 10% profit based on the price offered by CSs.
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It is assumed that different retailers are looking for up to 30% profit. As a result, the minimum and

maximum value of the day-ahead electricity prices sold to CSs by retailers are expressed as:

1.05 x 4.5 x phetsWM ¢ pReCS 1 54 5 plet WM (31)

The cloud scheduling system specifies the charging/discharging plan of all EVs at once. Four plans can
be expected for EV charging and discharging with two trips. The flowchart for choosing a proper plan for
EVs is shown in Figure 5, which are explained below:

e Plan 1: The initial SOC of EV k at the beginning of trip 1 is not sufficient to complete this trip.

Therefore, EV k must be charged in trip 1. If it is profitable, it will be discharged in trip 2.

e Plan 2: The initial SOC of EV k at the start of trip 1 is more than the total energy needed to finish
trip 1 and the minimum SOC of the EV at the end of the trip. If charging prices in trip 1 are less than
discharging prices in trip 2, EV k will be charged in trip 1 and discharged in trip 2.

e Plan 3: The initial SOC of EV k at the beginning of trip 1 is more than the total energy required for
the trip and the minimum SOC of EV at the end of the trip. If discharging prices in trip 1 are more
than charging prices in trip 2, EV k will be discharged in trip 1 and charged in trip 2.

e Plan 4: The initial SOC of EV k at the beginning of trip 1 is more than the required energy to
complete the trip and minimum SOC of EV at the end of the trip. However, charging prices in trip 1
are more than discharging prices in trip 2. In addition, discharging price in trip 1 is less than charging
price in trip 2. In this case, EV k will not be charged nor discharged. However, if the initial SOC of EV
k at the beginning of trip 2 is not more than the required energy to complete the trip and minimum

SOC of EV at the end of the trip, the EV k& must be charged in trip 2.

6. Simulation Results and Discussion

In this section, simulation results for a typical day will be presented and explained for the case study

introduced in Section 5.

6.1. V2G and G2V operation and prices

The optimal day-ahead electricity prices offered by the most and least profitable CS are shown in Figure 6.
It can be seen that the most profitable CS is CS#8 in scenario II and the the least profitable CS is CS#1
in scenario I. The number of EVs charged and discharged in each scenario for each hour is depicted in
Figure 7. No EVs is planned for V2G service in Scenario I due to the extremely low prices offered by the
CSs. However, by increasing the V2G prices (assuming that the cost of ancillary services, taxes, etc. are
reduced or we experience high prices in the wholesale market), the number of EVs participating in V2G
increases and reaches its maximum in Scenario III. Also, it can be seen from Figure 7 that the number of
EVs in charging mode has increased substantially because it is economically beneficial for the EVs to charge

in one trip and discharge in the next one (i.e., energy arbitrage).
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The number of EVs in each charge and discharge mode in each scenario for Plan 1, 2, and 3 is depicted
in Figure 8. For Plan 1, the number of EVs planned for V2G service in the second trip is raised by increasing
V2G prices because it is economically rewarding for EVs to make profit from the high SOC level of batteries
in the second trip. For Plan 2, the results show that by increasing V2G prices, when G2V prices in the first
trip is lower than V2G prices in the second trip, the number of EVs that prefer to charge in the first trip
and discharge in the second trip increases because they can make more profit. As explained in Section 5, for
Plan 1, EVs must be charged in trip 1, and if it is profitable, they will be discharged in trip 2. However, for
Plan 2, EVs are charged in trip 1 and discharged in trip 2 to make profit if the prices are right. Furthermore,
in Plan 3, more EVs discharged in the first trip with higher prices and charge in the second trip with lower
prices.

Figure 9 depicts the routes for an EV that is specified by ArcGIS in the base case and the proposed
strategy in this study. In this example, EV k selects the nearest CSs (CS#8 and CS#3) in the base case
without running a cost-benefit analysis, which leads to $4 extra cost for EV k in comparison with the

proposed three-layer optimal strategy.

