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Abstract

Spatial and temporal variability of PV generation is a challenge for secure

operation of the power systems. Several solutions are already proposed to

deal with this issue. Among the proposed solutions, storage technologies

(particularly battery) attracted more attention as a promising solution for

the application in medium- and large-scale PV plants. While numerous re-

search studies addressed optimal sizing and real-time operation of the storage

systems in such applications, there is no study on the battery operation as-

sessment in real-world application based on field data. In this paper, one year

of experimental data from a 3.275 MWp PV plant with 600kW/760kWh Li-

Polymer battery system is examined from different perspectives (e.g., battery

energy, power, rate of change of power (RoCoP), and state-of-charge (SOC))

to draw insights from battery operation within the plant. The field data in-

herently contains system-wide losses, smoothing effect of the PV plant, and

PV inverter operation for reactive power control, which provides a realistic as-
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sessment. Furthermore, several operational parameters (such as energy and

power during ramp events) are evaluated and modelled using appropriate

statistical tools based on experimental data. In addition, a simple super-

capacitor sizing study is carried out to reveal the effectiveness of a hybrid

energy solution for such applications. Observations and insights drawn from

the proposed analyses will help future research on the battery sizing and op-

eration to effectively account for real-world characteristics and requirements.

Keywords: Medium-scale PV and battery system, seasonality effect,

smoothing, ramp-up and ramp-down, statistical modelling

1. Introduction1

According to the Australian PV Institute (APVI) [1], installed PV capac-2

ity reached 5,855.6MW by January 2017 in Australia, which shows more than3

61 times growth compared to January of 2010 (when total installed capacity4

was 95.7MW). While the number of small-scale PV installation is gradu-5

ally dropping [1], the number of medium- and large-scale PV systems, i.e.,6

100kW∼5MW and bigger than 5MW respectively, has been growing steadily7

in Australia in recent years. Only in 2016, 68 medium-scale and 12 large-scale8

solar projects with total capacity of 23MW and 319MW, respectively, were9

commissioned in the country [2]. While increasing PV generation can bene-10

fit the country in several ways, technical challenges regarding power system11

operation raised serious concerns, which have to be appropriately addressed12

[3, 4]. Among all detrimental impacts, variability of PV output power due13

to passing clouds (known as ramp-rate) is the one of paramount importance14

for frequency and voltage regulation of power system with high PV genera-15

2
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tion [5]. To reduce the negative impacts of the medium- and large-scale PV16

plants, electricity utilities imposed obligatory connection rules, such as ramp-17

rate and voltage violations limit, as a part of interconnection agreement [6, 7].18

Any failure to meet the requirements could have financial consequences for19

the plant owners/operator.20

To address the PV variability problem, researchers proposed various ap-21

proaches and techniques to control rapid changes in PV production, as sum-22

marised in [8]. While distributing panels over a wide area can smooth ramp23

effects, it is not going to resolve the issue completely, as will be shown in24

this paper. Power-electronic-based control techniques are also developed25

in literature to smooth PV output fluctuations within short-time intervals26

[9, 10]. These approaches, however, cannot compensate ramp events with27

high energy and power due to technical limitations of power electronic inter-28

faces. Most recent solutions are mainly focused on the application of various29

storage technologies (specifically battery) for medium- and large-scale PV30

ramp compensation. Optimal and intelligent algorithms are proposed in31

[11, 12, 13, 14, 15, 16, 17, 18] to operate battery in ramp-rate control mode .32

Also, storage sizing for PV ramp-rate control has been reported in multiple33

papers, e.g., in [19, 20]. In these studies, the mathematical model of a single34

PV module is used to generate PV power time series to further calculate35

ramp-rates in different time resolution. In addition, pure simulation studies36

were mainly employed to assess battery operation under the ramp-rate reg-37

ulation mode. To the best of our knowledge, however, there is no research38

study that looked into battery operation in ramp-rate control mode using39

field data.40

3
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In this paper, operational data from a 3.275 MWp PV plant with 600kW/760kWh41

Li-Polymer battery system is utilised for analyses from different perspectives.42

The PV plant is located at the University of Queensland (UQ) Gatton cam-43

pus, Australia. The plant with battery system is in operation for more than44

a year and a half. The battery system is operated by a central supervisory45

controller in different modes based on pre-defined rules. One of the battery46

operation modes, which is considered in this study, is designed to compen-47

sate quick drop in the PV output in real-time. Despite other research studies,48

where mathematical models and simulation framework were used to identify49

ramp requirements, actual ramp incidents from the PV modules and battery50

response to the events are investigated in this study. Therefore, real-world51

operational characteristics of the plant, such as system-wide losses, inverter’s52

operation for smoothing PV output and reactive power control, PV module53

degradation, etc., are represented in the experimental data and consequently54

in the analyses. To shed light on the battery operation in the ramp-rate55

control mode, this paper offers a thorough evaluation of battery operational56

behaviour in terms of energy, power, rate of change of power (RoCoP), and57

battery state-of-charge (SOC). Additionally, time gap between consecutive58

ramp events, which have been compensated by the battery, are analysed to59

identify technical requirements in real-world operational conditions. Season-60

ality effect on the ramping events is also investigated and statistical behaviour61

