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Abstract

Accurate battery storage system modelling considering its nonlinear operational dynamics is
crucial for achieving more economic benefits and higher flexibility. In this paper, a novel mixed-
integer linear programming (MILP) formulation of vanadium redox flow batteries (VRFBs) is
presented considering the dynamic nonlinear performance of charge losses and voltaic losses, as
well as the actual battery management scheme. This research utilises a newly introduced multi-
physics VRFB model, which incorporates all ion crossover and electrolyte transfer mechanisms
to validate the model’s effectiveness in precisely estimating the remaining energy. Rigorous
simulation studies are conducted to validate the proposed model deployed in a residential en-
ergy management system (EMS) using 5-minute resolution data from residential consumers in
Australia. The results show that the proposed MILP model achieves highly accurate remaining
energy and economic benefit estimations, with power mismatch errors of less than 1%. Most
importantly, the simulation results demonstrate that the proposed model results in up to 57.1%
increase in economic benefits and 8.5% improvement in round-trip efficiency compared to tradi-
tional models that are widely used to estimate remaining energy.
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Nomenclature

αch,βch,γch Ideal charge power coefficients

αdch,βdch,γdch Ideal discharge power coefficients

ηvolt
ch , ηvolt

dch Charge/ discharge voltaic efficiency [%]

ηc Coulombic efficiency [%]

ηinv Inverter efficiency [%]

ηrt Round-trip efficiency [%]

κφ Membrane electro-kinetic permeability [m2]

κe Electrode hydraulic permeability [m2]

κm Membrane hydraulic permeability [m2]

λim, λex Imported/exported cost from/to utility grid [A$/kWh]

λKC Kozeny-Carman constant

µw Mean viscosity of electrolyte [Pa · s]

ϕch, τch Charge power regulation coefficients

ϕdch, τdch Discharge power regulation coefficients

ϕm
di f f Effective diffusion potential [V]

ϕm
neg, ϕm

pos Ionic potential at negative/positive sides [V]

ρ Electrolyte density [kg m−3]

ε Electrode porosity

v⃗m Electrolyte velocity across membrane [m s−1]

Ae Cross-sectional area of porous electrode [m2]

Am Membrane surface area [m2]

At Tank surface area [m2]

cs
i Concentration of V i+ in the stack [mol L−1]

ct
i Concentration of V i+ in tanks [mol L−1]

c f Fixed acid concentration [mol L−1]

Cideal Ideal capacity [Ah]
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Cn Nominal capacity [Ah]

Cp Specific heat capacity of electrolyte [J g−1 K−1]

ctotal Total concentration of V i+ [mol L−1]

D Thickness of the membrane [m]

d f Fibre diameter of the electrode [m]

E0′ Formal potential [V]

EOCV Open-circuit voltage [V]

Eideal Ideal energy [kWh]

En Nominal energy [kWh]

F Faraday’s constant [C mol−1]

He Height of the electrode [m]

I Current [A]

Ich, Idch Charge/ discharge current to/from battery [A]

k Capacity loss rate [% s−1]

kH+ Diffusion coefficient of H+ [m2 s−1]

ki Diffusion coefficient of V i+ [m2 s−1]

Le Length of the electrode [m]

N Number of cells in the stack

ncon
i Convection fluxes of V i+ [mol m−2 s−1]

ncross
i Overall crossover fluxes of V i+ [mol m−2 s−1]

ndi f f
i Diffusion fluxes of V i+ [mol m−2 s−1]

nmig
i Electro-migration fluxes of V i+ [mol m−2 s−1]

Paux Power consumption of battery’s auxiliary system [kW]

Pch, Pdch Charge/ discharge power to/from battery [kW]

Pideal
ch , Pideal

dch Ideal charge/ discharge power to/from battery [kW]

Pmax
ch , Pmin

ch Maximum/minimum charge power to battery [kW]

Pmax
dch , Pmin

dch Maximum/minimum discharge power from battery [kW]

Pim, Pex Imported/exported power from/to utility grid [kW]
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Pload Load power [kW]

Pre Renewable energy generation power [kW]

Psel f Self discharge power [W]

Qc Electrolyte flow rate in cell [L s−1]

Qs Electrolyte flow rate of the system [L s−1]

R Gas constant [J mol−1K−1]

r′ Overall cell resistance [Ω]

Rs Overall stack resistance [Ω]

S oC State of charge [%]

S oE State of energy [%]

Tp, Tn Electrolyte temperature at positive/negative tank [K]

Ts Electrolyte temperature in the stack [K]

Tair Air temperature [K]

uch, udch Battery charge/ discharge status

Ut Heat transfer capability of tank [J K−1 s−1 m−2]

Vp, Vn Electrolyte volume of positive/negative tank [L]

Vs Electrolyte volume of stack [L]

We Width of the electrode [m]

1. Introduction

Battery technologies are recognised globally as a viable solution to address the issues as-
sociated with intermittent generation and non-dispatchable characteristics of renewable energy
sources [1]. Among various battery technologies, vanadium redox flow batteries (VRFBs) are
considered one of the most promising solutions for stationary energy storage applications with
long-lasting performance and almost no degradation for 20 years [2]. The applications of VRFBs
include industrial electrification, grid-scale energy storage, and residential energy storage solu-
tions [3]. To this end, numerous large-scale VRFB projects have recently been implemented
worldwide, usually located in conjunction with distributed energy resources (DERs), demon-
strating a growing trend in VRFB deployment [1].

