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Abstract

The ongoing rapid increase in the integration of variable and uncertain renewable energy sources calls for enhancing
the ways of providing flexibility to power grids. To this end, we propose an optimal approach for utilizing electric
vehicle parking lots to provide flexibility at the distribution level. Accordingly, we present a day-ahead scheduling model
for distribution system operators, where they can offer discounts on the network tariff to electric vehicle parking lot
operators. This way, they will be encouraged to exploit the potential flexibility of electric vehicle batteries to assist in
alleviating the steep ramps of system net-load. To determine the optimal discounts, the distribution system operator
minimizes the network operating costs considering the network operational constraints, while the electric vehicle parking
lot operators try to maximize their profits. Due to the contradictory objectives and decision hierarchy, the problem is an
instance of Stackelberg games and can be formulated as a bi-level program, which is linearized and converted to a single-
level mixed-integer linear program using strong-duality theorem and Karush-Kuhn-Tucker conditions. To validate the
proposed model, comprehensive simulation studies are performed on a test distribution network. The simulation results
show that implementing the model can reduce the peak-off-peak difference and peak-to-average ratio of the network
net-load by up to 15% and 24%, respectively.

Keywords: Bi-level programming, Distribution network operation, Electric vehicle parking lot, High renewable energy,
Power system flexibility

Nomenclature

Superscripts

arr/dep PEV arrival/departure to/from the EVPL.
ch/dch Electric vehicle battery charging/discharging.
CD Conventional demand.
deg PEV battery degradation.
des/ini Desired/initial PEV battery state-of-charge.
DG Renewable distributed generation source.
EV Plug-in electric vehicle.
LN Distribution network line.
min/maxMinimum/maximum value.
nom Nominal value.
PL Electric vehicle parking lot.
pw Piecewise linear function.
sqr Squared value.
SS Distribution network substation.
WE Wholesale energy market.

Indices

i Index for the PEVs parked in an EVPL.
l Index for sigma points.
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m,n,k Indices for load nodes.
mn Index for the line connecting nodes m and

n.
pc, q Indices for segments of the piecewise linear

function.
s Index for discount steps.
ss Index for substations.
t Index for time intervals.

Sets

E Set of nodes where EVPLs are located (E⊆
N).

H Set of time intervals during a day.
In Set of PEVs in the EVPL located at node n.
L Set of distribution network lines.
N Set of distribution network nodes.
PC Set of segments of the piecewise linear func-

tion.
S Set of discount steps.
TR Set of substations.

Parameters and Variables

A Size of each segment of the piecewise linear
function.

BC/BP Battery capacity/price of PEVs.
ce Curtailed RES generation.
D Amount of discount on network tariff.
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EoL PEV battery end-of-life threshold in percent-
age.

fl Current of distribution network lines.
K Slope of each segment of the piecewise linear

function.
O Number of random variables.
pr Profit of EVPLs.
P, p/Q, q Active/reactive power.
R,X,Z Resistance, reactance, and impedance of lines.
RU/RD Net-load ramp-up/down penalty in each in-

terval.
r+/r− Positive/negative ramp rate of network net-

load.
sc State-of-charge of PEV batteries.
SC Substation capacity.
T PEV battery temperature.
u Segment of the piecewise linear function.
V, v Voltage of distribution network nodes.
W Weight associated with each sigma point.
Y Output vector of the SSUT.
Z Input vector of the SSUT (random variables).
δ Binary variable indicating if the DSO gives

discount on network tariff.
∆t Length of a time interval.
η PEV battery charging/discharging efficiency.
λ/µ Dual variables of equality/inequality

constraints.
Π Electrical energy price.
χj j-dimensional spherical simplex sigma point

set.

1. Introduction

1.1. Motivation

The realization of global climate change has initiated
an orchestrated global effort to produce electricity from
green energy resources and to electrify the transportation
sector. As a result, financial incentives and regulatory poli-
cies [1, 2] are developed, which have accelerated the grid
integration of renewable energy sources (RESs) and the
use of plug-in electric vehicles (PEVs). In addition, the
adoption of the new technologies has been exacerbated by
the ever-decreasing cost of RESs and storage technologies
in the past few years [2]. The recent commitment of more
than 40 countries at the COP26 climate summit to phase
out coal power plants will also accelerate the current rate
of RES integration into power grids [3].

While these low-carbon technologies offer a plethora
of environmental and economic benefits, they may lead to
several challenges in the power grid operation [4]. A fun-
damental challenge is to effectively deal with the volatile
and uncertain nature of RES generation and uncoordi-
nated PEV charging in order to manage their impacts on
grid stability and reliability [5]. In highly RES-penetrated
power grids, steep ramping events are common. These may
cause significant momentary imbalances between demand

and supply [6], which can threaten the power system sta-
bility. In general, steep ramps may lead to significant RES
curtailment, power balance violation in a control area, neg-
ative market prices, and price volatility in power grids [7].

Traditionally, grid operators relied on synchronous gen-
erators to manage the imbalance between demand and
supply in different time scales [8]. However, even if the
possibility of congestion at the transmission system is dis-
regarded, the integration of RESs together with the re-
tirement of conventional synchronous power plants inten-
sifies the issues related to generation and demand balance.
Thus, it is crucial to develop strategies to provide more
flexibility sources for power grid operation and to ensure
supply-demand balance at a reasonable cost. While new
market products have been proposed to facilitate the uti-
lization of new flexibility sources, managed at the trans-
mission level, distribution system operators (DSOs) can
be encouraged to provide flexibility in their correspond-
ing networks by developing innovative methods [9]. Such
flexibility sources at the distribution level can fulfill the re-
quirements more efficiently, as they can eliminate the need
for costly investments in the generation and transmission
sectors [6, 9].

Due to the natural monopoly in the electricity distribu-
tion business, national regulatory authorities (NRAs) may
incentivize DSOs to improve service quality, cost efficiency,
security of supply and other similar services through new
regulations [10]. As previously discussed, the steep ramp-
ing events, caused by large amounts of RESs in the grid,
may not only threaten the power grid stability but also
can lead to higher prices in the regulation market, which
essentially increases the electricity costs for the end-users.
Aiming at motivating DSOs to alleviate the steep ramps at
the distribution level, NRAs can impose appropriate reg-
ulations on DSOs. The authors in [11] proposed several
policies for this purpose and considered dispatchable dis-
tributed generation (DG) units and energy storage systems
as the available flexibility resources that can be used by
DSOs. While such resources can be cost-effective in some
applications, they might be considered too costly in oth-
ers. Thus, a more efficient approach is to utilize the avail-
able flexibility resources in distribution networks (DNs) to
avoid or defer further investments. In this regard, PEV
parking lots (EVPLs), which are often privately-owned
and their operators aim to maximize their profit, can be
considered as a source of flexibility contingent on develop-
ing enabling schemes.

1.2. Related Works

In recent years, many methods have been proposed to
exploit the potential of PEVs in providing different types
of services to the DN. The authors in [12] proposed a novel
algorithm for EV charging scheduling with the goal of im-
proving supply voltages along a distribution feeder. In [13],
an operational model for distribution companies (DISCOs)
was proposed to reduce the DN operation costs by shift-
ing the PEV aggregator (EVA) demand to periods with
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lower electricity prices. Also, the authors in [14] proposed
a scheduling model for DN operation, where PEVs could
be utilized for load curtailment services to smooth the net
exchanged power fluctuations caused by RESs. Nonethe-
less, the authors in [12–14] developed the scheduling mod-
els for PEV charging plan or DN operation without ac-
knowledging the interactions between different agents in
the DN, e.g., DSO-EVAs or DSO-EVPLs. Additionally,
while the models proposed in [12–14] can be used for pro-
viding the aforementioned services to the DN, they may
not be adapted for enhancing the flexibility of the DN, i.e.,
minimizing the net-load ramp rate.