of the battery operation is derived from the experimental data. The key find-62

ings of the analyses can be used in the future battery sizing and operation63

studies to account for stochastic nature of the underlying system. To show64

the effectiveness of the hybrid energy storage system in ramp-rate control65

4
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mode, a simple super-capacitor sizing study carried out. It is shown that66

low-energy incidents (which often coincide with low-power events) can be67

conveniently mitigated by super-capacitor. This will, in turn, help to extend68

battery lifetime and improve economic operation of the whole plant. Ulti-69

mately, ramping incidents on the DC and AC sides of the PV inverters are70

assessed for a year of field data. As a result, a set of new requirements are71

identified, which will have implications on the future research in this area.72

The rest of the paper is organised as follows. Section 2 explains sys-73

tem under study including the plant control mechanism and interconnection74

agreement with the local utility. In Section 3, a general overview of the bat-75

tery operation under ramp-rate control is presented. Moreover, statistical76

tools and concepts, which have been used for the analyses, are outlined and77

explained in this section. Battery operation is then evaluated from different78

perspective in Section 4. Finally, paper is concluded in Section 5.79

2. System Under Study80

The UQ owns and operates a 3.275 MWp PV plant along with 600kW/760kWh81

battery system at the Gatton campus, located in the Lockyer Valley region82

of South East Queensland, Australia. A schematic diagram of the plant is83

shown in Fig. 1, in connection to the UQ Gatton substation and local util-84

ity grid. The UQ Gatton 11-kV substation has two complementary parts.85

Onsite diesel generator (1MVA), capacitor banks (2×550 kVAr), and most of86

campus loads are connected to the left busbar. Power can flow between the87

two busbars through a normally closed circuit breaker, as shown in Fig. 1.88

The campus load is served by onsite PV generation and storage as well as89

5
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utility grid. Excess PV generation, when available, is exported to the grid90

using the same circuit. As it is shown in Fig. 1, there are five PV arrays,91

three of them are fixed-tilt (FT) arrays (684KWp DC each), one array with92

single-axis (SA) tracking system (684KWp DC), and the fifth array with93

dual-axis (DA) tracking mechanism (684KWp DC). Each array is linked to94

the substation through an exclusive inverter, which is limited to deliver 63095

kW AC at any moment of time. Interested readers are referred to [21] for96

more detail on the plant operation.97

Li-Polymer batteries are installed in the plant. As shown in Fig. 1, bat-98

tery power/energy capacity is divided into two 300kW/380kWh banks, each99

of which is connected to a 300kVA, 415V, 3-phase inverter capable of sourc-100

ing/sinking reactive power at ±0.9 power factor. The two inverters are con-101

nected to the campus substation through a single 1000kVA transformer. Each102

battery bank consists of four racks in parallel, as shown in Fig. 1, where 10103

battery modules are assembled in series in every rack. Every module con-104

tains two parallel strings, where each string has 18 battery cells in series.105

Voltage at the DC side of the battery inverter varies between 576 and 748106

V based on the battery SOC and internal resistances. As expected, several107

constraints are defined for battery operation in the central supervisory sys-108

tem (CSS). For instance, battery SOC is strictly limited between 15% and109

95%. The CSS operates the whole plant consisting of PV arrays, battery110

storage system, diesel generator, capacitor banks, and local grid connection.111

A comprehensive SCADA system is implemented to measure, collect, and112

communicate data within the plant, which is essential for the CSS operation.113

More details about smart metering and data collection in the plant can be114

6
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found in [21].115
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Figure 1: Single-line diagram of the Gatton PV plant and local network interconnection

2.1. Agreement with the Local Utility116

According to the agreement, PV inverters are limited to export 630 kW117

AC. Additionally, they are required to regulate reactive power such that at118

30% or more of the rated inverter output, the amount of reactive power is119

at least 0.395 times the active power output [21]. This way, “Ramp Mode”120

is defined for the PV inverters to regulate ramp-up events [21]. There are121

multiple agreement on the voltage level and violations, which are not related122

7
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to battery operation, and not discussed in this paper.123

2.2. Battery Control Mechanism124

Battery, similar to other devices in the plant, is monitored and controlled125

by the CSS directly. In particular, ten operation modes (rules) are defined for126

the battery with predefined priorities. Delta Solar, as one of the operation127

rules, is activated when solar power reduction exceeds a certain level. Battery128

contribution to the compensation of ramp-down events decreases slowly when129

solar power generation stables at a certain level. This summarises ramp-down130

control mechanism provided by the battery. In Solar Charge mode, on the131

other hand, battery is charged when PV generation exceeds 800kW during132

certain hours of each day. This is not exactly ramp-up control as it operates133

based on the magnitude of the PV generation rather than the change in134

the PV output. Other battery modes are not related to either ramp-up or135

ramp-down events. Besides battery system, as explained in subsection 2.1,136

PV inverters are setup to limit extreme ramp-up events. Therefore, battery137

does not contribute in regulating ramp-up incidents in the Gatton plant. As138

a result, battery performance will only be studied during ramp-down events139

in this study.140

3. Overview of the Battery Operation and Analysis141

In this section, a general overview of the battery operation during ramp-142

down events is given for one year of field data. Then, statistical terms and143

methods, which have been used in Section 4, are explained.144

8
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3.1. General Overview of the Ramp-Down Control Mode145