In the previously mentioned applications, VRFBs generally function within a broader system
controlled by an energy management system (EMS) [4]. An EMS aims to optimise the opera-
tion of a hybrid system by anticipating its future state. For effective operation, an EMS requires
accurate component models, such as battery models, to predict their future states. Consequently,
accurate battery energy estimation models are crucial for the efficient functioning of an EMS.
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Most EMS solves an optimisation problem to determine the optimal operating points of the hy-
brid system. Therefore, complex battery models are undesirable because of their intractability
and high computational requirements. For example, the use of equivalent circuit models (ECMs)
[5, 6] and electrochemical models (EMs) [7, 8, 9] is proposed in some EMS-related studies. The
main difference is that conventional EMSs based on ECMs or EMs with model predictive control
(MPC) or other online controllers are generally designed to tackle short-horizon charge/discharge
control and optimisation problems to ensure efficient battery operation. In contrast, MILP for-
mulations are designed for medium- to long-horizon energy arbitrage and planning, determine
optimal future operating states (e.g. charge/discharge, power off, standby), and scale well while
accommodating time-varying electricity tariffs and dynamic load power consumption. For these
reasons, most previous work with MILP formulations on long-horizon optimal schedules with
EMS for BESS energy management applications using a simple state of energy (SoE) model,
typically with constant efficiency, and fixed battery energy parameters for the remaining energy
estimation, considering different power system applications [10, 11, 12]. The simple SoE mod-
elling approach does not take into account the internal chemical dynamics of battery systems,
leading to an inaccurate estimation of the remaining energy inside the battery. Levin et al. iden-
tified accurate remaining energy estimation as the most important factor in securing dispatchable
energy, demand-side flexibility and economic benefits, and capital revenue for investors and end
users in battery projects [13]. Recently, the work by Wang et al. [3] revealed the problem of
using simplified remaining energy approaches in poor techno-economic assessment outcomes in
battery energy storage projects. This results in a low economic return and unsatisfactory expecta-
tions from battery owners, investors, and customers. To resolve the issues mentioned above, the
authors in [14] and [15] proposed new mixed-integer linear programming (MILP) formulations to
improve the optimal energy dispatch performance for Li-ion batteries. The findings of these stud-
ies indicate that the use of enhanced battery models can decrease the operational expenses of the
BESS system, increase economic returns, and improve the feasibility of the solutions obtained by
EMS. Recent studies, such as [10, 16, 17, 18, 19], have explored the degradation, multi-physics,
and thermal behaviour of Li-ion batteries, and introduced simplified models to enhance the op-
timisation problem solved by EMS for decision making. From the literature, it seems that there
is a profound lack of work on the development of a validated and accurate VRFB model for the
EMS application. Considering that the efficiency of VRFB systems’ varies more significantly
under different operating load/current conditions compared to other batteries, an accurate model
is important to ensure their high performance [20]. The works of Turker et al. in [21] and Jafari
et al. in [22] proposed two similar MILP formulations for VRFBs taking into account the battery
voltaic efficiency. However, constant round-trip efficiency is used in these studies, which neglects
loss variations inside the VRFB system that can produce inaccurate estimates of remaining en-
ergy and economic benefits. Later, Cremoncini et al. presented a new MILP formulation for
VRFB systems in [23], which considers voltaic efficiency, power consumption of the auxiliary
system, and degradation. However, the results of the proposed model are not rigorously validated
using an actual VRFB system or high-resolution multi-physics model. As a result, its accuracy
of remaining energy estimation, energy dispatchability, and economic benefits remain unclear.
Moreover, the coulombic efficiency has not been considered as another crucial efficiency factor
in this work, and the BMS operation has also been neglected, for example, the universal con-
stant current-constant voltage (CC-CV) charging method and standby losses. More importantly,
earlier research on VRFBs overlooked the internal dynamics crucial for developing an accurate
model of VRFBs. These oversights demonstrate the limitations of developing an accurate model
that accounts for the nonlinearities in the chemical dynamics of VRFBs. This issue significantly
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affects researchers and operators in fully exploring the potential and merits of VRFB in various
power system applications, while also substantially reducing its competitiveness in the energy
storage market.

To address these limitations, a novel MILP formulation is proposed and validated for a
5kW/10kWh VRFB system that incorporates all operational dynamics. A novel state of charge
(SoC)-based model is also proposed to accurately estimate the remaining energy inside the VRFB
system. The performance of the proposed MILP formulation is validated using a state-of-the-art
multi-physics model, which is developed based on various ordinary differential equations (ODEs)
and nonlinear formulations to describe the thermal, ionic, electrical potential, and fluid dynamics
of VRFB systems. In-depth analyses are performed to illustrate the benefits of using a detailed
battery model to increase operational revenue, round-trip efficiency, and accurate estimation of
economic benefits compared to the conventional model.

The rest of the paper is organised as follows: Section 2 briefly introduces the limitations of
using the conventional remaining energy estimation model. The MILP formulation and a novel
remaining energy estimation model are proposed in Section 3. Finally, simulation results and
in-depth evaluations of the benefits of using this newly proposed model are given in Section 4.
The paper is concluded in Section 5 and future work is outlined.

2. Limitations of the conventional remaining energy estimation model

As mentioned previously, applying a simple remaining energy estimation model for VRFBs
could have adverse effects on the energy supply and result in lower economic revenues for BESS.
One such model is the SoE equation that is used in a large number of BESS optimal energy
dispatch studies to estimate the remaining energy inside the BESS for various optimisation pro-
cesses. The SoE is formulated using the following equation, which has been used in other works
such as [3, 24, 25, 26, 27]:

S oE(t) = S oE(t − 1) + ηrt
Pch(t)∆t

En
−

Pdch(t)∆t
En

(1)

Another popular form in the literature, e.g., in [28, 29, 30, 31, 32, 33], used in this study for
comparison, is as follows:

S oE(t) = S oE(t − 1) + ηch
Pch(t)∆t

En
−

Pdch(t)∆t
ηdch En

(2)

where ηrt is the round-trip efficiency of the battery, Pch(t) and Pdch(t) are the charge and discharge
power of the battery at time t, ηch and ηdch are the nominal charge and discharge efficiency of
the battery, and En is the nominal energy (or available energy) of the battery defined in the
manufacturer’s datasheet. Most of the literature represents the round-trip efficiency ηrt and En as
fixed values derived from the battery datasheet.