Another group of researchers have specifically focused
on leveraging the EVAs for providing services for the DN
operation. In this regard, the authors in [15] and [16] con-
sidered the interactions between the DSO and the EVAs by
developing distribution locational marginal pricing (DLMP)-
based methods to motivate the EVAs to participate in
managing congestion at DNs. For instance, Huang et al.
in [16] developed a bi-level model that minimizes the cost
of the DSO in the upper-level and that of the aggregators
of PEVs and heat pumps in the lower-level along with a
dynamic subsidy method for DN congestion management.
Although the proposed approaches in those studies pre-
sented effective methods for providing services to the DN
via EVAs, they did not investigate the potential of EVPLs
for providing services to DNs [15, 16]. In addition, such
studies have focused on market-based approaches at the
distribution level to incentivize the EVAs to provide ser-
vices. However, implementing such schemes requires local
electricity markets, which seems pretty far-fetched [9]. In
addition, it would be better to motivate EVPLs to provide
services (in our case, flexibility) that benefits the DN oper-
ation without a market-based approach, in an attempt to
avoid complexities in the DSO’s operation. Finally, none
of the models proposed in these studies can be adapted to
provide flexibility to the DN since they are developed for
DN congestion management.

Given the growth of privately-owned EVPLs in recent
years, several studies have developed frameworks for effi-
ciently integrating them into power grids. In this regard,
the authors in [17] presented a smart EV charging scheme
to reduce electricity and charging infrastructure costs as-
sociated with workplace EVPLs. Also, Neyestani et al. in
[18] introduced a framework for the interactions of EVPLs
with the energy and reserve markets via an EVA. In [19],
the authors proposed an approach for the participation of
EVPLs in multiple electricity markets, aiming at maxi-
mizing the EVPLs’ profit as well as minimizing the DSO
operation cost. In [20], the authors proposed a bi-level
program for modeling the interactions between the DSO
and the EVPLs, aiming at minimizing the costs of both
entities. Conceptually similar to the bi-level model in [20],
the authors in [21] presented an operational scheduling
model for distribution companies in the presence of RESs
and EVPLs to minimize the utilities’ cost and maximize
the EVPLs’ profit. Despite the efforts made in [17–21],

the proposed methods do not offer mechanisms to encour-
age EVPL operators to provide any specific services to
the DN. Authors in [22] presented two charging strategies
for workplace parking lots, aiming at either minimizing
the charging cost or minimizing the peak-to-average ra-
tio (PAR). However, the impact of the proposed strategies
on the DN operation was overlooked, and no cost-benefit
analysis has been performed to assess the efficiency of the
proposed model. The cost-benefit study is important be-
cause a rational EVPL operator will not provide services
to DNs unless extra profit can be envisaged.

In addition to the identified knowledge gaps in the lit-
erature, to the best of our knowledge, no previous research
has proposed an approach for flexibility provision at the
distribution level (i.e., minimizing the net-load ramps of
the DN) through EVPLs/EVAs. Moreover, while a simpli-
fied version of the linearized AC optimal power flow (OPF)
is employed in [12, 16, 19, 21], the models in [18, 20] did
not consider any OPF formulations, which fails to guar-
antee the feasibility of the results. Also, the approaches
proposed in [12, 14–22] did not consider the uncertainty
associated with RES generation, EVPL load, and conven-
tional loads. This issue is critical in a network with high
RES penetration and PEV demand since their day-ahead
forecast might have considerable errors. Additionally, the
costs related to the PEV battery degradation were not
considered in [14–17, 20]; also, the battery degradation
models that were used in [13, 18, 19, 21, 22] did not ac-
count for the impact of the charge and discharge power on
the PEV battery degradation. Such simplistic degrada-
tion models are not suitable for the applications in which
the PEVs are utilized to provide various services to the
DN as the services should be monetized accurately. Using
a simple battery degradation model may lead to over- or
under-estimation of EVPLs’ cost and thus flexibility.

1.3. Objectives and Contributions

Addressing the issues discussed previously, this paper
proposes a framework that enables the DSO to exploit the
EVPLs flexibility at the distribution level. To this end,
we develop a mathematical model for day-ahead schedul-
ing of DNs with high penetration of PEVs and RESs by
providing mechanisms to facilitate EVPLs participation in
flexibility provision. In the proposed framework, the DSO
aims at minimizing the DN operating costs, while allevi-
ating the network net-load ramps using the flexibility of
PEVs parked in the EVPLs. The operational constraints
of the DN are considered in the problem using an accurate
linear AC OPF model to ensure that the DN operation is
technically feasible. Also, the prediction uncertainties of
RES generation, EVPL demand, and conventional loads
are taken into account through an efficient analytical un-
certainty modeling technique, i.e., spherical simplex un-
scented transformation (SSUT).

The main objective of each EVPL operator is to max-
imize its own profit. As a result, they have no tendency
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Table 1: Comparison of the proposed model with the most relevant studies

Ref.
Stakeholders Accurate

PEV Battery
Degradation

DN Technical
Constraints

Correlated RES
and Demand
Uncertainties

Unfixed Energy
Price and Plan for
EVAs/EVPLs a

LP/MILP

Optimization b

Upper-Level Lower-Level

[12] Single-Level ✓ ✓ ✗ ✗ ✗

[13] Single-Level ✗ ✓ ✓ ✗ ✓

[14] Single-Level ✗ ✓ ✗ ✗ ✗

[16] DSO Aggregator ✗ ✓ ✗ ✗ ✓

[18] Aggregator EVPL/DG/Retailer ✗ ✗ ✗ ✗ ✓

[19] Two-Level (DSO and EVPL) c ✗ ✓ ✗ ✗ ✓

[21] DISCO EVPL ✗ ✓ ✗ ✗ ✓

This
paper

DSO EVPL ✓ ✓ ✓ ✓ ✓

a: Both the price and amount of the energy consumed by EVs are variables, determined by solving the optimization.
b: MILP models can be solved by commercial solvers with a guaranteed convergence to a globally optimal solution.
c: The “two-level” optimization, where the problems of both levels are solved simultaneously, is different from bi-level.

to support the DSO by providing flexibility unless finan-
cial incentives are provided, e.g., discounts on the network
tariffs in specific time intervals during a day. Consider-
ing the discounted network tariffs, the EVPL operators
will reschedule the charging of PEVs, aiming at increas-
ing their profit. The EVPL may also exploit the vehicle-
to-grid (V2G) operation of PEVs to increase their profit.
Since the objectives of the DSO and EVPLs are contradic-
tory, a bi-level optimization problem is formulated where
the decision-making process of the DSO and the EVPLs is
considered at the upper- and lower-level, respectively. The
network tariff discounts are determined by the proposed
optimization problem such that the rescheduled charging
pattern of EVPLs provides adequate flexibility to the DN.
This way, not only does the profit of each EVPL increase
due to the discounted network tariffs, but also the DSO
leverages the flexibility of PEVs parked in the EVPLs to
smooth the DN net-load. To avoid overestimating the
flexibility from EVPLs, an accurate battery degradation
model is adapted in this paper by considering the impact
of PEV battery charging/discharging rates on its degrada-
tion.

It is worth noting that the bi-level models proposed for
modeling the interaction of the DSO (in the upper-level)
and the EVAs/EVPLs (in the lower-level) in the previ-
ous studies, e.g., [16] and [21], have assumed that either
the price or the amount of EVA/EVPL consumed energy
at each time interval is constant in the equivalent single-
level problems in order to avoid computational complexi-
ties of multiplication of two decision variables. However,
we have avoided making such simplifications in our bi-level
problem to accurately model the system. After lineariz-
ing the nonlinear equations in the bi-level problem, we
converted it into an equivalent single-level mixed-integer
linear programming (MILP) problem, which can be solved
with guaranteed convergence to global optimality. In sum-
mary, the main contributions of this paper are as follows:

• Proposing a framework for the DSO to exploit the
potential flexibility of EVPLs for smoothing the DN

net-load and developing a mathematical model for
this purpose, where the interactions between the DSO
and EVPL operators are modeled.

• Devising a MILP problem to optimize the discounts
on the network tariffs offered by DSOs to EVPLs in
order to motivate them to provide services to the DN
(in this paper, to enhance the distribution network
flexibility).

• Developing a linear model for estimating the degra-
dation cost of PEV batteries caused by the EVPLs’
providing services to the DN, which considers the im-
pact of charging/discharging current on the marginal
battery degradation cost.

In addition to the main contributions of this article,
Table 1 summarizes the differences between the proposed
model and the most relevant research studies in the field.
In the table, symbols “✓” and “✗” indicate if a particular
feature is considered or not, respectively.