As it was explained in subsection 2.2, Delta Solar mode is activated146

during ramp-down events of 10kW/s or higher. While the CSS regulates147

plant operation in second-by-second basis, our analyses are carried out for148

minute-by-minute data for practical reasons (such as memory management149

and tractable computational requirements). Data are averaged every minute150

and relevant parameters are converted, when needed. For instance, ramp-151

down event is re-defined as 600kW/min (instead of 10kW/s) or larger reduc-152

tion of the PV generation. One year of the battery operation data starting153

from 1st of March 2016 is utilised for analysis. For simplicity, data for one154

battery bank is assessed because the two banks show almost identical be-155

haviour throughout the year.156

In total, battery was discharged in Delta Solar mode for 7,928 minutes157

(equivalent of 11 days, 19 hours, and 46 minutes accumulatively) throughout158

the year. Total energy discharged from the battery during this time was159

about 12.9 MWh per bank. This equals to 21.3 full cycles (based on the160

installed capacity of the battery bank and 80% rated Depth-of-Discharge161

(DoD)) cumulatively during discharging mode, calculated as follows:162

Cycles = (2 ×DoD ×Erated)−1 ×
7928

∑
i=1
∣Pi∣×

1

60
(1)

where Pi is the discharge power in ith time instance in kW for battery bank163

1; DoD is the rated DoD of the battery (0.8 p.u.); and Erated is the rated ca-164

pacity of the battery bank 1 in kWh (380 kWh). From the annual operation165

point of view, 21 cycles per year is insignificant, which justifies stacked appli-166

cation of the battery in such systems. From the battery operation standpoint,167

9
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however, this means that the battery undergone almost 1.8 cycles per day168

in Delta Solar mode, i.e., 21.3 cycles in almost 12 days. This is relatively169

intense as the battery at the UQ Gatton plant experiences about half a cycle170

on average per day. It further shows that battery capable of deep cycling171

with high power, such as Li-based technologies, are needed for the PV ramp-172

rate control application. In Section 4, significance of different parameters on173

battery operation during Delta Solar mode will be investigated thoroughly.174

3.2. Analysis Methods and Definitions175

In this paper, different statistical tools and concepts are used to perform176

the analyses. While average and standard deviation (SD) are calculated for177

the experimental data to compare performance and operational stress on the178

battery in different circumstances, Skewness and Kurtosis are computed to179

characterise the stochastic nature of the data and detect potential outliers.180

More specifically, skewness is used as a measure of asymmetry of any density181

and probability distribution of a random variable about its mean [22]. The182

skewness value can be positive or negative, or undefined. For a unimodal183

distribution (i.e., a distribution with only one clear-cut peak), negative skew184

indicates that the tail on the left side of the probability density function185

is longer or fatter than the right side. Non-zero skewness means that the186

random variable is not following a normal distribution [22]. Therefore, it187

would be a mistake to statistically model such random variables with normal188

distribution. Kurtosis is a descriptor of the shape of a distribution. Higher189

kurtosis is a sign of rare extreme deviations (or outliers), as opposed to190

frequent reasonably-sized deviations [22]. The sample kurtosis is a useful191

measure of whether there is a problem with outliers in a data set. Larger192

10
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kurtosis indicates existence of a serious outlier, which is recommended to be193

removed from dataset.194

Modelling statistical behaviour of random parameters are very useful in195

sizing studies and developing operational algorithms for battery. These mod-196

els can be applied to account for stochastic nature of the battery operation in197

such studies. Since ramp events are random in nature, they can be modelled198

by finding appropriate density or probability distribution for given exper-199

imental data. To find the best distribution (either frequency or probabil-200

ity) for a given set of data, a measure of comparison is needed. In this201

paper, corrected Akaike Information Criterion (AICc) [22] is used which is202

corrected AIC for sample size, i.e., it is independent of the sample size. It is203

an information-based criteria that assess model fit based on -2Log-Likelihood204

[22]. While AICc can help to find the best distribution for a set of data, it205

is not able to determine the accuracy of the fitted distribution. Therefore,206

quantile-quantile plot (Q-Q Plot) is used to visually verify the validity of the207

best fit on the experimental data [23]. In a Q-Q plot, theoretical expected208

values will be computed based on the fitted distribution function on x-axis209

and the results are compared with the experimental values on Y axis. If the210

experimental data truly follow the distribution, points on the Q-Q plot will211

follow a straight line.212

Frequency histograms are also used to draw insights from experimental213

data. Selecting appropriate number of bins in a histogram, which further214

defines the width of the bins, is critical for data with outliers. In this study,215

number of bins in a histogram is selected based on Freedman-Diaconis rule216

[24], which is less sensitive to outliers in the data and more suitable for217

11
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heavy-tailed distributions. The optimal bin-width is calculated by:218

h = 2 × IRQ × n−1/3 (2)

where IRQ is the interquartile range of data; and n is the number of samples.219

Then, optimal number of bins is:220

N = (maxdata −mindata)/h (3)