50

45 —=—Price purchased from CS#8 by EVs in Scenario II
—*—Price purchased from CS#1 by EVs in Scenario I

40

——Price sold to CS#8 by EVs in Scenario 11

35 | —=—Price sold to CS#1 by EVs in Scenario I
30

25
20
15
10

i

Optimal day-ahead electricity price (cents/kWh)

1 234567 8 9101112131415161718192021222324
Time (Hour)

Figure 6: Optimal day-ahead electricity prices offered by the least (CS#1) and the most profitable CS (CS#38) during charging

and discharging of EVs among all Scenarios.
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Figure 7: Number of EVs planned to participate in (a) G2V and (b) V2G in each scenario.
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I Plan | - Charging in Trip | [l Plan 1 - Discharging in Trip 2
[ Plan 2 - Charging in Trip | B Plan 2 - Bischarging in Trip 2
[ Plan 3 - Discharging in Trip | I Plan 3 - Charging in Trip 2

Figure 8: Total number of EVs for Plan 1, Plan 2, and Plan 3 in each scenario.
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Figure 9: Scheduling results for a sample EV in the base case (red line) and the proposed strategy (green line).

6.2. CS and retailers operation

In Table 3, optimal day-ahead electricity prices offered by three retailers to CSs are reported. The
cheapest retailer is selected in each hour, which are specified in the Table. Off-peak and peak periods with
minimum and maximum electricity prices occur in hours 10 and 19, respectively, and Retailer#1 is selected
by CSs in both off-peak and peak periods.

As reported in Table 4, by increasing the number of EVs participating in V2G program from scenario I
to I1I, the net cost of EVs decreases and the net revenue of CS operators and retailers increases. However, in
Scenario I1I, while more EVs participated in the V2G program, the net revenue of retailers and CS operators
as well as the net cost of EVs decreased compared to Scenario II. The main reason is that the cost of
electricity purchased by CS operators from EVs participating in V2G services increased while the electricity

purchased from retailers by CS operators decreased. Based on the results presented in Table 4, the most
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Table 3: Optimal day-ahead electricity prices offered by retailers and the selected retailer in each hour (cents/kWh)

Time (Hour) Retailer#1 Retailer#2 Retailer#3 Selected retailer
t=1 18.74 19.35 21.12 Retailer#1
t=2 18.66 17.48 19.96 Retailer#2
t=3 16.74 17.46 16.43 Retailer#3
t=4 16.73 17.39 16.33 Retailer#3
t=5 17.73 18.24 18.13 Retailer#1
t=6 20.62 18.75 19.25 Retailer#2
t=T7 24.34 24.42 22.51 Retailer#3
t=8 20.03 19.49 22.31 Retailer#2
t=9 16.58 15.16 16.72 Retailer#2
t=10 14.25 15.11 16.03 Retailer#1
t=11 16.52 15.55 16.12 Retailer#2
t=12 16.60 18.53 16.20 Retailer#3
t=13 18.06 18.62 17.38 Retailer#3
t=14 18.78 21.16 19.68 Retailer#1
t=15 19.93 21.16 19.96 Retailer#1
t=16 21.56 22.1 21.00 Retailer#3
t=17 22.73 22.19 21.94 Retailer#3
t=18 25.16 27.39 27.81 Retailer#1
t=19 35.64 38.03 39.52 Retailer#1
t=20 32.75 35.15 33.59 Retailer#1
t=21 28.69 29.07 25.67 Retailer#3
t=22 25.22 22.96 25.27 Retailer#2
t=23 22.48 21.57 21.51 Retailer#3
t=24 21.74 19.45 19.00 Retailer#3

Table 4: Objective function values in three layers and the number of EVs discharged in all scenarios

Scenario Total net cost of Total net revenue of | Total net revenue of No. of EVs
EVs ($) CSs (%) retailers ($) discharged
Scenario I 1835.1 291.7 643.9 0
Scenario 11 1800.4 453 654.7 25
Scenario 111 1219.3 378.1 639.7 261
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profitable operation is achieved in Scenario II for all three agents, i.e., EV, CS, and retailer.