According to [3], a major issue is the limited availability of performance metrics for battery
operators to effectively manage and schedule operations. These metrics are typically assessed
under ideal conditions, such as an ambient temperature of 25◦C and uniform charge/discharge
power or current. As such, the efficiency of the BESS is likely to be overestimated compared
to the battery performance under real-world operational conditions. This significantly restricts
users from gathering detailed data on the efficiency behaviour of the battery for their intended
uses. Furthermore, in real-world applications, the efficiency of VRFB can be impacted by several
factors, such as fluctuation in power, the energy consumption of auxiliary systems, and standby
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losses. Consequently, employing these basic SoE models without adequately accounting for effi-
ciency variations may lead to erroneous predictions of the remaining energy in the optimisation
problem.

3. A MILP formulation of VRFB

This section presents an innovative MILP formulation for VRFB, grounded in its true electro-
chemical and mechanical principles, along with a BMS operational scheme. The MILP formu-
lation is based on a rigorous validated model that considers all the ion and electrolyte crossover
mechanisms and the thermal dynamics of a 5kW VRFB system with a comprehensive BMS
design as reported by Wang et al. in [34].

3.1. Vanadium redox flow battery

The VRFB is normally designed for residential-scale or medium- to large-scale energy stor-
age systems with highly stable and low degradation performance over 20-30 years [1]. VRFBa
are composed of several parts, including mainly two electrolyte storage tanks, a battery stack,
a piping system, and two pumps for electrolyte circulation, as illustrated in Fig. 1. Most of the
volume of the electrolyte is stored in the two electrolyte tanks, where the piping system forms
a complete electrolyte circulation throughout the VRFB system. During battery operation, two
pumps are operating to supply the vanadium ions for the main reactions in the stack, which are
listed as follows:

Membrane

Current 
collector

Porous 
electrode

Pump Pump

Negative tankPositive tank

Power control unit

Electrolyte flow Electrolyte flow

+ -

𝑉ସା &  𝑉ହା

𝑉ଶା &  𝑉ଷା

𝐻ା𝐻ା𝑉ହା

𝑉ସା

𝑉ଶା

𝑉ଷା

Charge
Discharge

Figure 1: A schematic of a typical VRFB system showing its components and structure [35]

Negative half-cell reaction:

V3+ + e−
Charge
⇌

Discharge
V2+ (3)
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Positive half-cell reaction:

VO2+ + H2O
Charge
⇌

Discharge
VO+2 + 2H+ + e− (4)

Overall cell reaction:

VO2+ + V3+ + H2O
Charge
⇌

Discharge
VO+2 + V2+ + 2H+ (5)

3.2. VRFB remaining energy estimation formulation
The nature of the battery charge/discharge process is the movement of active species (charges)

between the cathode and anode. In this case, the SoC is the only indicator for remaining energy
estimation by BMS to prevent battery overcharging and discharging issues from occurring, which
can be measured using the following equation:

S oC(t) = S oC(t − 1) + ηc
Ich(t)∆t

Cn
−

Idch(t)∆t
Cn

(6)

where ηc is the Coulombic efficiency and Cn is the nominal capacity in Ah measured in the
battery discharge tests. Ich(t) and Idch(t) are the charging and discharging current at time t, re-
spectively. However, this SoC estimation model is more accurate for Li-ion batteries with high
and stable Coulombic efficiency (above 99% under different C-ratings [36]). In reality, VRFB
systems exhibit a relatively low Coulombic efficiency (approximately 95% or lower) that fluc-
tuates significantly with varying operational currents. Consequently, the SoC model in Eq. (6),
which employs a constant Coulombic efficiency, proves to be inaccurate for VRFBs as it over-
looks the dynamic self-discharge losses within the cells. Taking into account the self-discharge
dynamics of VRFBs, in this work a new formulation for the estimation of SoC is proposed using
capacity loss rates k(t) in % per second instead of the Coulombic efficiency as given below:

S oC(t) = S oC(t − 1) +
Ich(t)∆t

Cideal
−

Idch(t)∆t
Cideal

− k(t) (7)

where Cideal is the ideal capacity in Ah considering the total amount of active species in the bat-
tery system that remains almost constant for VRFB systems with almost no degradation. Com-
pared with Eq. (6), this SoC formulation neglects the need to estimate the Coulombic efficiency
for VRFB systems under different operational conditions. However, the SoC formulation in
Eq. (7) is not ideal for optimisation problems since the current cannot be directly used as a deci-
sion variable in the optimal energy dispatch problem. This issue arises in the majority of VRFB
optimal energy dispatch problems, where the decision variable is typically the VRFB power. In
order to substitute the current-dependent variable in the SoC model, we introduce an innovative
SoC formulation that uses VRFB power as the decision variable, which theoretically delivers
equivalent performance, as demonstrated below.

S oC(t) = S oC(t − 1) +
Pideal

ch (t)∆t
Eideal

−
Pideal

dch (t)∆t
Eideal

− k(t) (8)

where Eideal is the ideal energy in kWh of the VRFB without considering any losses and remains
almost constant. Pideal

ch (t) and Pideal
dch (t) are the ideal charge and discharge power of the VRFB

system without any loss at time t. The OCV is nearly identical at each capacity or SoC level re-
gardless of the applied current, enabling precise SoC estimation using Eq. (8). The ideal capacity
of the 5kW/10kWh VRFB system in Ah must be examined to determine the ideal energy of the
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VRFB system in kWh without experiencing any charge losses. This contributes to accurately
tracking the SoC of a VRFB system, which will be introduced in a later section. With the use
of Faraday’s law of electrolysis, the ideal capacity of this VRFB system is 282.5Ah considering
the total amount of active vanadium ions. Furthermore, the ideal energy of the VRFB system in
kWh can be obtained by integrating the OCV with the ideal capacity in the SoC range of 0% to
100%. The OCV versus ideal capacity is shown in Fig. 2. In this case, the ideal energy stored in
the 5kW/10kWh VRFB system at 100% SoC is 14.6kWh as given below.