The tools and concepts, explained in this subsection, are used in the next221

section to evaluate battery operation and performance in ramp-rate control222

mode. The analyses will lead to identify useful insights for the battery sizing223

and operation studies during ramp-down control within a medium-scale PV224

plant.225

4. Battery Operation Analysis226

In this section, battery operation is evaluated from different perspectives227

using available data through various statistical methods. Please note that228

all the analyses in this section have been done for one battery bank. Similar229

observations can be extended to the second battery bank. Different parame-230

ters are calculated based on the raw data, which are shown for a hypothetical231

ramp-down event in Fig. 2. ∂Pt is the ramp value in kW/min: and RoCoPt232

is the RoCoP at time t. The concept of “unique ramp-down event”, “en-233

ergy of the incident”, “maximum power of the incident”, “SOC at the end of234

the incident”, and “time gap” between consecutive events are illustratively235

shown in the figure.236

12
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Calculated Parameters

Unique ramp-down event

Delta Solar mode Delta Solar mode

Time gap

Figure 2: Calculated parameters from raw data for the analyses

4.1. Energy237

The amount of energy extracted from the battery during ramp-down238

events is of paramount importance because it affects battery health and its239

readiness for the future incidents. It is also one of the two critical factors (the240

other one is ramp-down power) in battery sizing studies in literature, e.g.,241

[20, 25]. The general statistics for every unique ramp-down event are reported242

in Table 1 for different seasons and annual values. A “unique ramp-down243

event” is defined as a sequence of battery discharge with possibly different244

level of power without interruption during the Delta Solar mode. Based245

on the raw data, the maximum annual energy drained from the battery oc-246

curred in spring, where battery was discharged for 41 minutes consecutively247

to compensate quick drop in the PV generation. This incident drained 163.1248

kWh from the battery. It is clear from Table 1 that this event is far bigger249

than the next maximum value in the whole dataset as well as within the250

samples of spring. Also, the large Skewness and Kurtosis values in spring,251
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compared to other seasons, further proves that the event is an outlier in a252

statistical sense. It means that although the incident actually took place in253

spring, it does not represent typical behaviour of the parameter, as it only254

occurs once in a lifetime. In the battery sizing studies, such an event is a255

rare incident, where accrued penalty does not justify the cost of an over-sized256

battery. Therefore, the incident can be treated as an outlier to be safely re-257

moved from the dataset for the rest of the paper. Maximum, average, SD,258

Skewness, and Kurtosis of the samples in spring without outlier are given in259

parenthesis in Table 1. It can be seen that the new parameters in spring are260

reasonably close to the values of other seasons. Also, Kurtosis is significantly261

decreased, which follows the general perception of Kurtosis as being highly262

affected by the outliers in data.263

Table 1: General statistics for Energy samples (in kWh) during Delta Solar mode.

Season Maximum Minimum Average SD (σ) Skewness Kurtosis

Autumn 16.1 0.053 2.9 2.7 1.31 4.83

Winter 14.7 0.051 2.5 2.3 1.46 5.48

Spring 163.1 (15.3) 0.05 3.05 (2.92) 5.21 (2.68) 22.70 (1.13) 693.499 (4.04)

Summer 19.6 0.052 3.4 3.13 1.22 4.25

Annual 163.1 (19.6) 0.05 2.9 3.63 (2.71) 20.02 (1.32) 861.63 (4.79)

According to Table. 1, maximum discharging event in terms of energy oc-264

curred in summer, where the average and SD values are the highest. Among265

all seasons, winter shows the most random behaviour because of the highest266

Kurtosis. The average value is the lowest in winter and autumn, which is267

not surprising as the sunlight intensity is less in these seasons. From energy268

perspective, a battery bank of 21.7 kWh capacity (considering 90% round-269
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(a) Seasonsal

(b) Annual

Figure 3: Histogram of energy samples without outlier
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trip efficiency for the battery) would be sufficient to successfully compensate270

ramp-down events. In other words, this observation defines an upper limit271

the kWh capacity of the battery in a sizing study, which statistically would272

be able to compensate all ramp-down incidents. Based on this observation,273

it can be concluded that an appropriate operational algorithm should pre-274

serve at least 21.7 kWh energy in the battery at all times to effectively ride275

through ramp-down events, when they occur.276
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Figure 4: Q-Q plot for energy samples based on “Generalised Pareto” DF