6.3. The proposed algorithm performance and convergence

To verify the simulation results obtained by SSA, the three-layer optimisation problem is also solved by
PSO approach. The optimisation algorithms convergence rates of prices for both optimisation techniques
are shown in Figure 10 for each scenario in the three layers, where optimal results are reached after about
70 and 75 iterations in most cases using SSA and PSO, respectively. The optimal values are obtained by
SSA and PSO in 1683 and 1829 seconds, respectively. Therefore, it shows that SSA is outperforming PSO

in terms of computational time. All computations are executed on a laptop with Intel Core i7 CPU with

w0 1.80GHz processor and 8GB RAM.
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Figure 10: Convergence of the optimisation problems in (a-c) EV layer, (d-f) CS layer, and (g-i) Retailer layer for all scenarios.

In Table 5, the cost/revenue of EVs; CS operators, and retailers are reported for the base case and the

proposed three-layer optimisation problem in scenario II ; obtained by SSA and PSO. It can be seen that
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the cost of EVs decreased by 17.6%, and the revenue of CS operators and retailers raised by 21.1% and
22.6%, respectively, in the proposed method solved by SSA in comparison with the base case. The results
obtained by SSA and PSO are quite close, with SSA performing slightly better in most instances. It shows
the effectiveness of SSA in solving these complex optimisation problems in a reasonable time. To better
show the effectiveness of the proposed method, another simulation study is performed, called “Individual
optimisation problem”, in which the optimisation problem of each stakeholder is solved individually without
iterative process. It can be seen from Table 5 that if the our proposed method yields 10.2% reduction in
EVs operation cost and 18.4% and 19% increase in revenue of CSs and retailers, respectively, compared to
“Individual optimisation problem” in scenario II.

Table 5: Comparing the simulation results for the base case, the proposed three-layer optimisation problem and the individual

optimisation problems in Scenario II

Optimal Value

Parameters
SSA PSO
CcEV (8) Three-layer optimisation problem 1800.4 1801.3
Base case 2185.7 2185.7
Individual optimisation problem 2005.7  2006.2
RS ($) Three-layer optimisation problem 453 453.7
Base case 3741 374.1
Individual optimisation problem  382.6  382.9
REe ($) Three-layer optimisation problem 654.7  655.2

Base case 534.1 534.1
Individual optimisation problem  550.2  550.8

7. Conclusions and Recommendations

In this study, a day-ahead scheduling framework is presented to guarantee economic and energy-efficient
routing of electric vehicles. Based on the proposed strategy, each electric vehicle and charging station finds
optimal charging stations and retailers, respectively, for vehicle-2-grid and grid-2-vehicle services by solving
an equilibrium problem. The proposed method can be offered as a cloud service to all stakeholders, which
facilitates day-ahead electric vehicle scheduling considering objectives and preferences of all stakeholders.
In this method, electric vehicles independently plan their charging/discharging depending on the minimum
driving routes and cost/benefit analysis based on the prices offered by charging stations. Also, charging
stations select optimal retailers to purchase energy while utilising onsite generation and stationary storage
in the most economic way. In addition, charging stations are able to facilitate vehicle-2-grid operation

by purchasing energy from electric vehicles and selling back to the wholesale market through aggregators.
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Comprehensive simulations are conducted on a real test system. Simulation results confirm that the cost-
effective operation is achieved for all agents, and it is highly dependant on the level of participation of
electric vehicles in the vehicle-2-grid program and the cost of energy in the wholesale market. The optimal
solutions are obtained for all stakeholders by respecting physical limits of the network, avoiding queuing at
the charging stations, and preserving electric vehicle owners comfort and preferences during the scheduling.

In our future works, we are planning to improve the proposed model by incorporating electric vehi-
cle owners’ preferences, and unpredictable and economically-irrational behavior. Also, various sources of
uncertainty will be added to the model and stochastic/robust optimisation will be used to deal with the
uncertainties. Furthermore, it is recommended to study the cooperative and non-cooperative game theory

in order to model the interaction between different agents.
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w3  Nomenclature