1.4. Paper Structure

The rest of this paper is organized as follows. After in-
troducing the proposed framework in Section 2, the math-
ematical formulation of the corresponding bi-level problem
is presented in Section 3. We then explain how the uncer-
tainties are considered in Section 4. Also, the methods
used for converting the nonlinear bi-level problem into a
single-level MILP model are presented in Section 5. We
show the effectiveness of our model and justify the claimed
contributions in Section 6. Finally, Section 7 concludes the
paper.

2. Proposed Framework

This section presents the general framework of the pro-
posed model for the DSO day-ahead scheduling. It is
known that the EVPL operators manage the charging of
the parked PEVs in order to maximize their profits, con-
sidering PEV users’ constraints and preferences. As it was
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argued in the Introduction, EVPLs can provide flexibility
when lucrative incentives are provided by the DSO. Such
financial incentives could be in the form of discounts on
network tariffs. This way, the DSO does not need to en-
gage in energy markets. Rather, a discount on the network
tariff is offered to the EVPLs by the DSO during some
time intervals. Such discounts would be compliant with
the NRAs’ regulations as they would fall within the frame-
work of the performance-based regulations for distribution
companies [23–25]. Under such regulatory regimes, DSOs
have the flexibility to offer discounted prices to their cus-
tomers as long as they meet the regulated price or revenue
cap. In the proposed framework in this paper, the DSO
incentive is only in the form of a discount. Therefore, the
network tariff will never exceed the original value. Note
that the network tariff is a percentage of the energy price
that EVPLs or other electricity consumers pay. Thus, the
DSO can only provide discount on its own share of the
electricity price of the end-users. This approach is better
than implementing dynamic tariffs on the use-of-network
charges as it may raise a number of problems. On the one
hand, frequently changing the network usage fees is not
compliant with the “good” regulatory practices [26]. On
the other hand, one network tariff structure is typically
designed for all end-users or a few specific types of cus-
tomers, e.g., residential, commercial, and industrial. Thus,
a tariff structure is not flexible enough to be tailored for
specific users like EVPLs. Accordingly, instead of design-
ing a completely different use-of-system tariff structure, we
propose minimally adjusting the tariffs by offering limited
discounts. Aside from the aforementioned limitations, the
proposed discount-based approach is conceptually similar
to the incentive-based demand response programs, while
varying network tariffs might be regarded as a price-based
program. Incentive-based programs feature higher flexibil-
ity to improve the system operation during specific events.
Also, note that, in the proposed framework, the discount
is offered to the EVPL operators, not the PEV owners;
thus changing the behavior of end-users, which can lead
to various difficulties in the practical implementation of
the model, is not required.

Aiming at determining the amount of tariff discounts in
each time interval, the DSO needs to conduct day-ahead
scheduling to estimate EVPL consumption in the pres-
ence of the discounts. The DSO specifies the network
tariff discounts for each of the EVPLs exclusively so as
to encourage the corresponding EVPL operator to utilize
the flexibility of parked PEVs. In this problem, the DSO
wants to minimize its objective function (i.e., the network
cost), while the EVPL operators’ objective is to optimize
their profit. Since the objectives of the DSO and EVPL
operators are contradictory, considering the hierarchy of
decision-making, this model is an instance of Stackelberg
games. In this game, the DSO (leader) decides on the
amount of discount on the network tariff and, afterward,
the EVPL operators (followers) respond according to their
own interests.

Such a Stackelberg game can be modeled as a bi-level
optimization problem [27]. In this respect, in its upper-
level problem, the DSO solves an operational scheduling
problem for every interval of the next day to minimize
its costs while satisfying network operational constraints,
e.g., voltage and thermal constraints. It is assumed that
the regulator has imposed a penalty-based policy on the
DSO to encourage lower ramp rates in the DN [11]. As a
result, the DSO tries to minimize the penalty by utilizing
the potential flexibility of EVPLs for decreasing the DN
net-load ramp rates. In each lower-level problem, however,
an EVPL operator maximizes its profit, while satisfying
technical constraints of charging facilities as well as PEVs’
requirements. The discounts on the network charges are
offered to the EVPL operators such that they would pro-
mote a change in the EVPLs charging profile.

The solution to the proposed bi-level optimization is
the optimal network tariff discounts in each interval of the
next day such that the total cost of DSO is minimized,
while the operational constraints of the DN are satisfied.
After obtaining the optimal solution, the DSO will broad-
cast the network tariff discounts to the EVPL operators.
Therefore, each EVPL operator will manage the parked
PEVs charging according to the discounted network tar-
iffs, and the outcome will be a reduction in the ramp rates
of DN net-load.

The proposed model is a nonlinear bi-level problem,
which is not only difficult to solve, but also the solu-
tion convergence to the global optimum is not guaran-
teed. To address this issue, we firstly linearize the non-
linear terms of the AC OPF and the battery degradation
equations in the upper-level problem. Then, we utilize
Karush–Kuhn–Tucker (KKT) optimality conditions or the
strong duality theorem to replace the lower-level prob-
lem with a set of constraints in the upper-level problem
and cast the bi-level model as an equivalent mixed-integer
nonlinear single-level problem [28]. Finally, the nonlinear
terms in the objective functions of the DSO and the EVPL
operators in the mixed-integer nonlinear problem will be
linearized. The resulting MILP problem can be solved by
a commercial solver to obtain the global optimal solution.

The flowchart represented in Fig. 2 shows the general
structure of the proposed model, where the DSO solves
an optimization problem to obtain the discounts, δn,t,s, in
the upper-level problem. Then, each EVPL operator max-
imizes its profit by determining the charging and discharg-
ing powers of PEVs, P ch

n,i,t and P dch
n,i,t, based on the DSO’s

discounts. Hence, the charging and discharging powers of
PEVs are decision variables for the corresponding EVPL
operator, while they are considered as given parameters in
the upper-level problem. Conversely, the discounts deter-
mined by the DSO in the upper-level are known parame-
ters in the lower-level problems.
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Casting the nonliner Bi-level model as a single-level MILP problem

Solving the model using off-the-shelf MILP solvers 

Globally optimal solution, which includes 

the optimal amount of discounts to EVPLs

Bi-level model for day-ahead operational scheduling of the network 

  Minimize        {Total DSO cost} 

  Subject to: operational constraints of the DSO

Upper-level problem:

Maximize         {EVPLn profit}

Subject to: technical constraints of the EVPLn, as well 

as requirements of PEVs parked in the EVPLn

Lower-level problemn:

Input data

Output

, ,mn mn mnR X Z ,, , ,t t n sRU RD D t , ,WE PL EV

t t   , , ,, ,DG CD CD

n t n t n tP P Q
, , ,, ,nom min max

N t N t N tV v v

, ,max

mn t ssfl SC , ,,ch dch min max
n i n iη ,η ,sc sc , ,, ,n i n iBP BC EoL ,ch,max dch,max

n,i n,ip , p T , , , ,, , ,arr des arr dep

n i n i n i n isc sc t t

, , , , , , , ,, , , , , , , , ,LN SS LN SS sqr

mn t ss t mn t ss t n t n t s n t t t tp p q q v ce r r r + −

, , , , , , , ,, , , ,ch dch deg EV

n i t n i t n i t n,i n i tp p sc cost p

, ,n t s
, , , ,,ch dch

n i t n i tp p

, , , ,, , ,LN SS LN SS

mn t ss t mn t ss tp p q q , , , ,, ,sqr

n t n t s n tv ce , ,,deg EV

n,i n i tcost p, , , , , ,, ,ch dch

n i t n i t n i tp p sc, ,t t tr r r+ −

Figure 1: The flowchart of the proposed model.

3. Mathematical Formulation

In this section, the mathematical formulation of the
proposed bi-level problem is presented in a deterministic
form. As noted previously, the DSO is the leader, while
the EVPL operators are the followers in the proposed bi-
level problem. Thus, in the upper-level problem, the DSO
minimizes its costs, while in each lower-level problem, an
EVPL operator maximizes its profit. Please note that sev-
eral followers may exist in the bi-level problem because
various EVPLs might be connected to a DN.