Additionally, it can be inferred from non-zero skewness in all seasons that277

statistical behaviour of the samples is not following a normal distribution278

closely. While considering only ramp-down events might seem to cause the279

non-normal behaviour, it will be shown in Subsection 4.5 that it is true when280

both ramp-up and ramp-down events are considered. This further has been281
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verified by fitting the best density function (DF) on the experimental data,282

as shown in Fig. 3. It contradicts with many papers in this area, which283

assumed normal distribution of ramp events in their analysis [13, 14].284

Seasonal and annual histogram of the battery energy, without outlier, are285

shown in Fig. 3a and 3b, respectively, along with the best DFs. In all cases,286

“Generalized Pareto” found to yield the best fit on the experimental samples.287

To further show that the samples are not following a normal distribution,288

seasonal Q-Q plot is shown in Fig. 4 for “Generalised Pareto” DF. It can289

be seen that the field data is following the DF very well. The larger values290

seem to deviate from the DF, which shows a longer tail in the distribution.291

The AICc values of the fitted DFs are printed on the figure. One important292

observation from the AICc values is that partitioning experimental data into293

different seasons yields better statistical models.294

According to Fig. 3, there are many discharging instances with very low295

energy (as low as 0.05 kWh). Small discharge events can adversely influence296

battery lifetime due to memory effect, as described in [26]. Using super-297

capacitor alongside battery can mitigate these events properly. According to298

[27], super-capacitor size in a hybrid storage system can be calculated by:299

Csc =
4max(∣Esc∣)
v2sc,max − v2sc,min

(4)

where Esc is the maximum energy in Joules; vsc,max and vsc,min are the maximum300

and minimum operational voltages of the super-capacitor; and Csc is the301

capacity in Farads. Since the battery’s inverter operates within 576∼748 V302

range on the DC side, the same operational voltages are assumed for super-303

capacitor, i.e., vsc,max = 748 and vsc,min = 576. Considering that voltage of a304

super-capacitor’s cell is typically between 2.3 to 2.75 Vdc [28], 272 cells are305
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needed in series to raise the voltage to the desired level. If it is intended306

to cover 50th percentile of ramp-down energy by super-capacitor (i.e., 2.1307

kWh which is about 7.56 MJ), then a 33.2 F super-capacitor is required.308

This is the amount of energy which super-capacitor should deliver during309

several minutes. However, energy delivery duration in capacitors depends on310

the capacity and equivalent series resistance (ESR), RESR, of the capacitor311

(excluding external resistances):312

τ = RESR.CSC (5)

where 1τ is the time that takes a capacitor to discharge to 36.8% of its final313

voltage. Since it is assumed that the super-capacitor can only be discharged314

up to 50% of its final voltage, according to [27]:315

Csc =
36.8

50
.

τ

RESR,cell ×Ns

(6)

where τ = 60 seconds for 50th percentile of the unique events’ duration; RESR,cell316

is about 1 mΩ per cell for modern super-capacitors; and Ns is the number of317

cells in series (272 in this study). By doing the calculation, battery capacity318

should be at least 162.3 F. In Section 4.2, the required power will also be319

determined.320

If super-capacitor was used for the one year of the experimental data at321

hand, 1.86 MWh of energy throughput (about 14.5% of total energy delivered322

by the battery) could have been provided by the super-capacitor. It also323

could have released the battery from operating in Delta Solar mode for324

2,235 minutes (worth of 1 day, 13 hours, and 15 minutes) to operate in325

other modes to provide other services to the plant. Moreover, it could have326
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extended the battery lifetime by avoiding partial discharges and reducing327

accumulated energy throughput.328

4.2. Power329

Besides the energy extracted from the battery, the charge/discharge power330

magnitude is an important factor on the battery degradation. It also plays331

an inevitable part in any sizing and operation study [20, 25]. Therefore, dis-332

charge power magnitude, averaged per minute, is considered for investigation333

in this subsection. General statistics of the battery power in Delta Solar334

mode are derived for annual data as well as different seasons, reported in335

Table 2. Seasonal and annual frequency histograms of the samples are also336

shown in Fig. 5a and 5b, respectively. Important remarks from the figures337

and the table are summarised below:338

Table 2: General statistics of power samples (in kW) during Delta Solar mode.

Season Maximum Average SD (σ) Skewness Kurtosis

Autumn 301.9 95.0 70.6 0.66 2.53

Winter 312.0 87.0 67.8 0.85 2.94

Spring 325.4 101.8 80.1 0.66 2.39

Summer 331.2 110.1 80.6 0.62 2.37

Annual 331.2 98.2 75.4 0.72 2.59

● Similar to the energy samples, the experimental power samples are best339

modelled using “Generalised Pareto”. The largest incident occurred in sum-340

mer, similar to the energy values, where power magnitude was 331.2 kW.341

Summer also experiences higher ramp-down power on average whereas winter342
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has the lowest average value. Winter, however, represents more stochastic343

behaviour compared to the other seasons because of higher Skewness and344

Kurtosis. These observations are aligned with those inferred from the energy345

samples in the previous subsection.346

● DFs fitted on the seasonal data are more accurate compared to those ones347

fitted on the annual samples based on the AICs values given in Fig. 5. As348

shown in the analyses so far, partitioning data into different clusters (e.g.,349

seasons) have a considerable impact on the accuracy of the statistical models.350