Figure 2: The OCV curve of the 5kW/10kWh VRFB system from zero capacity to 100% capacity

The Pideal
ch (t) and Pideal

dch (t) can be derived using OCV measurement from a reference cell in
most commercial-scale VRFB-BMS designs. The equations to derive the ideal charging/discharging
power are given below:

Pideal
ch (t) = Pch(t) ηvolt

ch (t) = N Ich(t) EOCV (t) (9)

Pideal
dch (t) =

Pdch(t)
ηvolt

dch(t)
= N Idch(t) EOCV (t) (10)

where N, ηvolt
ch (t) and ηvolt

dch(t) are the number of cells in the stack and the voltaic efficiency of the
battery during charge and discharge, respectively.

In the following section, we introduce the linearised modelling of the Coulombic loss rate
and voltaic efficiency of the 5kW/10kWh VRFB system to achieve a highly accurate model to
estimate the remaining energy in VRFBs using Eq. (8). It is important to point out that degra-
dation modelling and thermal dynamics modelling are not essential factors in VRFB modelling
for optimal dispatch problems. This is due to the fact that VRFB exhibits almost no signs of
degradation over 10-20 years, as noted in [2]. Furthermore, most commercial VRFB exhibits
highly stable thermal properties managed by BMS [37], which in this case its voltaic efficiency
and Coulombic loss rate remaining relatively constant across a temperature range of 20-40◦C.

3.3. Coulombic loss linearisation
The positioning of the membrane between the half cells facilitates the diffusion of vanadium

ions, enabling their transfer across the half cells. This causes charge losses that reduce the SoC
level in the VRFB system, commonly referred to as Coulombic loss. The losses inside the VRFB
systems are caused by side reactions inside each of the cells. The movement of vanadium ions
is driven by electro-migration, convection, and diffusion, which all account for the Coulombic
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loss. However, for most commercial membrane designs with low electro-kinetic and hydraulic
permeabilities, the electro-migration and convection have minor influences on the total crossover
fluxes [35]. As a result, only modelling the Coulombic loss driven by diffusion is essential to
estimate the SoC losses.

First, the Coulombic loss is modelled based on the simulation results of this 5kW/10kWh
VRFB system. It is essential to note that Coulombic loss occurs not only during the operation
of the VRFB system but also during the standby period when the electrolytes reside in the stack.
The main distinction is that, during standby, the Coulombic loss leads to SoC losses in the stack
because of the absence of electrolyte circulation. When the VRFB system is in operation, the
electrolyte circulation will cause the electrolyte to be remixed, which decreases both the stack
SoC and tank SoC levels. The Coulombic loss is mainly driven by concentration gradients in the
form of diffusion [35]. As a result, their dynamics is almost unaffected by the operational current
variations.

To model the Coulombic losses of this 5kW/10kWh VRFB system, model-based studies are
carried out without applying current with electrolyte circulation alternately switched on and off.
The results of the concentration losses of V2+ and V5+ are given in Fig. 3 (a). The V2+ and V5+

reflecting the remaining charge (SoC) inside the VRFB system as indicated in Eq. (A.16). It can
be seen that, regardless of the electrolyte circulation condition, the charge losses exhibit a similar
declining trend. However, it is important to note that V2+ experiences a higher decay rate due
to its highest diffusivity on the Nafion 115 membrane [35]. Moreover, without electrolyte circu-
lation, the concentration of V2+ in the stack has a significantly faster drop rate. This is because
the electrolyte volume within the stack during battery operation represents a small portion of the
total electrolyte volume in the entire VRFB system. To unify the Coulombic losses considering
the total electrolyte volume of the system, the comparison of the overall SoC variations of the
system by self-discharge with/without electrolyte circulation is depicted in Fig. 3 (b). In the
upper figure, it can be observed that electrolyte circulation makes almost no change in charge
losses. Furthermore, the capacity loss rates k(t) (% per second) can be represented to estimate
the Coulombic loss using a piecewise linearisation approach as a function of SoC, regardless of
the operational mode. The results of using piecewise linear functions are presented in Fig. 3 (b),
along with the SoC decay rate and the SoC range.

3.4. Ideal power modelling considering the voltaic losses
Another crucial factor in modelling the VRFB SoC, as illustrated in Eq. (8), is the accurate

representation of the ideal battery power. As mentioned above, the energy stored in the VRFB
system tends to vary with the operational conditions. Using the ideal power and ideal energy
stored in the battery in Eq. (8) addresses the issue that the change of charge/ discharge power
into/out of the VRFB system will influence its dispatchable energy (because the losses of the
VRFB system are not considered). The ideal power results can be obtained using Eqs. (9) and
(10). For commercial-scale VRFB systems, an OCV reference cell is typically integrated into the
system to measure the OCV for SoC estimation. Therefore, OCV data can be collected by BMS
to estimate the ideal power in real-world applications. Consequently, Figs. 4 (a) and (b) illustrate
the 3D surfaces that represent the ideal power during the charge and discharge processes with
respect to charge/ discharge power and the SoC. Two simple linear functions can model the ideal
power during charging and discharging at each timestep t, as given below:

Pideal
ch (t) = αch + βchPch(t) + γchS oC(t) (11)

Pideal
dch (t) = αdch + βdchPdch(t) + γdchS oC(t) (12)
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(a) The concentration losses of V2+ and V5+ from about 1.4 mol/L to 0 in the stack and tanks
both with and without electrolyte circulation

(b) The unified Coulombic losses in the SoC profile ranging from 95% to 0, both with and without
electrolyte circulation, along with the piecewise linearisation results of the capacity decay rate k

Figure 3: The concentration and SoC losses in the stack and tank with/without electrolyte circulation and the linear
piecewise approximation of the SoC decay.