3.1. Upper-Level Problem

Equation (1a) minimizes the objective function of the
DSO, which is the total DN operating costs, including the
cost of energy losses, costlos, RES generation curtailment
cost, costcur, flexibility-oriented cost, costflex, and the lost
income due to the discounts offered to EVPLs, costdis.
These costs are respectively formulated in the first, sec-
ond, third, and fourth terms of the objective function, OF .
The quadratic terms in the energy loss function, costlos,
are linearized through a piecewise linearization approach
described in Subsection 5.1. The second term, costcur, is
the financial losses due to curtailed RES generation that
should be compensated by the DSO, and (1b) ensures that
the curtailed generation is lower than the total generation
of each RES in each interval. Also, similar to [11], ramp-
ups and -downs of the DN net-load are penalized with
respect to their slope. The penalty cost, costflex, is de-
termined by calculating the amount of ramp-up, r+t , or
ramp-down, r−t , in each interval, using (1c)–(1e). It is
evident that only one of these two variables would have

a non-zero value in each time interval, as the objective
function is monotonically increasing with respect to each
of them. Regarding costdis in the objective function, the
DSO may choose one of the discount steps in set S to
reduce the network tariff for each of the EVPLs by that
amount of discount in each interval. It is worth noting
that the discount variables were originally continuous de-
cision variables bounded within upper/lower constraints.
However, the original optimization problem with continu-
ous variables for the discounts is not tractable considering
a zero optimality gap (i.e., the gap between the incumbent
and the best bound of the global optimal solution) in the
MILP problem. In addition, the applicability of the solu-
tion to the original problem (i.e., the optimal discounts)
was severely sensitive to a non-zero optimality gap. As
a result, we decided to use discrete variables for the dis-
counts to obtain reliable, optimal solutions to the problem.

Lastly, the AC OPF is integrated into the model through
(1g)–(1l). Active and reactive power balance is formulated
in (1g) and (1h), respectively. While (1i) determines the
voltage drop across line mn, (1j) ensures that the nodal
voltages are within the upper and lower limits. The ther-
mal constraints of lines and substation transformers are
formulated in (1k) and (1l), respectively. Finally, equa-
tions (1g)–(1i), (1k), and (1l) are linearized by using the
two-stage method discussed in Subsection 5.3.

Min
Φ

OF = Πlos
∑

mn∈L

∑
t∈H

Rmn((p
LN
mn,t)

2+(qLN
mn,t)

2)

(V nom
m,t )2 ∆t

+
∑

n∈N

∑
t∈H

ΠWE
t cen,t+

∑
t∈H

(RUtr
+
t +RDtr

−
t )∆t

+
∑
n∈E

∑
i∈In

∑
t∈H

∑
s∈S

Dn,sδn,t,sp
ch
n,i,t∆t (1a)

Subject to:

0 ≤ cen,t ≤ PDG
n,t ;∀n ∈ N, ∀t ∈ H (1b)

rt =
∑

ss∈TR
(pSS

ss,t − pSS
ss,t−1);∀t ∈ H (1c)

rt = r+t − r−t ;∀t ∈ H (1d)

r+t , r
−
t ≥ 0;∀t ∈ H (1e)∑

s∈S
δn,t,s ≤ 1;∀n ∈ E,∀t ∈ H (1f)∑

km∈L

[
pLN
km,t − Rkm

(V nom
k,t )2

(
(pLN

km,t)
2 + (qLN

km,t)
2
)]
−

∑
mn∈L

pLN
mn,t

= pSS
m,t+PDG

m,t −PCD
m,t −

∑
i∈Im

(pchm,i,t − pdchm,i,t)−cem,t;

∀m ∈ N, ∀t ∈ H (1g)∑
km∈L

[
qLN
km,t − Xkm

(V nom
k,t )2

(
(pLN

km,t)
2 + (qLN

km,t)
2
)]
−

∑
mn∈L

qLN
mn,t

= qSS
m,t −QCD

m,t ;∀m ∈ N, ∀t ∈ H (1h)

vsqrm,t − vsqrn,t = 2(Rmnp
LN
mn,t +Xmnq

LN
mn,t)

+
Z2

mn

(V nom
n,t )2

(
(pLN

mn,t)
2 + (qLN

mn,t)
2
)
;∀mn∈L,∀t∈H (1i)

(vmin
n,t )2 ≤ vsqrn,t ≤ (vmax

n,t )2;∀n ∈ N, ∀t ∈ H (1j)

(pLN
mn,t)

2+(qLN
mn,t)

2≤vsqrm,t(fl
max
mn )2;∀mn∈L,∀t∈H (1k)

(pSS
ss,t)

2 + (qSS
ss,t)

2 ≤ (SCss)
2;∀ss ∈ TR,∀t ∈ H (1l)
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whereΦ=
{
pLN
mn,t, p

SS
ss,t, q

LN
mn,t, q

SS
ss,t, v

sqr
n,t , δn,t,s, cen,t, r

+
t , r

−
t ,

rt
}
is the set of decision variables in the upper-level prob-

lem.
Evidently, the decision variables of the lower-level prob-

lems, i.e., PEV charging and discharging powers, pchn,i,t and
pdchn,i,t, are considered parameters in the upper-level prob-
lem. However, as mentioned previously, we aim to recast
this bi-level model as a single-level problem. As a result,
a binary variable will be multiplied by a continuous vari-
able in costdis of (1a), which is a nonlinearity in the final
single-level model. To address this issue, multiplication of
a binary variable, a, and a continuous variable, b, can be
equivalently modeled linearly as follows:

c ≤ aM (2a)

c ≤ b (2b)

c ≥ b− (1− a)M (2c)

c ≥ 0 (2d)

where M is a sufficiently large number, and c is an auxil-
iary continuous variable that is equal to the multiplication
of a and b. Hence, by replacing the nonlinear term with
c and adding the extra constraints, we will have a linear
single-level optimization problem.

3.2. Lower-Level Problem

In each lower-level problem, an EVPL operator tries to
maximize the profit obtained from charging PEV batteries,
while fulfilling the technical constraints of PEVs and the
need of PEV owners, as presented in (3). In this model,
both V2G and grid-to-vehicle (G2V) operations are con-
sidered. The EVPL revenue comes from selling electricity
to PEV owners and trading energy with the upper mar-
ket through V2G services, whereas the costs are due to the
consumed electricity during charging and the PEV battery
degradation during V2G. As can be inferred from the ob-
jective function of the lower-level problem, (3a), the DSO’s
discounts on the network tariff would decrease the price of
electricity for the EVPLs in some intervals of the day to
facilitate higher electricity consumption in those intervals
in comparison with the case with no discount. Please note
that the binary variables in the upper-level problem, δn,t,s,
in (3a) do not make the lower-level problem nonlinear, as
they are parameters in the lower-level. It is also worth
noting that, in the objective function of the lower-level
problem, we have assumed that all the profit will be for
the EVPL, while the PEV owners only receive compen-
sation from the EVPL for the battery degradation used
by the EVPL to provide flexibility to the DN. Neverthe-
less, in a pre-defined shared profit arrangement where the
EVPL receives a percentage of the profit, the objective
function (profit) of the lower-level problem can be multi-
plied by that amount. This way, the optimal solution will
not change as the problem is linear, although the profit
amount would change. Hence, changing the distribution
of the profit between the PEV owners and the EVPL will

not change the optimal solution.
Since the source of flexibility is PEV batteries, it is

essential to consider the impact of EVPLs’ strategy dur-
ing charging and V2G operation on the degradation of
PEV batteries. To do so, a battery degradation model, in-
spired by the model in [29], is considered in the proposed
problem, where the impact of temperature and charging-
discharging current is considered on the battery degra-
dation. This way, excessive battery charging-discharging
regimes will be avoided, and PEV owners will be compen-
sated for additional battery degradation due to the flexi-
bility provision by the EVPL operators. Nevertheless, the
battery degradation model proposed in this paper is linear,
unlike [29], avoiding the introduction of nonlinear terms in
the model. The cost of battery degradation is formulated
in (3b)–(3d) for each PEV, which respectively determine
the battery degradation cost due to V2G and G2V oper-
ation, the battery power exchange in each time slot, and
the percentage of battery capacity loss caused by pt at
time t. In the proposed model, the EVPL operator only
pays for the degradation cost caused by providing V2G
and flexibility services. Thus, the degradation cost in a
normal battery charging case is subtracted from the total
battery degradation cost in (3b). Battery end of life is de-
fined by an EoL% of reduction in its rated capacity. While
the model used for determining the percentage of battery
capacity loss in (3d) is highly accurate, the exponential
function and multiplication of two decision variables in
(3d) introduce nonlinearity in the formulation. Since the
xex is a convex function for all x > 0, we may replace
it with a piecewise linear function to linearly model the
degradation cost. Please refer to Subsection 5.1 for more
details regarding the piecewise linearization.