So far, it is shown that seasonality pattern exists in the battery operational351

data. However, it is worth to use clustering techniques to identify different352

categories in data beyond seasonality, and to fit more appropriate DF on353

every cluster. This way, more accurate models can be developed from the354

experimental data, which will be useful in the battery sizing and operation355

studies in the future.356

● In general, it is more difficult to statistically model the battery power dur-357

ing ramp-down events compared to the energy samples. This further means358

that a larger error should be anticipated for power in sizing or operation359

studies, e.g., when predicting power for real-time operation.360

● 86th percentile has power equal or less than 150 kW, which is half of the361

battery rated capacity. This is good for battery health since high-power362

incidents have occurred less frequently over the year.363

In Fig. 6, the maximum power of every unique event is plotted against364

the accumulated energy of the same event. It can be seen that there is365

almost a linear relationship between the two parameters. Essentially, the366

high-power incidents coincide with the high-energy events. The correlation367
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coefficients for seasonal and annual samples are given in the caption, which368

emphasis on the existence of a linear correlation between the two parameters.369

It also means that a joint probability distribution between the energy and370

power samples might better capture variations in the two random parameters.371

While the correlation coefficients of the seasonal and annual values are fairly372

close, slope of the line is not similar in all seasons. Therefore, accuracy of the373

modelling (in terms of joint DF or cumulative distribution function (CDF))374

will essentially improve if data is partitioned seasonally.375

Besides power, rate of change of power (RoCoP) has significant impacts376

on the battery lifetime. This is a well-known fact that highly fluctuating377

charge and discharge regime can degrade battery faster [29]. RoCoP for every378

unique incident is calculated in this study, seasonal and annual histograms379

of which are shown in Fig. 7a and 7b, respectively. Negative values show380

a drop in power with respect to the previous time instance. It can be seen381

from Fig. 7 that the number of incidents close to zero is disproportionately382

bigger than other range of values (i.e., bins), which could be another evidence383

supporting hybrid energy system application. The application can further be384

justified by the observation made from Fig. 6, in which low-energy incidents385

correlate with low-power magnitude most of the time.386

General statistics of the RoCoP samples are given in Table 3 for seasonal387

and annual data. It can be seen that RoCoP can be as high as nominal388

power of battery. This sort of power fluctuation is strenuous on the bat-389

tery with significant consequences on its lifetime. Similar to the energy and390

power samples, the largest RoCoP values occur in summer. However, the391

average and SD values are bigger in spring. That being said, winter with392
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highest Skewness and Kurtosis is the most unpredictable season for the Ro-393

CoP modelling, which is similar to what have been observed for the energy394

and power samples.395

Table 3: General statistics of RoCoP samples (in kW/min) during Delta Solar mode.

Season Maximum Average SD (σ) Skewness Kurtosis

Autumn 265.3 83.0 101.95 0.202 2.57

winter 296.0 82.13 102.69 0.254 2.80

Spring 293.98 96.09 118.7 0.22 2.40

Summer 307.08 95.49 114.89 0.21 2.37

Annual 307.08 89.33 110.05 0.22 2.54

To finalise super-capacitor sizing from Section 4.1, power requirement396

of the hypothetical super-capacitor is calculated. Nominal power of super-397

capacitors is specified in kW/kg. This value changes from one model and398

manufacturer to another. Therefore, power sizing of the super-capacitor de-399

pends on the specific model that is going to be used in an application. If400

it was intended to use a BCAP0650 super-capacitor (650 F) from Maxwell401

Company [30] for the Gatton plant, which has specific power of 6.8 kW/kg402

and each cell is about 200 g, it can handle power up to 369.9 kW which is403

higher than maximum power of each battery inverter and bank. Moreover,404

the maximum power incident over a year never exceeded 331.2 kW (accord-405

ing to Table 2), which is still below nominal power of the super-capacitor.406

Therefore, power as well as energy requirements can be fulfilled by selecting407

BCAP0650 super-capacitor from Maxwell company. According to [30], the408

price of this model of super-capacitor is about AU$57 per cell and the overall409
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cost of the super-capacitor for this application will be less than AU$16,000.410

Please note that the cost of power electronic interface and controller is not411

considered.412

4.3. Battery SOC413

Battery SOC at the end of each ramp-down event is another important414

parameter in the battery health and sizing studies. SOC values are shown415

in Fig. 8 at the end of each unique event for different seasons as well as the416

whole year. General statistics of the SOC samples are also reported in Ta-417

ble 4 for different seasons and annual data. In general, the battery SOC is418

well-maintained within an acceptable range in different seasons. The max-419

imum SOC is almost the same in all seasons and it is very high. It shows420

that there are low energy events which might be better to be covered by421

other storage devices, such as super-capacitor. In summer, we have the best422

operation scenario for battery since the SOC values never go below 65% and423

the average SOC is the highest at about 85%. In this case, the battery424

will be ready for the future events in terms of available energy . It is an-425

ticipated because summer has the highest amount of solar irradiation and426

longer daylight hours so that battery has more opportunity to be charged.427

High average SOC also implies a better operational practice for the battery428

with less health implications. Other seasons experience low SOC levels (less429

than 30%) in multiple occasions. Autumn and winter have the lowest aver-430

age and minimum SOC. This is undesirable to discharge the battery below431

20% because of its adverse impact on the battery lifetime. This problem432

can be mitigated by changing current operational practice to charge battery433

more often in these seasons. Despite other parameters which had positive434
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Skewness, the battery SOC shows negative Skewness, which implies a longer435

tail on the left. This is because of low SOC incidents in the samples.436

Table 4: General statistics of battery SOC samples (in %) during Delta Solar mode.