11



(a) The ideal charge power and operational charge power as
a function of SoC

(b) The ideal discharge power and operational discharge
power as a function of SoC

(c) The APE profiles of ideal power estimation vs. charge
power and SoC (MAPE=1.02%, RMSE=11.00)

(d) The APE profiles of ideal power estimation vs. dis-
charge power and SoC (MAPE=1.87%, RMSE=11.62)

Figure 4: The ideal power profiles during charging/discharging, the absolute percentage error (APE) profiles, mean abso-
lute percentage error (MAPE) and root-mean-square error (RMSE) results using the linearised model of this 5kW/10kWh
VRFB system

(a) The maximum charge power (b) The maximum discharge power

Figure 5: The maximum charge and discharge power of the 5kW/10kWh VRFB system vs. SoC and linearised functions
fitted for the SoC range
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where αch, βch and γch are the coefficients during charging, while αdch, βdch and γdch are for
the battery model during discharging. Pch(t) and Pdch(t) represent the power used to charge and
discharge the VRFB system. The accuracy of these two linear functions is shown in Figs. 4 (c)
and (d).

In addition, CC-CV is a universal charging method for commercial VRFB to prevent bat-
tery overcharging. VRFBs have relatively high concentration overpotential, which prevents the
battery from being discharged at high power. To fully exploit the capacity, VRFB-BMS man-
ages both the charge and discharge power. This means that both the charge and discharge power
regulations must be considered in the VRFB model as a constraint to represent its true opera-
tional characteristics. The maximum charge and discharge power profiles versus SoC are given
in Figs. 5 (a) and (b), respectively.

For any non-laboratory VRFB design, the power consumption from auxiliary components
(such as pumps, BMS, and sensors) is significant and must be factored into the model. In this
study, it is assumed that the auxiliary power supply for the battery system in charging mode is
entirely derived from the connected power sources. However, during the discharging process,
the auxiliary power is provided by the battery itself. As a result, the power regulation at each
timestep can be modelled using the linear functions given below:

Pmin
ch ≤ Pch(t) ≤ min(τchS oC(t) + ϕch, Pmax

ch ) (13)

Pmin
dch + Paux ≤ Pdch(t) ≤ min(τdchS oC(t) + ϕdch, Pmax

dch ) + Paux (14)

where Pmin
ch , Pmin

dch, Pmax
ch , and Pmax

dch represent the minimum and maximum charge and discharge
power, respectively, managed by the BMS. Moreover, ϕch, τch, ϕdch and τdch are the power reg-
ulation coefficients for battery charging and discharging. Paux is the total power consumption of
the auxiliary components of the VRFB system.

3.5. Overall optimisation formulation

By integrating all the aforementioned constraints and taking into account the residential ap-
plication of VRFBs for energy arbitrage to minimise the electricity cost from the utility grid
considering renewable energy generation, the complete optimisation problem can be expressed
as follows, where the decision variables are Θ = {Pch(t), Pdch(t), uch(t), udch(t), s(t)}:

min
Θ

∑
t∈H

[
λim(t) Pim(t) − λex(t)Pex(t)

]
∆t (15a)

s.t.
Pre(t) + (Pdch(t) − Paux)udch(t)ηinv − (Pch(t) + Paux)uch(t)/ηinv

= Pex(t) − Pim(t) + Pload(t) ∀t ∈ H
, (15b)

S oC(t) = S oC(t − 1) +
Pideal

ch (t)uch(t)∆t
Eideal

−
Pideal

dch (t)udch(t)∆t

Eideal
− k(t)s(t) ∀t ∈ H , (15c)

0 ≤ uch(t) + udch(t) ≤ 1 ∀t ∈ H , (15d)
S oC(0) = S oC(t f ), (15e)
S oCmin ≤ S oC(t) ≤ S oCmax ∀t ∈ H , (15f)

s(t) =

1 if 0.1 < S oC(t) ≤ 0.95
0 if S oC(t) = 0.1

, (15g)
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k(t) =


4.11 × 10−6∆t if 0.10 ≤ S oC(t) ≤ 0.22
2.87 × 10−6∆t if 0.22 ≤ S oC(t) ≤ 0.59
1.87 × 10−6∆t if 0.59 ≤ S oC(t) ≤ 0.95

, (15h)

Pideal
ch (t) = αch + βchPch(t) + γchS oC(t) ∀t ∈ H , (15i)

Pideal
dch (t) = αdch + βdchPdch(t) + γdchS oC(t) ∀t ∈ H , (15j)

Pmin
ch ≤ Pch(t) ≤ min(τchS oC(t) + ϕch, Pmax

ch ) ∀t ∈ H , (15k)

Pmin
dch + Paux ≤ Pdch(t) ≤ min(τdchS oC(t) + ϕdch, Pmax

dch ) + Paux ∀t ∈ H (15l)

The overall objective function is given in Eq. (15a) in order to minimise the cost of electric-
ity for users. In this equation, λim(t) and λex(t) are the imported/exported prices of the energy
from/to the utility grid. Furthermore, Pim(t) and Pex(t) are the total imported/exported power
from/to the utility grid for each consumer. The load power balance is given in Eq. (15b), where
Pre(t) and Pload(t) are the power generation from renewable energy sources and the load power
consumption, respectively. ηinv = 0.95 is the efficiency of the battery inverter, and Paux = 100W
is the auxiliary power consumption.

The proposed SoC estimation model is given in Eq. (15c). Eq. (15d) ensures that the VRFB
system is not charged and discharged simultaneously. The initial charge must be equal to the
remaining battery charge using Eq. (15e). The maximum and minimum SoC levels are enforced
in Eq. (15f), that is, between 10% and 95% as noted in [35].