Equations (3e)–(3k) ensure that technical constraints
of PEVs and PEV owners requirements are fulfilled. Each
equation is succeeded by its corresponding dual variable,
separated by a colon. The state-of-charge (SOC) of each
PEV battery at each interval is calculated according to
the charging/discharging power by (3e). Expressions (3f)
and (3g) show the PEV battery charging and discharging
power constraints. Equation (3h) ensures that the SOC
of batteries are within the safe range. The initial SOC of
each PEV battery is determined by (3i) at the beginning
of the charging period, and the desired battery SOC be-
fore the PEV departure is enforced by (3j). Finally, (3k)
ensures that PEVs are charged/discharged only when they
are present at the EVPLs.

Max
Ψ

prn =
∑

i∈In

[
(scdesn,i −scarr

n,i )BCn,i

ηch ΠEV+
∑

t∈H
ΠPL

t pdchn,i,t∆t

−
∑
t∈H

[
pchn,i,t∆t(ΠPL

t −
∑
s∈S

Dn,sδn,t,s)
]
−costdegn,i

]
;∀n∈E (3a)

Subject to:

costdegn,i = (BPn,i/EoL)
∑

t∈[tarr
n,i ,t

dep
n,i ]

[
f(pEV

n,i,t)

− f(
(scdesn,i −scarr

n,i )BCn,i

tdepn,i −tarr
n,i

)
]
;∀n∈E,∀i∈In (3b)
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pEV
n,i,t = ηchpchn,i,t + pdchn,i,t/η

dch;∀n∈E,∀i∈In,∀t∈H (3c)

f(pt) = (αT 2 + βT + γ)pte
(ζT+κ)pt∆t;∀t ∈H (3d)

scn,i,t+1=scn,i,t+∆t(ηchpchn,i,t−pdchn,i,t/η
dch)/BCn,i :λ

1
n,i,t;

∀n ∈E,∀i ∈In,∀t ∈ [tarrn,i , t
dep
n,i ] (3e)

0≤pchn,i,t≤pch,max
n,i : µ1

n,i,t, µ
2
n,i,t;∀n∈E,∀i∈In,∀t∈H (3f)

0≤pdchn,i,t≤p
dch,max
n,i : µ3

n,i,t, µ
4
n,i,t;∀n∈E,∀i∈In,∀t∈H (3g)

scmin
n,i ≤scn,i,t≤scmax

n,i :µ5
n,i,t,µ

6
n,i,t;∀n∈E,∀i∈In,∀t∈H (3h)

scn,i,t=scarrn,i : λ2
n,i,t;∀n∈E,∀i∈In, t= tarrn,i (3i)

scn,i,t=scdesn,i : λ3
n,i,t;∀n∈E,∀i∈In, t= tdepn,i (3j)

pchn,i,t+pdchn,i,t=0:λ4
n,i,t;∀n∈E,∀i∈In,∀t /∈ [tarrn,i , t

dep
n,i ] (3k)

where Ψ =
{
pchn,i,t, p

dch
n,i,t, scn,i,t, cost

deg
n,i , p

EV
n,i,t

}
is the set

of decision variables in the lower-level problem; and ΠEV

and ΠPL
t are the electricity prices which are sold by the

EVPLs to the PEVs and purchased by the EVPLs from
the wholesale market, respectively.

4. Uncertainty Modeling

4.1. Uncertainties Related to RES Generation and De-
mand

In this study, we use predicted conventional demand,
EVPL demand, and RES generation to run the day-ahead
DN scheduling model. Since forecasting error is inevitable,
it is necessary to consider the associated uncertainties. For
this purpose, we employ the SSUT method, which is a
computationally efficient but accurate approach for con-
sidering correlated uncertainties [30, 31].

In this method, we approximate the output vector based
on a specific set of sample points from the input. Assum-
ing there are O random variables in the problem, O+2
sample points should be selected from the input random
variables to form the sigma point set. The new set would
accurately represent the necessary statistical information
of the input [30]. Solving the problem for each of these
sigma points, we can approximate the mean and covari-
ance vector of the output.

To better explain the SSUT method, let us consider a
problem as Y = g(Z), where g is a linear/nonlinear func-
tion, Y is the output vector, and Z is the random input
data. The SSUT method is implemented through the fol-
lowing steps:
Step 1: Choose a weight for the zeroth point: 0 ≤ W0 ≤ 1.
Step 2: Calculate the weight of other sigma points:

Wl = (1−W0)/(O + 1); ∀l ∈ {0, ..., O+1} (4)

Step 3: Initialize the one-dimensional vector sequence:

χ1
0 = [0], χ1

1 = [− 1
2
√
W1

], χ1
2 = [ 1

2
√
W1

] (5)

Step 4: Expand the vector sequence (χj
l ) for j = 2,. . . ,O:[

χj−1
l

0

]
l=0

,

[
χj−1
l
−1√

j(j+1)W1

]
l∈{1,..,j}

,

[
0j−1

1√
j(j+1)W1

]
l=j+1

(6)

where 0j−1 is a vector of zeros with a dimension of j − 1.
Step 5: Calculate the lth sigma point, Zl:

Zl = Z̄ +
√
ΣZχ

O
l ; ∀l ∈ {0, ..., O+1} (7)

where
√
ΣZ is the square root of the covariance matrix,

which can be calculated using numerically efficient and
stable methods such as the Cholesky decomposition [32].
Step 6: Calculate corresponding output sigma points by
feeding each sigma point into the problem:

Yl = g(Zl); ∀l ∈ {0, ..., O+1} (8)

Step 7: Determine the approximated mean and covari-
ance of the output vector, Y :

Ȳ ≈
∑O+1

l=0
WlYl (9)

ΣY ≈
∑O+1

l=0
Wl(Yl − Ȳ )(Yl − Ȳ )⊺ (10)

In the model proposed in this paper, the input random
variables are RES generation, conventional demand, and
EVPL demand, while the output is the objective function
of the upper-level problem (i.e., the total DSO cost). It is
worth noting that the mean and standard deviation of each
input random variable are respectively set to its predicted
value and forecasting error. Thus, the sample points of
the input random variables can be easily determined by
implementing the SSUT method using the mentioned pro-
cedure (Steps 1 to 5).

These sample points, together with their correspond-
ing weights, can be used to conduct the deterministic day-
ahead scheduling problem for the DSO, presented in Sub-
section 3.1, in a probabilistic manner. To model the un-
certainties by considering the set of sample points in the
DSO optimization problem, each of the upper-level deci-
sion variables (making up Φ), except the discount binary
variables, δn,t,s, should be calculated for all the sample
points (for example, pSS

ss,t would be converted to pSS
ss,t,l

when the uncertainties are considered). Finally, by solv-
ing the probabilistic problem and determining the output
(the total DSO cost in this problem) for each sample point,
we can approximate the expected value of the output, as
expressed in (9).

4.2. Uncertainties of PEV Owners’ Behavior

As can be seen in (3), the input data includes differ-
ent characteristics of the PEV users’ behavior, including
their arrival time, departure time, initial SOC, and de-
sired SOC. Using the parking lot traffic data, the behavior
of the PEV owners can be estimated. However, if suffi-
cient historical data for PEV trips is not available, the un-
certainties associated with PEV owners’ behavior can be
modeled by using the statistical model of the PEV data to
generate scenarios for their arrival time, departure time,
initial SOC, and desired SOC.
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To this end, we employ truncated Gaussian probabil-
ity distribution functions (PDFs) to generate scenarios for
arrival and departure times as well as initial SOC level of
PEVs [19]. Also, the scenarios for the desired SOC lev-
els of PEVs can be generated by using either a uniform
(for workplace parking lots) or a truncated exponential
PDF (for commercial parking lots). Next, we estimate the
mean and the standard deviation of the Gaussian and ex-
ponential PDFs as well as the range of all PDFs of users’
characteristics by using historical data or educated guess
by the experts. Finally, using the derived PDF for each
PEV user’s characteristics (arrival time, departure time,
initial SOC, and desired SOC), we generate the scenarios
for the respective characteristics of PEVs of each parking
lot. Interested readers are referred to [31] for more details.