Season Maximum Minimum Average SD (σ) Skewness Kurtosis

Autumn 99.0 9.9 75.7 14.45 -0.71 4.09

winter 96.6 15.2 73.86 14.24 -0.71 3.85

Spring 97.5 22.4 82.24 9.14 -1.18 6.21

Summer 98.6 65.2 84.72 7.19 -0.17 2.25

Annual 99.0 9.9 79.11 12.46 -1.13 5.20

Figure. 9 shows the seasonal and annual histograms of the SOC exper-437

imental data and the best DF fitted. Most of the values are in the upper438

range of SOC, which is good for battery health. While there was always a439

single DF, which could accurately model the seasonal and annual data for the440

energy and power samples, different DFs found to model SOC experimental441

data the best. Furthermore, the energy and power experimental data were442

fitting well on unimodal distribution. However, the SOC samples, specially443

in autumn and winter, represents bimodal distribution with two peaks. Nev-444

ertheless, the importance of data partitioning (specifically based on different445

seasons) can be realised from SOC histograms. For histogram and DF fitting,446

data are centred around their average value because it yields better fit. The447

average SOC was 79.11% from all available data.448
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4.4. Time Gap449

After every ramp-down incident, the battery energy will reduce. Hence,450

there should be enough time to charge the battery for the future events if451

battery energy is depleted. It will have significant consequences in the sizing452

and operation studies. For instance, if incidents are too close, it leads to a453

larger battery capacity to cover next incident in line. The time gap between454

two events can be problematic when it is too short to charge the battery until455

the next event. It depends on the battery SOC at the beginning of every456

event, capacity of the battery, and the energy required for the next event,457

f(SOCinit,Ebatt,Enext).458

To analyse this parameter, the time difference between the unique events459

is calculated from the data, general statistics of which is reported in Table 5.460

The first event of every day is not considered in this analysis. The max-461

imum time gap in winter and spring are larger than their counterparts in462

other two seasons. However, the average time gap is larger in autumn which463

implies fewer incidents throughout the season. The time gap in winter is464

more stochastic because of high Kurtosis value. This observation suggests465

different operation algorithms for battery in different seasons to improve the466

battery performance and health. The 50th percentile of the time gap samples467

is 5 minutes, which means that the time gap is 5 minutes or less for 50%468

of the time. This could have significant impacts on the battery sizing and469

operation studies. Similar to the energy and power samples, the time gap470

can be best modelled with “Generalised Pareto” DF for every season as well471

as the annual samples.472
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Table 5: General statistics of time gap samples (in minute) between consecutive events

during Delta Solar mode.

Season Maximum Minimum Average SD (σ) Skewness Kurtosis

Autumn 370 2 16.1 33.4 6.3 53.8

Winter 388 2 12.1 26.2 7.7 81.6

Spring 400 2 12.8 27.8 7.2 74.5

Summer 367 2 13.0 27.0 7.2 74.0

Annual 400 2 13.4 28.8 7.1 69.5

4.5. PV-side Ramp-Rate Analysis473

So far, only ramp-down control was investigated using battery operation474

data, where commands sent by the CSS has been followed by the battery475

inverter controller. The observations presented in this subsection could be476

useful in battery sizing studies, which typically starts from predicting PV477

plant. To do the analyses, data are collected for each PV string, shown in478

Fig. 1, on both DC and AC sides of the inverters. Ramp-rate for the entire479

PV generation is limited to 10 kW/s (i.e., 600 kW/min). To analyse PV480

strings individually, ramp-rate limit is divided between five arrays according481

to their rated capacity. Values are normalised based on the maximum power482

on the DC side of the inverter, i.e., 684 kW, for comparison purposes. Also,483

total PV plant production is simply calculated by adding generation of the484

five PV arrays.485

As expected, there is 100% correlation between DC and AC values of486

every inverter. The number of ramp-rate violations, maximum, average of487

absolute values, and SD of violations are plotted in Fig. 10 for every PV488
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array and the overall plant. Values are given for both DC and AC sides of489