Indices
a,b Index of buses in the distribution network
h Index of number of cycles of EV’s battery
h Index of hours of a day
i Index of CS
it Number of iterations
j Index of chargers
k Index of EV
m Branch of the distribution network
n Dimension of search space
r Index of trip
s Index of retailer
Parameters
B APV Area of PV in CS i (m?)
By Susceptance of overhead line between bus b and a (mho)
cBaT Per-unit capacity cost of battery
c;)‘%’i Per-unit capacity cost of the active power filtering and reactive power
compensation in CS i
Z\YJCH Capacity of available charger j in CS ¢ (kWh)
C’p%{’j Capacity of charger j in CS i at time h (kWh)
CpEsS Capacity of ESS of CS i (kWh)
CpEY Capacity of EV’s battery k& (kWh)
Cp$l Capacity of CGU of CS i (kWh)
Cppe™ Nominal capacity of EV k (kWh)
Cpy? Real capacity of EV k& (kWh)
Cp™® Substation transformer capacity (kWh)
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495

OR SE
DEV -CS
h,k,r

SE DE
DCS —-EV
h,k,r

OR DE
DEV —-EV
h,k,r

Gha
HV

it

A
NCS
NCOYC
NEV
N Re
NT

PiPV,nom

PFCH
i,j
R,
Rah
Sposb

SO,
50C; " /s0CPss
50C} " | SOCEY
socyy”

Tmg™

At

uby, /1by,

Shortest driving distance of EV k between its origin and the selected CS
in trip r at time h (km)

Shortest driving distance of EV k between the selected CS and its des-
tination in trip r at time h (km)

Shortest driving distance of EV k between its origin and destination in
trip r at time h (km)

Conductance of overhead line between bus b and a (mho)

Heat value fuel on the operation of gas turbine-generator (kWh/m?)
Maximum number of iterations

Number of distribution network nodes

Number of charging stations

Number of cycles of EV’s battery

Number of electric vehicles

Number of retailers

Number of trips

Nominal power of PV system of CS i

Power factor of charger j in CS ¢

Resistance of overhead line (£2)

Solar radiation at time h (W /m?)

Nominal apparent electrical load of the distribution network (kVA)
Initial SOC of EV k at the beginning of first trip (%)
Maximum/Minimum SOC of ESS in CS i (%)

Maximum/ Minimum SOC of EV k (%)

Minimum SOC of EV k at the destination of trip r (%)

Ambient temperature at time h (°C)

Time step (s)

Upper/Lower bound of variables in SSA
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Bij
Yk
nY
U
iy
ESS+
ESS-

Bat+

Bat—

R

gas

Ph

Re+, WM
h,s

—Re-,CS / Re-,CS
p /p

01,02,03

1,902,903, P4

Minimum/Maximum nodal voltage of the distribution network (V)
Waiting time of EV k for trip r at time h (s)

Longitude of CS i

Longitude of destination of EV k in trip r at time h

Longitude of origin of EV k in trip r at time h

Latitude of CS ¢

Latitude of origin of EV k in trip r at time h

Harmonic current containing rate in the AC power input terminal of the
charger j of CS ¢

Reliability coefficient of the charger j of CS i

Power consumed by EV k per km (kWh/km)

Efficiency of PV system of CS ¢ at time h

Efficiency of charger j of CS ¢

Efficiency of CGU of CS i at time h

Efficiency of ESS in charging period

Efficiency of ESS in discharging period

Efficiency of EV’s battery in G2V operation

Efficiency of EV’s battery in V2G operation

Overall correction coefficient of CS 14

Simultaneity coefficient of the chargers of CS ¢

Natural gas price at time h

Electricity price purchased from wholesale market by retailer s at time
h ($/kWh)

Maximum/Minimum electricity price sold to CSs by retailers ($/kWh)
Fitting parameters for cycling degradation related to DOD

Fitting parameters for cycling degradation related to discharge rate
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Variables
C1,it

C2,it, C3,it

(CCS+,EV
CCSJr,Rc
(CD

CEV
CEV+,CS
(COp,CS
CRe+,WM

EV
]D)h,k,r

DODyY (T)
DRIY(T)

Fy i

Inm

it

Coefficient for balancing exploration in SSA for iteration it

Random number generated uniformly between 0 and 1 in SSA for itera-
tion it

Cost of energy purchased from EVs ($)

Cost of energy purchased from retailers ($)

Battery degradation cost (%)