5. Solution Method

5.1. Piecewise Linearization of Nonlinear Functions

As mentioned before, we aim to develop a MILP model
so that convergence to the global optimum can be guar-
anteed. However, equations (1a) and (3d) are nonlinear,
even though they are convex. We can readily linearize
such functions with the following piecewise linearization
method without needing binary variables, ensuring that
the problem will be linear.

Suppose F (x) is a convex function over 0 < x < x̄,
but it is not linear with respect to x, e.g., xex and x2.
To linearize F (x), we can approximate it with a piece-
wise linear function, G(x). For this purpose, (11)–(13)
can be added to the problem to replace F (x), while (14)
and (15) are used to determine the associated parame-
ters. It is also worth noting that, for a definite number
of segments (||PC||), the exact size of the segments (Apc)
can be chosen so as to minimize the approximation error
(
∫ x̄

0
|F (x)−G(x)|dx).

G =
∑

pc∈PC
Kpcupc (11)

x =
∑

pc∈PC
upc (12)

0 ≤ upc ≤ Apc;∀pc∈PC (13)

∑
pc∈PC

Apc = x̄ (14)

Kpc =
f(
∑pc

q=1 Aq)−f(
∑pc−1

q=1 Aq)

Apc
;∀pc ∈ PC (15)

Based on the above method, we linearized the first term
in equation (1a), costlos, and f(pt) in (3d). As an illustra-
tion, f(pt) has been linearized through (16)–(18).

f(pt) =
∑

pc∈PC
KEV

pc ppwt,pc;∀t∈H (16)

pt=
∑

pc∈PC
ppwt,pc;∀t∈H (17)

0 ≤ ppwt,pc ≤
pmax
t

||PC||
;∀t∈H,∀pc∈PC (18)

5.2. Casting the Bi-Level Problem into a Single-Level Prob-
lem

As mentioned in Section 2, we should either use the
KKT optimality conditions or the strong duality theorem
to find the global optimal solutions to the proposed bi-
level problem. This way, the lower-level problems will
be represented by a set of constraints in the upper-level
problem. As the lower-level problems are linear programs
(LPs), strong duality holds if the primal and dual prob-
lems are feasible [33]. Thus, we can readily cast the bi-level
problem as a single-level MILP model with the following
structure:

Minimize Total cost of the DSO, (1a)

Subject to :

Upper-level problem constraints, linearized (1b)–(1l)

Lower-level problem constraints, (3b)–(3k)

Constraints of dual lower-level problems

Optimal duality gap of lower-level problems = 0

To achieve a single-level MILP problem using the KKT
optimality conditions, Fortuny-Amat and McCarl method
should be used for linearizing the nonlinear KKT condi-
tions [34]. The resulting binary linear constraints of the
lower-level problems can then be added to the upper-level
problem, forming a single-level MILP problem, as repre-
sented in the following:

Minimize Total cost of the DSO, (1a)

Subject to :

Upper-level problem constraints, linearized (1b)–(1l)

Lower-level problem constraints, (3b)–(3k)

Binary-linear KKT conditions of lower-level problems

The mathematical formulations of the KKT conditions
and the dual of lower-level problems are available in detail
in Appendix A.

5.3. Linearizing the AC OPF

As noted in Section 3, we linearize the AC OPF equa-
tions, (1g)–(1l), based on the two-stage procedure pro-
posed in [35]. To this end, at the first stage, the prob-
lem is solved considering nominal voltages equal to one
per unit (i.e., a cold start) by neglecting losses in the OPF
equations. The solution to the first stage (nodal voltages
and active/reactive power flow of lines) is then utilized to
initialize the second stage, and the problem is solved one
more time to obtain the optimal solution.

To decrease the computational burden in this paper, we
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Optimal DSO operation and tariff discounts for the day ahead

Proposed MILP Optimization Model

Objective: Minimize the daily operation cost of DSO

Subject to:

• Linearized AC power flow constraints

• EVPLs’ maximizing their profits subject to PEV 
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Figure 2: Flowchart of the overall workflow for using the model.

Figure 3: Single-line diagram of the test DN.

solve a slightly different problem at the first stage with-
out considering DSO’s discounts so that the optimization
problem can be solved faster. The solution to the first
stage is then used to initialize the second stage. It is worth
noting that if we employ the strong duality theorem to
convert the bi-level problem into an equivalent single-level
one, the equations related to the lower-level problems will
be linear. Thus, in the proposed approach, the optimal so-
lutions are determined through solving an LP (at the first
stage) and a MILP problem (at the second stage) rather
than two MILP problems.

Table 2: Statistical data of the truncated Gaussian PDFs

Characteristic Mean STD Min Max

EVPL 1
Arrival time 8 2 6 11
Departure time 16 2 12 20
Initial SOC 0.5 0.3 0.2 0.8

EVPL 2
Arrival time 13 2 9 17
Departure time 17 2 14 20
Initial SOC 0.5 0.3 0.2 0.8
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Figure 4: The RES generation and the load demand on the typical
summer day.

6. Simulation Studies

6.1. Test System Description

The flowchart in Fig. 2 shows the overall workflow to
find the global optimal solution using the proposed model.
To investigate the effectiveness and applicability of the
model, it is implemented on a typical Finnish DN [36],
comprising 144 load nodes and a substation, which is de-
picted in Fig. 3. The data for conventional load profiles
and PV generation are obtained from [37] and [38], respec-
tively. Also, wind speed data are collected from [39], while
the power curve for the wind turbine generator is based on
a 900 kW E44 Enercon wind turbine [40]. The day-ahead
energy and regulation prices are gathered from [41]. Also,
the forecasting errors of RES generation, conventional de-
mand, and EVPL demand are set to 20%, 5%, and 10%,
respectively.

In the simulation studies, as shown in Fig. 3, two EV-
PLs are considered in the area connected to the DN, and
the number of PEVs arriving in each parking lot is 300.
Although the numbers of PEVs parked in the EVPLs are
the same, the first one is located near office buildings while
the second one is placed near a shopping center. As noted
in Section 4, we have employed truncated Gaussian PDFs
to generate scenarios for arrival and departure times, and
the initial SOC level of PEVs. Table 2 shows the statis-
tical data of the PDFs used for generating the scenarios
of the mentioned PEV characteristics. Also, the scenarios
for the desired SOC levels of PEVs are generated by using
a uniform PDF from 80% to 100% for the first EVPL (i.e.,
the workplace parking lot) and a truncated exponential
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Figure 5: The RES generation and the load demand on the typical
winter day.

PDF from the PEV initial SOC to 100% with the lambda
coefficient set to three for EVPL 2 (i.e., the commercial
parking lot).

It is worth mentioning that the net-load ramping up/down
penalty on each day is equal to the average of the regu-
lation up/down prices in seven previous days. Also, the
simulations are performed for a typical day in summer and
winter. Figs. 4 and 5 represent the generation of wind tur-
bines and photovoltaic (PV) systems as well as the load
demand in the test DN on the typical summer and win-
ter days, respectively. Lastly, it is assumed that the DSO
considers two discount steps for EVPLs, 5% and 15% of
the EVPL electricity prices. Other data for the simulation
study can be found at [42].

We implemented the proposed MILP optimization model
in GAMS 24.8 and solved by using IBM CPLEX 12.8 with
a Branch-and-Bound algorithm. The simulation studies
were carried out on a Fujitsu CELSIUS W530 PC with
an Intel Xeon E3-1230 3.20 GHz processor and 32 GB of
RAM.

6.2. Analyzing Flexibility Provision by EVPLs

To investigate the effectiveness of the proposed ap-
proach in decreasing the flexibility requirement of the DSO,
we have studied two cases. In Case I, no discount on the
network tariff is offered to EVPLs, while, in Case II, the
EVPLs provide flexibility by receiving discounts at differ-
ent times of the day. The simulation studies have been car-
ried out for both cases on the typical summer and winter
days. Two flexibility indices are used to measure flexibility
improvement, PAR and peak-off-peak (PoP) difference of
the DN net-load.

Both strong duality-based and KKT-based approaches
were used to recast the model as a single-level MILP prob-
lem. However, as numerous binary variables were intro-
duced to linearize the complementary constraints in the
KKT-based approach, the solver could not reach the opti-
mality gap of 1% in less than 20 hours in Case II. Thus,
we used the strong duality-based method as a computa-
tionally efficient option to obtain the optimal solutions.