every inverter for comparison.490

Following observations can be made from Fig. 10:491

� For all PV arrays and the overall plant production, it can be seen that492

the ramp-rate violations on the DC side is always more than the AC493

side of the inverter. This is mainly caused by the inverter losses and494

reactive power compensation, as explained in Section 2. In the battery495

sizing and operation studies, these factors are typically ignored.496

� PV plant smoothing effect can be realised from the figure where the497

number of ramp-rate violations, maximum, average, and SD of vio-498

lations are significantly less for overall plant production compared to499

the individual PV array performance. In theoretical studies reported500

in the literature, the model of a single PV module is usually used to501

generate PV power time series from solar irradiation and ambient tem-502

perature data to calculate ramp events. It is clear from Fig. 10 that503

neglecting smoothing effect in those studies leads to wrong decisions,504

e.g., over-sized battery capacity in sizing studies.505

� SA and DA arrays have the largest maximum ramp incidents. Also,506

the average ramp-rate violations is the highest for the SA and DA507

arrays. It shows that although advanced tracking systems increase508

overall generation in the plant, they require more efforts to control509

ramping events (e.g., larger storage).510

� “Generalised Extreme Value” DF found to be the best for modelling the511

ramp-rate events (combination of ramp-up and ramp-down). There-512
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fore, using normal distribution for such application will lead to signifi-513

cant error in calculations and modelling.514

� The maximum ramp-rate violation can be as high as the rated capacity515

of the individual PV array. For the overall plant, it is still higher516

than 85%, which is significant. Additionally, the average ramp-rate517

violation for the overall plant is not significantly different from the518

individual arrays. While the smoothing effect can reduce the number519

of ramp events, it might not be as much effective during large ramping520

incidents.521

� Compared to the maximum ramp-rate violations, the average and SD522

values are relatively small. It proves that severe ramping incidents523

rarely occurred. Therefore, appropriate statistical model of the ramp524

events is needed to properly size and operate battery.525

Ramp-up and ramp-down incidents are separately analysed in Fig. 11 for526

the AC side of the inverter for all PV arrays. The following insights can be527

inferred from the experimental data shown in Fig. 11:528

� Despite the PV inverter effort to regulate ramp-up events and reactive529

power compensation, the number of ramp-up incidents is significantly530

more than ramp-down ones in the individual arrays. It suggests that531

the ramp-up events happen more often than the ramp-down ones. It532

will have consequences in the battery sizing and operation studies.533

� While both ramp-up and ramp-down events are considerably reduced534

at the entire plant level, the smoothing effect has more impact on the535

ramp-up incidents compared to the ramp-down events.536
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� Although the number of incidents is more for the ramp-up events, max-537

imum, average, and SD of violations for all cases occurred during the538

ramp-down incidents. Higher average of the ramp-down events means539

that the battery is more likely to be discharged rather than charged.540

Therefore, battery should always maintain a high level of charge to be541

able to ride through the ramp-down events by being regularly charged.542

� The previous observation also shows that ramp-up and ramp-down543

events are not energy neutral, i.e., accumulated charged and discharged544

energy during ramping incidents are not equal. Therefore, the battery545

operation algorithm should take this into account by regularly charging546

the battery.547

� It can also be seen from Fig. 11 that SD is bigger for the ramp-down548

events, which makes it less predictable.549

These observations are useful for the next generation of the sizing studies550

and designing battery operation algorithms.551

5. Conclusion552

This paper offers thorough analyses of the battery operation under ramp-553

down control mode within a medium-scale PV plant. One year of field data554

is used to draw insights from the battery operation, which could be useful for555

the battery sizing and operational studies in the future. Investigations are556

carried out for the different parameters of the battery operation. It has been557

shown that seasonality has an impact on the ramp events, which consequently558

affect the battery operation in different ways, such as SOC level. As a result,559
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statistical model of different parameters are more accurate when modelling560

is carried out on the seasonal data. According to the statistical analyses,561

the battery energy is more predictable compared to the battery power, while562

there is a strong correlation between the two parameters. The application of563

super-capacitor is also assessed, which showed that it can improve battery564

lifetime and the economic operation of the whole plant. Analysing parame-565

ters such as the time gap between two consecutive events revealed that they566

should be considered in the sizing and operation studies.567

Finally, investigation on the ramp events on the DC and AC sides of the568

PV inverters shows that using theoretical model of PV module without ac-569

counting for smoothing effects in medium- and large-scale PV plants, inverter570

operation for reactive power consumption, system-wide losses, etc., can lead571

to wrong decisions in the sizing and operation studies. It is also shown that572

smoothing effect is not an ultimate solution to the PV ramp-rate problem.573
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(a) Seasonsal

(b) Annual

Figure 5: Histogram of the battery power samples during Delta Solar mode
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Figure 6: Maximum power vs. energy of every unique incident– Seasonal (correlation

coefficient (ρ) is 0.88, 0.885, 0.893, and 0.906 for autumn, winter, spring, and summer,

respectively) and Annual (ρ is 0.891)
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(a) Seasonsal

(b) Annual

Figure 7: Histogram of RoCoP samples (kW/min) without outlier
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Figure 8: Battery SOC at the end of each unique Delta Solar event
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(a) Seasonsal

(b) Annual

Figure 9: Histogram of the Battery SOC samples without outlier [Fitted PDF for Autumn:

Logistic, Winter: Logistic, Spring: Normal, Summer: Generalised Pareto, and Annual:

Normal ]
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Figure 10: Ramp-rate violations for all PV arrays on DC and AC sides of inverters
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Figure 11: Ramp-up and ramp-down violations for all PV arrays on the AC side of inverters
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