The battery operational state is given in Eqs. (15g) and (15h), where s(t) is a binary decision
variable that indicates the stop mode in which the VRFB system will be turned off, and k(t) is
used to model the self-discharge Coulombic losses of the 5kW/10kWh VRFB system using the
piecewise linear model introduced in Section 3.3. Furthermore, Eqs. (15i)-(15l) calculate the
ideal power during battery charging and discharging considering power management by BMS to
obtain an accurate SoC estimation, as detailed in Section 3.4. Note that αch = 127.6, βch = 0.9,
γch = −52.9 are the ideal charge power coefficients. In addition, αdch = −79.9, βdch = 1.14,
and γdch = −133.9 are ideal discharge power coefficients. These values are obtained using the
piecewise linearisation approach based on the results of Figs. 4 (a) and (b). ϕch and τch are charge
power regulation coefficients and ϕdch and τdch are discharge power regulation coefficients, whose
values are given in Fig. 5.

4. Simulation study

In this section, the performance of the proposed MILP formulation is evaluated and compared
with the conventional SoE estimation model, using real-world residential PV generation, load
consumption and variable electricity tariffs [38]. A detailed multi-physics model of a VRFB
introduced in Appendix A and a comprehensive VRFB-BMS design presented in [3] are used to
represent the ground-truth operation of the 5kW/10kWh VRFB system over a 24-hour period for
analysis and performance validation. The consumer aims to minimise electricity costs by using
local generation, VRFB, and lower tariff periods to meet a specified daily electricity demand.

4.1. Simulation setup
We use real PV generation and load demand data from eight residential users in the Aus-

tralian Capital Territory (ACT) [38]. The diagram illustrating this residential energy arbitrage
application is shown in Fig. 6. Each residential user is assumed to be connected to the utility
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Figure 6: The schematic diagram of the residential energy arbitrage application of a VRFB system in this study with the
proposed MILP formulation and optimisation in EMS

grid and owns a 5kW/10kWh VRFB system with a rooftop solar PV system and a smart in-
verter in an energy arbitrage scenario. The users are also assumed to be on the time-of-use tariff
(ToU) and the solar feed-in tariff from Origin Energy obtained from December 2023 [39]. The
smart inverter with EMS functionality takes into account the electricity tariff, ambient tempera-
ture and PV generation profiles to make the optimal energy dispatch decision with the use of the
proposed MILP formulation for accurate remaining energy estimation and loss modelling intro-
duced in previous sections. The optimisation problem is formulated using Eq. (15). To highlight
the performance of the proposed model in accurate remaining energy estimation, a conventional
and universal SoE-based remaining energy estimation model, presented in Eq. (1) which has
been utilised in many related works such as [3, 24, 25, 26, 27] is used to replace the SoC-based
remaining estimation models in Eq. (15) to formulate the following optimisation problem to find
the decision variables Θ.

min
Θ

∑
t∈H

[
λim(t) Pim(t) − λex(t)Pex(t)

]
∆t (16a)

s.t.
Pre(t) + (Pdch(t) − Paux)udch(t) ηinv − (Pch(t) + Paux) · uch(t)/ηinv

= Pex(t) − Pim(t) + Pload(t) ∀t ∈ H
, (16b)

S oE(t) = S oE(t − 1) + ηrt
(Pch(t) + Paux)uch(t)∆t

En

−
(Pdch(t) − Paux)udch(t)∆t

En
∀t ∈ H

, (16c)

0 ≤ uch(t) + udch(t) ≤ 1 ∀t ∈ H , (16d)
S oE(0) = S oE(t f ), (16e)
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(a) The load and rooftop PV generation profiles of an
anonymous user along with Origin Energy tariff informa-
tion in Canberra, ACT

(b) The SoC and SoE profiles as well as actual and sched-
uled power profiles of the battery using conventional SoE
estimation model with Eq. (1)

(c) The SoC and SoE profiles as well as actual and sched-
uled power profiles of the battery using conventional SoE
estimation model with Eq. (2)

(d) The SoC and SoE profiles as well as actual and sched-
uled power profiles using the proposed SoC-based remain-
ing energy estimation model

Figure 7: The SoC and SoE as well as actual and scheduled power profiles of the 5kW/10kWh VRFB system using
different remaining energy estimation models for an anonymous user with a real tariff from Origin Energy, Australia

S oEmin ≤ S oE(t) ≤ S oEmax ∀t ∈ H , (16f)

Pmin
ch ≤ Pch(t) ≤ min(τchS oE(t) + ϕch, Pmax

ch )∀t ∈ H , (16g)

Pmin
dch + Paux ≤ Pdch(t) ≤ min(τdchS oE(t) + ϕdch, Pmax

dch ) + Paux ∀t ∈ H (16h)

The round-trip efficiency and nominal energy of the 5kW/10kWh VRFB system are 70%

and 10kWh using ηrt =

∫ t f
t0

(Pdch(t)−Paux)dt∫ t f
t0

(Pch(t)+Paux)dt
and En =

∫ t f

t0
(Pdch(t) − Paux) dt, respectively, based on

the constant current discharge test and the CC-CV charge test results that consider the auxiliary
system power consumption. Pch(t)+Paux and Pdch(t)−Paux in Eq. 17c denote the total charge and
discharge power for VRFB systems, taking into account auxiliary power consumption, crucial
for operations such as pumping. Another SoE-based remaining estimation model considering the
charge/discharge efficiency presented in Eq. (2) which has been utilised in many related works
such as [28, 29, 30, 31, 32, 33], is used to devise an EMS, presented below:

min
Θ

∑
t∈H

[
λim(t) Pim(t) − λex(t)Pex(t)

]
∆t (17a)
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s.t.
Pre(t) + (Pdch(t) − Paux)udch(t) ηinv − (Pch(t) + Paux) · uch(t)/ηinv