The simulation results obtained for the two cases are
given in Table 3. The PoP difference and PAR are reduced
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Figure 6: The DN net-load on the summer day.

by 13% and 6%, respectively, on the typical summer day
and 15% and 24%, respectively, on the typical winter day
in Case II in comparison with Case I, which indicates the
effectiveness of the method in providing flexibility by the
EVPLs. Moreover, the discounts offered by the DSO led
to a reduction in the total cost of the DSO, while the total
profits of the two EVPLs increased compared to Case I. To
be more specific, by the network tariff discounts in some
hours, the DSO financially motivates the EVPL opera-
tors to manage PEVs charging such that the DN ramping
rates are decreased. This, in turn, leads to less flexibility-
oriented cost and RES generation curtailment. It demon-
strates that, under the new regulations, implementing the
proposed method not only enables the DSO to utilize the
EVPLs’ flexibility but also offers financial benefits to both
the DSO and the EVPLs. The proposed incentive-based
framework can also be leveraged to encourage EVPL op-
erators to provide other necessary services to the DN.

The DN net-loads on the summer and winter days for
the scenario with perfect prediction are shown in Figs. 6
and 7, respectively. It can be seen in the figures that the
net-load demand is shifted in time to smooth the net-load
profile in Case II. Also, the net-load ramp rates have re-
duced in Case II in comparison with Case I. As an illus-
tration, the ramp rates of the DN net-load on the summer
day for both cases are shown in Fig. 8. According to
the figure, the steep ramps in many hours of the day are
alleviated by implementing the proposed model. In ad-
dition, it can be seen that the ramp rates are decreased
more at midday compared to the rest of the day. This
is because the number of PEVs parked in the EVPLs is
at its maximum at midday, so there are more batteries to
provide flexibility at this time of the day. Nevertheless, it
seems that the proposed method was more effective on the
winter day, as can be inferred from Table 3 by comparing
the PAR and PoP reduction on the summer and winter
days. This is mainly because the ramp rates on the winter
day are higher than those on the summer day, which can
lead to a higher contribution from the EVPL operators in
providing flexibility.

6.3. Evaluating the Proposed Two-Stage Method Accuracy

As noted in Section 5, we decided to eliminate the
DSO’s discounts at the first stage of the linearized OPF
equations, proposed in [35], to reduce the computation
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Table 3: Simulation results for Cases I and II

Summer day Winter day

Case I Case II Case I Case II

PAR 1.43 1.34 1.76 1.34
PoP difference (MW) 4.50 3.92 9.25 7.87
costlos (e ) 141.2 139.2 185.8 182.9
costcur (e ) 92.2 17.1 36.3 2.8
costflex (e ) 499.9 395.5 828.3 689.2
costdis (e ) – 65.4 – 57.0
Total DSO cost (e ) 733.3 617.2 1050.3 931.9
EVPL 1 profit (e ) 136.6 167.7 183.8 207.3
EVPL 2 profit (e ) 40.7 45.0 57.6 57.6
Simulation time (h) 0.3 9.7 0.4 0.9

Table 4: Results for our proposed and the original two-stage methods

Summer day Winter day

OPF Approach Original Proposed Original Proposed

costlos (e ) 139.2 139.2 182.6 182.9
costcur (e ) 17.2 17.1 3.9 2.8
costflex (e ) 395.1 395.5 689.0 689.2
costdis (e ) 65.4 65.4 57.2 57.0
Total DSO cost (e ) 616.8 617.2 932.6 931.9
EVPL 1 profit (e ) 167.7 167.7 207.2 207.3
EVPL 2 profit (e ) 45.0 45.0 57.8 57.6
Simulation time (h) 17.5 9.7 1.5 0.9
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Figure 7: The DN net-load on the winter day.

time. We then considered them at the second stage. Since
the solution to the first stage problem is used to initialize
the second stage, it is essential to evaluate the impact of
this modification on the accuracy of the optimal solutions.
For this purpose, the results of our proposed approach and
the original method in [35] are compared for the summer
and winter days in Table 4.

According to the table, the differences between the fi-
nancial terms in the original and the proposed methods
are negligible on both days, particularly in the objective
functions of the upper- and lower-level problems, i.e., total
DSO cost and EVPLs’ profit, respectively. However, more
than 40% reduction in simulation time has been achieved
for the proposed method in comparison with the original
one.

Figure 8: The ramp rates of the DN net-load on the summer day.

6.4. Investigating the Performance of the PEV Battery
Degradation Model

To analyze the accuracy of the proposed battery degra-
dation model, we compare the cost of battery degrada-
tion caused by EVPLs’ flexibility provision in the proposed
model with that obtained by using the models in the ex-
isting literature on the subject of our study [18, 19, 21, 22]
and the model proposed in [29], which is derived based on
practical experiments. The costs of battery degradation
on a typical winter day caused by EVPLs’ flexibility pro-
vision are 10.4e , 5.1e , and 12.1e for the proposed model;
the ones in [13, 18, 19, 21, 22]; and [29], respectively. If we
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take the model developed in [29] as the benchmark, our
linear model shows a much higher accuracy compared to
those in [13, 18, 19, 21, 22].

7. Conclusion

In this paper, we developed a day-ahead scheduling
model for DSOs, in which the EVPLs connected to the
DN were considered for flexibility provision. Although the
main goal of EVPL operators is to maximize their profit
while meeting the PEV owners’ requirements, the DSO
can provide incentives, e.g., discounts on the network tar-
iff, to exploit their inherent flexibility throughout a day.
To model the behavior of the DSO and the EVPL opera-
tors, we developed a mathematical formulation based on
bi-level programming, which was converted to an equiv-
alent single-level problem using the strong duality theo-
rem. Additionally, we used more accurate approaches to
linearize AC OPF equations and to model PEV battery
degradation, compared to the existing literature in the
field. The developed model was implemented on a 145-bus
test DN with high penetration of RESs. The simulation
results showed that, under regulatory policies, using the
proposed model not only can financially benefit the DSO
and the EVPL operators but also can smooth the network
net-load (i.e., decrease the ramp rates). In the results, the
financial benefits of the proposed method were reflected
by the reduction of the DSO cost and the increase in the
profits of EVPLs, while the effectiveness in utilizing PEVs’
flexibility was demonstrated by the improvements of two
flexibility indices, PoP difference and PAR. Moreover, the
benefits of the methods used for the linearized AC OPF
equations and the PEV battery degradation model were
validated in the numerical results. Once the financial ben-
efit of the proposed model for the EVPLs’ operators has
been demonstrated, they can be encouraged to provide
other kinds of services for the DSO. The future work con-
siders extending the current model for including the pro-
vision of other services like energy arbitrage and choosing
among different opportunities of providing services.

Appendix A. Casting the Bi-Level Problem into
Single-Level Problem

As mentioned in the paper, to cast the model into a
MILP form, we not only linearized nonlinear terms but
also converted the bi-level problem into a single-level one.
To this end, we tried both the strong duality theorem and
KKT conditions to consider the lower-level problems, de-
scribed in Subsection 3.2, as a set of constraints in the
upper-level. For this purpose, the Lagrangian function of
each lower-level problem is determined according to (A.1).
Based on the Lagrangian function, mathematical models
of both methods are represented in the following.

Appendix A.1. Using Strong Duality Theorem

To convert the bi-level problem into a single-level one,
we can use the strong duality theorem, replacing each
lower-level problem with a set of constraints. In each of
these sets, we should set the optimal duality gap of the
lower-level problem equal to zero (i.e., the objective func-
tions of dual and primal problems should be equal) while
considering the constraints of primal and dual lower-level
problems. It is evident that strong duality holds if the
primal and dual problems are feasible [33].

The primal of lower-level problems is described in Sub-
section 3.2. Here, we write the dual of the lower-level prob-
lems by using the Lagrangian function (A.1). The objec-
tive function of the dual problem is represented in (A.2),
while (A.3)–(A.11) denote its constraints. Also, (A.12)–
(A.14) specify the feasible regions of dual variables.