The net cost of EVs operation ($)

The cost of electricity purchased from CSs by EVs ($)

Operation cost of CSs ($)

Cost of electricity purchased from the wholesale market by retailers ($)
Battery degradation of EV k in trip r at time h

Depth of charge of EV’s battery k in trip r

Discharging rate of EV’s battery k in trip r

Position of food source in SSA for iteration it

Current of overhead line m at time h (A)

Number of iterations

Number of iterations in EV/CS/Retailer layer

Mode of electric vehicle k in trip r at time h

The number of available chargers in CS ¢

Power purchased from EV k by CS 4 in trip r at time h (kW)

Power sold to EV k by CS 4 in trip r at time h (kW)

Calculated active electrical load at bus b of the distribution network at
time h (kW)

Power loss of distribution network at time h (kW)

Charging power of ESS of CS i at time h (kW)

discharging power of ESS of CS i at time h (kW)

Power generation at bus b of the distribution network at time h (kW)
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PV
Ph,i
CS-,AG
Ph,i
CS+,Re
h,s,i
EV+,CS
Ph,i,k,r
EV-,CS
h,i,k,r

GU
Ph,i

Re—,CS

h,s,i

P}l;{e+,WM
sS

PFy
QDb,h

QDN
Ly,
RCS
RCSqAG
RCS—,EV
REV—,CS

RRC
RRe—,CS

Spy,,h

SOC ey
SOCESS
SOCEY ,
SOCEY "
socy,
SOCH*

PV generation of CS i at time h (kW)

Power sold to the aggregator by CS i at time A (kW)

Power purchased from retailer s by CS i at time h (kW)

Power purchased from CS ¢ by EV k in trip r in trip r at time h (kW)
Power sold to CS ¢ by EV k in trip r at time A (kW)

Power produced by CGU of CS i at time h (kW)

Power sold to CS i by retailer s at time h

Power purchased from wholesale market by retailer s at time h (kW)
Power factor at bus b and time A

Calculated reactive electrical load at bus b of the distribution network
at time h (kVar)

Reactive power loss of distribution network at time h (kVar)

Net revenue of CS operators ($)

Revenues of CSs from selling energy to the aggregators (3)

Revenues CSs from selling energy to EVs ($)

Revenue of EVs from selling electricity to CSs ($)

Net revenue of retailers ($)

Revenue of retailers obtained by selling electricity to CSs ($)
Calculated apparent electrical load at bus b of the distribution network
at time h (kVA)

SOC of EV k in trip r at time h (%)

SOC of ESS of CS i at time h (%)

SOC of EV k in trip r at time h (%)

SOC of EV k at its destination in trip r at time h (%)

Initial SOC of EV k at the beginning of trip r and time h (%)
Required SOC of EV £ in trip r at time h during charging period (%)
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500

501

502

R,EVORLCSSE
SOC’h’ e

R,EVOR_EYPE
SOCh,k,r

R,CSSFS5EVPE
SOCh’ ke

TCYC

Vi

f
xn,it
O, 1

CS-,AG
Phi

CS+,EV

h,i

Re-,CS

h,s

CS-,EV

hi

CS+,Re

h,s

EV+,CS

h,i

EV-,CS
Phi

Acknowledgment

Required SOC of EV k in order to reach the selected CS from its origin
in trip r at time h (%)

Required SOC of EV k in order to reach its destination from its origin
in trip 7 at time h (%)

Required SOC of EV k in order to reach its destination from the selected
CS in trip r at time h (%)

Period of cycle

Voltage at bus b and time h (V)

Position of the follower f in the dimension n in SSA

Voltage angle of the bus b at time h

Electricity price sold to the aggregator by CS 4 at time A ($/kWh)
Electricity price purchased from EVs by CS 7 at time h ($/kWh)
Electricity price sold to CSs by retailer s at time h ($/kWh)
Electricity price sold to EVs by CS 4 at time h ($/kWh)

Electricity price purchased from retailer s by CS ¢ at time h ($/kWh)
Electricity price purchased from CS i by EVs at time h ($/kWh)
Electricity price sold to charging station i by EVs at time h ($/kWh)
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