= Pex(t) − Pim(t) + Pload(t) ∀t ∈ H
, (17b)

S oE(t) = S oE(t − 1) + ηch
(Pch(t) + Paux)uch(t)∆t

En

−
(Pdch(t) − Paux)udch(t)∆t

ηdch En
∀t ∈ H

, (17c)

0 ≤ uch(t) + udch(t) ≤ 1 ∀t ∈ H , (17d)
S oE(0) = S oE(t f ), (17e)
S oEmin ≤ S oE(t) ≤ S oEmax ∀t ∈ H , (17f)

Pmin
ch ≤ Pch(t) ≤ min(τchS oE(t) + ϕch, Pmax

ch )∀t ∈ H , (17g)

Pmin
dch + Paux ≤ Pdch(t) ≤ min(τdchS oE(t) + ϕdch, Pmax

dch ) + Paux ∀t ∈ H (17h)

where under this definition, ηch · ηdch = ηr f is set to consider energy conservation [40]. Since
this VRFB system operates within the SoC range of 10% to 95%, the SoE profiles are adjusted
from 0-100% to 10%-95% to represent the actual SoC levels in the figures. In this study, since
capacity is restored using a hydraulic shunt rebalancing to address electrolyte volume disparities,
these differences are excluded from the simulation [2].

4.2. Simulation results

4.2.1. Remaining energy estimation performance
Fig. 7 illustrates the simulation results obtained for an anonymous user as a demonstration.

The load and PV power profiles and tariff information for a day are given in Fig. 7 (a). The
results of the remaining energy estimation using the SoE and the proposed SoC models, as well
as the actual and scheduled battery power, are given in Figs. 7 (b) and (c), respectively. It can
be seen that the proposed estimation model achieves accurate results with a maximum absolute
error of less than 2% (7% and 23% using the conventional SoE models in Eq. (1) and Eq. (2)) and
a mean absolute error of 0.56% (3.2% and 5.8% using the conventional SoE estimation model in
Eq. (1) and Eq. (2)).

Additional results are provided in Fig. 8, which illustrates the accuracy of the proposed SoC-
based model to estimate the remaining energy. Absolute errors between the estimated remaining
energy and the actual remaining energy for the conventional SoE model and the proposed SoC
model of the eight users at different times of the day are given. As demonstrated by these two
figures, the proposed SoC-based remaining energy model has considerably reduced the absolute
error, achieving a mean absolute percentage error (MAPE) of 0.62% as opposed to 4.6% and
11.6% when using the SoE formulations in Eq. (1) and Eq. (2), respectively. This is achieved
by considering the internal dynamic characteristics of VRFBs in the proposed MILP formulation
using the SoC-based remaining energy estimation model.

4.2.2. Economic benefits and battery performance improvements
SoE models as presented in Eq. (1) and Eq. (2) or other basic remaining energy estimation

approaches, which do not account for efficiency variations in VRFB technologies, can lead to
negative operational outcomes. The key interest for users, operators, and investors lies in the
economic benefits provided by VRFB operations. Hence, evaluating the effectiveness of the pro-
posed approach in assessing the economic advantages of consumers is essential. Fig. 9 illustrates
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(a) SoE estimation using Eq. (1) with overall MILP formulation in
Eq. (16)

(b) SoE estimation using Eq. (2) with overall MILP formulation in
Eq. (17)

(c) Proposed linear SoC estimation

Figure 8: The absolute percentage errors (APE) in % between the estimated remaining energy and the actual remaining
energy of 8 users over a day of simulation using three different remaining energy estimation models

the economic advantages and improved battery performance experienced by eight anonymous
users when using the proposed SoC-based model, as opposed to the traditional SoE model. The
advantages mentioned above can also be verified from the results in Table 1. The proposed
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(a) The actual economic benefits profiles

(b) The actual VRFB round-trip efficiency profiles

(c) The absolute errors between the estimated (at planning
stage by EMS operation) and actual (at operating stage by
multi-physics modelling

(d) The power mismatch profiles (absolute mean percentage
error) between the scheduled power and actual power

Figure 9: The economic and operational performance of the 5kW/10kWh VRFB systems over a day of simulation for
eight users by three remaining energy estimations
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Table 1: Actual round-trip efficiency vs. estimated round-trip efficiency by the proposed MILP formulation

User ID 10643 11887 12656 12662
Actual round-trip efficiency [%] 68.47 67.57 67.25 65.80
Estimated round-trip efficiency (proposed MILP) [%] 68.47 68.66 67.87 66.33
Absolute error [%] 0.00 1.09 0.62 0.53
User ID 13349 13592 13907 15866
Actual round-trip efficiency [%] 62.08 59.33 66.65 61.19
Estimated round-trip efficiency (proposed MILP) [%] 63.98 60.75 67.29 61.69
Absolute error [%] 1.90 1.42 0.64 0.50

MILP formulation for SoC remaining estimation achieves an exceptionally low estimation error
of 0.84% in predicting the actual round-trip efficiency, clearly demonstrating its capability to ac-
curately model the dynamic losses during VRFB operation.Figure 9 (a) shows that the proposed
SoC estimation method achieves higher economic benefits during one day of simulation with an
overall 34.8% and 57.1% increase with respect to the SoE formulations in Eq. (1) and Eq. (2),
respectively. The proposed SoC-based framework considers both the dynamic voltaic loss and
the coulombic loss rate of 5kW/10kWh VRFB systems. This approach helps identify the op-
timal power scheduling for the VRFB by preventing the battery system from working under
low-efficiency conditions.