Min OFDual
n =

∑
i∈In

[∑
t∈H

[pch,max
n,i,t µ2

n,i,t + pdch,max
n,i,t µ4

n,i,t

− scmin
n,i µ5

n,i,t + scmax
n,i µ6

n,i,t] + scarrn,i λ
2
n,i,t|t=tarr

n,i

+ scdesn,i λ
3
n,i,t|t=tdepn,i

+
∑
t∈H

∑
pc∈PC

AEV
n,i,pcµ

EV,2
n,i,t,pc

]
;∀n∈E

(A.2)
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Appendix A.2. Using KKT Conditions

As mentioned previously, we can also convert the bi-
level problem into a single-level one by using the KKT con-
ditions of lower-level problems. To ensure that each lower-
level problem is optimized, its KKT conditions should be
satisfied in the upper-level problem.

Using the Lagrangian function of the lower-level prob-
lems (A.1), the KKT conditions are imposed through (A.3)–
(A.11), (A.15)–(A.22), and (A.12)–(A.14), which ensure
stationarity, complementary slackness, and dual feasibility
of the conditions, respectively. Thus, the bi-level problem
will be cast as single-level one by considering the KKT

conditions of each lower-level problem together with its
primal constraints in the upper-level problem [28].

pchn,i,t · µ1
n,i,t = 0;∀n∈E,∀i∈In,∀t∈H (A.15)

(pch,max
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n,i,t = 0;∀n∈E,∀i∈In,∀t∈H
(A.16)
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(pdch,max
n,i,t − pdchn,i,t) · µ4

n,i,t = 0;∀n∈E,∀i∈In,∀t∈H
(A.18)
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(AEV
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n,i,t,pc) · µ
EV,2
n,i,t,pc=0;

∀n∈E,∀i∈In,∀t∈H,∀pc∈PC (A.22)

As the equations of complementary slackness condi-
tions are nonlinear, Fortuny-Amat and McCarl method
[34] should be used to replace (A.15)–(A.22) with binary
linear equations for imposing KKT conditions. As a re-
sult, the obtained MILP problem can be readily solved by
off-the-shelf solvers. To linearize non-linear complemen-
tary constraint, which has a general form of a · b= 0 for
a, b≥ 0, each nonlinear equation should be replaced with
the following equations:

0 ≤ a ≤ x×M (A.23)

0 ≤ b ≤ (1− x)×M (A.24)

where M is a sufficiently large constant and x is a binary
variable.
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Catalāo, Operational scheduling of a smart distribution system
considering electric vehicles parking lot: A bi-level approach,
Int. J. Electr. Power Energy Syst 105 (2019) 159–178.

[22] R. Mehta, D. Srinivasan, A. M. Khambadkone, J. Yang,
A. Trivedi, Smart charging strategies for optimal integration
of plug-in electric vehicles within existing distribution system
infrastructure, IEEE Trans. Smart Grid 9 (1) (2018) 299–312.

[23] S. A. Talberg, N. J. Saari, R. A. Eubanks, Report on the study
of performance-based regulation, Tech. rep., Michigan Public
Service Commission, Department of Licensing and Regulatory
Affairs (April 2018).

[24] A. Ter-Martirosyan, J. Kwoka, Incentive regulation, service
quality, and standards in us electricity distribution, Journal of
Regulatory Economics 38 (3) (2010) 258–273.

[25] S. Viljainen, Regulation design in the electricity distributuion
sector (2005).

[26] Electricity distribution network tariffs, ceer guidelines of good
practice, Tech. rep., Council of European Energy Regulators
(CEER) (Jan 2017).

[27] J. M. Arroyo, Bilevel programming applied to power system
vulnerability analysis under multiple contingencies, IET Gener.
Transm. Distrib 4 (2) (2010) 178–190.

[28] E. Castillo, A. J. Conejo, P. Pedregal, R. Garcia, N. Alguacil,
Building and solving mathematical programming models in en-
gineering and science, John Wiley & Sons, New York, NY, USA,
2011.

[29] D. Wang, J. Coignard, T. Zeng, C. Zhang, S. Saxena, Quantify-
ing electric vehicle battery degradation from driving vs. vehicle-
to-grid services, J. Power Sources 332 (2016) 193–203.

[30] S. J. Julier, The spherical simplex unscented transformation, in:
Proc. of Amer. Control Conf, 2003, pp. 2430–2434.

[31] S. Karimi-Arpanahi, M. Jooshaki, M. Moein-Aghtaie,
M. Fotuhi-Firuzabad, M. Lehtonen, Considering forecast-
ing errors in flexibility-oriented distribution network expansion
planning using the spherical simplex unscented transformation,
IET Gener. Transm. Distrib 14 (24) (2020) 5970–5983.

[32] S. J. Julier, J. K. Uhlmann, Unscented filtering and nonlinear
estimation, Proceedings of the IEEE 92 (3) (2004) 401–422.

[33] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge
Univ. Press, New York, NY, USA, 2004.

[34] J. Fortuny-Amat, B. McCarl, A representation and economic
interpretation of a two-level programming problem, J. Oper.
Res. Soc 32 (9) (1981) 783–792.

[35] J. F. Franco, L. F. Ochoa, R. Romero, Ac opf for smart distri-
bution networks: An efficient and robust quadratic approach,
IEEE Trans. Smart Grid 9 (5) (2018) 4613–4623.

[36] S. Kazemi, Reliability evaluation of smart distribution grids,
Ph.D. thesis, Dept. Elect. Eng., Aalto Univ., Espoo, Finland
(2011).

[37] Nuuka open api.
URL https://helsinki-openapi.nuuka.cloud/swagger/

index.html

[38] Nrel solar radiation database.
URL http://pvwatts.nrel.gov

[39] W. Underground. [link].
URL https://www.wunderground.com

[40] Enercon e44 technical data.
URL https://www.enercon.de/en/products/ep-1/e-44/

[41] Nord pool power market data.
URL https://www.nordpoolgroup.com/Market-data1

[42] Test system details.
URL https://1drv.ms/x/s!AuOkAKT1qZvMyyeDGGRLCM-cT4MK?

e=p6raDB

15

https://webstore.iea.org/global-ev-outlook-2020
https://webstore.iea.org/global-ev-outlook-2020
https://www.irena.org/publications/2020/Apr/Global-Renewables-Outlook-2020
https://www.irena.org/publications/2020/Apr/Global-Renewables-Outlook-2020
https://www.irena.org/publications/2020/Apr/Global-Renewables-Outlook-2020
https://www.naseo.org/Data/Sites/1/flexibility-white-paper.pdf
https://www.naseo.org/Data/Sites/1/flexibility-white-paper.pdf
https://www.naseo.org/Data/Sites/1/flexibility-white-paper.pdf
https://helsinki-openapi.nuuka.cloud/swagger/index.html
https://helsinki-openapi.nuuka.cloud/swagger/index.html
https://helsinki-openapi.nuuka.cloud/swagger/index.html
http://pvwatts.nrel.gov
http://pvwatts.nrel.gov
https://www.wunderground.com
https://www.wunderground.com
https://www.enercon.de/en/products/ep-1/e-44/
https://www.enercon.de/en/products/ep-1/e-44/
https://www.nordpoolgroup.com/Market-data1
https://www.nordpoolgroup.com/Market-data1
https://1drv.ms/x/s!AuOkAKT1qZvMyyeDGGRLCM-cT4MK?e=p6raDB
https://1drv.ms/x/s!AuOkAKT1qZvMyyeDGGRLCM-cT4MK?e=p6raDB
https://1drv.ms/x/s!AuOkAKT1qZvMyyeDGGRLCM-cT4MK?e=p6raDB

	Nomenclature
	Introduction
	Motivation
	Related Works
	Objectives and Contributions
	Paper Structure

	Proposed Framework
	Mathematical Formulation
	Upper-Level Problem
	Lower-Level Problem

	Uncertainty Modeling
	Uncertainties Related to RES Generation and Demand
	Uncertainties of PEV Owners' Behavior

	Solution Method
	Piecewise Linearization of Nonlinear Functions
	Casting the Bi-Level Problem into a Single-Level Problem
	Linearizing the AC OPF

	Simulation Studies
	Test System Description
	Analyzing Flexibility Provision by EVPLs
	Evaluating the Proposed Two-Stage Method Accuracy
	Investigating the Performance of the PEV Battery Degradation Model

	Conclusion
	Casting the Bi-Level Problem into Single-Level Problem
	Using Strong Duality Theorem
	Using KKT Conditions