The average round-trip efficiency profiles of the eight users over a day are given in Fig. 9 (b),
which supports these results. It is evident that the proposed SoC estimation model generates a
VRFB power profile that improves the round-trip efficiency of the VRFB system, thus boosting
economic benefits. The average actual round-trip efficiency in one day of simulation using the
proposed formulation reaches 64.8%, which is much higher than the two baseline cases using
SoE formulations in Eq. (1) and Eq. (2), where it was only 58.5% and 56.3%, respectively. Fur-
ther results in Figs. 9 (c) and (d) demonstrate that the proposed model achieves highly accurate
economic benefit estimation and minimal power mismatch, compared to the traditional SoE esti-
mation model. Due to the detailed loss modelling, the proposed method achieves more accurate
remaining energy estimation, which consequently reduces the power mismatch errors from 8.6%
and 11.3% using Eq. 1 and Eq. 2, respectively, to only 0.7%. The slight power mismatch leads
to more precise decision-making, which in turn improves the accuracy of economic benefit esti-
mates prior to operation. From the results, the proposed model reduces the MAPE of economic
assessment from 67.8% and 93.7% using Eq. 1 and Eq. 2, respectively, to 3.1%. This provides
investors with more reliable information and enables more accurate VRFB power scheduling for
standby flexibility and uninterruptible power supply (UPS) services. Moreover, the proposed
SoC-based model seamlessly integrates with optimisation formulations related to battery opera-
tion, which can be efficiently solved by various commercial and open source solvers.

5. Conclusion

Inaccurate models for the estimation of remaining energy in VRFB negatively affect the ac-
curate assessment and achievement of their true economic value. To address this issue, this paper
proposes a novel MILP formulation for VRFBs, incorporating a novel SoC-based remaining en-
ergy estimation model. Two main losses, the voltaic losses and charge losses, are modelled and
linearised in the MILP formulation to accurately capture the system dynamics. Furthermore,
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a practical battery management scheme for VRFB is considered as constraints in the proposed
MILP formulation to achieve effectiveness in usable energy. Finally, a comprehensive MILP-
based formulation is proposed to achieve effective and economic VRFB energy management
considering residential applications. Comprehensive simulation studies are conducted using a
newly proposed multi-physics model, which integrates all the mechanical and electrochemical
dynamics of VRFB systems based on real data profiles from eight users in ACT, Australia. The
simulation results demonstrate that the proposed MILP formulation provides a highly accurate
estimate of the remaining energy compared to conventional SoE-based models. In particular, this
led to an up to 57.1% increase in economic benefits and an up to 8.5% improvement in round-trip
efficiency for daily battery operation. The findings emphasise the importance of developing an
accurate battery model for commercial applications, and the proposed model could potentially
be extended to other battery types.
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Appendix A: Multi-physics model formation of the 5kW/10kWh VRFB system

This Appendix presents the multi-physics model and parameters of the 5kW/10kWh VRFB
system. For more details, refer to our earlier work in [34].

For vanadium ions in the cell:
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LeWeHe
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It should be noted that the overall fluxes (ncross
i ) in Eqs. (A.1)-(A.4) include the diffusion

fluxes (ndi f f
i ), convection fluxes (ncon

i ) and electro-migration fluxes (nmig
i ), and can be computed
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as follows:

ncross
i = ndi f f

i + ncon
i + nmig

i = ki
ci

D
+ v⃗mci +

ziF
RT

kici∇(ϕm
neg − ϕ

m
pos) (A.5)

For the vanadium ions in the tanks, we have the following governing equations:

(Vn + N ∆Vn)
dct

2

dt
= Qs

(
cs

2 − ct
2
)

(A.6)
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dt
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3
)

(A.7)

(Vp + N ∆Vp)
dct

4

dt
= Qs

(
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4 − ct
4
)

(A.8)

(Vp + N ∆Vp)
dct

5

dt
= Qs

(
cs

5 − ct
5

)
(A.9)

Note that in Eqs. (A.6)-(A.9), ∆Vp and ∆Vn are the rates of electrolyte transfer driven by
osmotic pressure and ionic potential in the electrolyte. The electrolyte velocity across the mem-
brane can be represented by the following equation.

v⃗m =
κm
D

Le

2κeAe

(
Qc −

µ+

µ−
Qc

)
−
κφ

µw
c f F

(
I
σmAm

+ ϕm
di f f

)
(A.10)

Thus, the electrolyte volume transfer rate can be determined as follows:

∆Vn = −∆Vp = v⃗m Am (A.11)

The open-circuit voltage (OCV) of a single cell, EOCV , is:

EOCV = E0′ +
RT
zF

ln
(

cs
2cs

5

cs
3cs

4

)
; E0′ = 1.40 V (A.12)

In this analysis, the formal potential E0′ disregards the minor impact of enthalpy variation,
as established by Xiong et al. [41] for the 5kW VRFB stack. The stack voltage is composed
of OCV, ohmic overpotential and concentration overpotential of each cell, which can be derived
using the following equations for charging and discharging, respectively [42]:
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(A.14)

The km is the mass transfer coefficient in dm s−1:

km = 1.6 × 10−3
(

Qc

10LeWe

)0.4

(A.15)

The SoC of the VRFB system is described using the following equation that accounts for the
system imbalance:

S oC = min
(

ct
2

ct
2 + ct

3
,

ct
5

ct
4 + ct

5

)
(A.16)

The thermal model of this VRFB system is derived from the principles of the energy con-
servation law [37]. The electrolyte temperature within the stack is affected by self-discharge
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reactions, changes in entropy, internal heat production, and heat exchange, as described by the
following equation:

CpρVs
dTs

dt
= QsCpρ

(
Tp − Ts

)
+ QsCpρ (Tn − Ts) + ITs

dE
dT
+ Psel f + I2Rs (A.17)

The electrolyte temperature in positive/negative tanks is:

CpρVp
dTp

dt
= QsCpρ

(
Ts − Tp

)
+ UtAt

(
Tair − Tp

)
(A.18)

CpρVn
dTn

dt
= QsCpρ (Ts − Tn) + UtAt (Tair − Tn) (A.19)
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