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Abstract

Spatial and temporal variability of PV generation is a challenge for secure
operation of the power systems. Several solutions are already proposed to
deal with this issue. Among the proposed solutions, storage technologies
(particularly battery) attracted more attention as a promising solution for
the application in medium- and large-scale PV plants. While numerous re-
search studies addressed optimal sizing and real-time operation of the storage
systems in such applications, there is no study on the battery operation as-
sessment in real-world application based on field data. In this paper, one year
of experimental data from a 3.275 MWp PV plant with 600kW /760kWh Li-
Polymer battery system is examined from different perspectives (e.g., battery
energy, power, rate of change of power (RoCoP), and state-of-charge (SOC))
to draw insights from battery operation within the plant. The field data in-
herently contains system-wide losses, smoothing effect of the PV plant, and

PV inverter operation for reactive power control, which provides a realistic as-
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sessment. Furthermore, several operational parameters (such as energy and
power during ramp events) are evaluated and modelled using appropriate
statistical tools based on experimental data. In addition, a simple super-
capacitor sizing study is carried out to reveal the effectiveness of a hybrid
energy solution for such applications. Observations and insights drawn from
the proposed analyses will help future research on the battery sizing and op-
eration to effectively account for real-world characteristics and requirements.
Keywords: Medium-scale PV and battery system, seasonality effect,

smoothing, ramp-up and ramp-down, statistical modelling

1. Introduction

According to the Australian PV Institute (APVI) [1], installed PV capac-
ity reached 5,855.6MW by January 2017 in Australia, which shows more than
61 times growth compared to January of 2010 (when total installed capacity
was 95.7MW). While the number of small-scale PV installation is gradu-
ally dropping [1], the number of medium- and large-scale PV systems, i.e.,
100kW~5MW and bigger than 5SMW respectively, has been growing steadily
in Australia in recent years. Only in 2016, 68 medium-scale and 12 large-scale
solar projects with total capacity of 23MW and 319MW, respectively, were
commissioned in the country [2]. While increasing PV generation can bene-
fit the country in several ways, technical challenges regarding power system
operation raised serious concerns, which have to be appropriately addressed
(3, 4]. Among all detrimental impacts, variability of PV output power due
to passing clouds (known as ramp-rate) is the one of paramount importance

for frequency and voltage regulation of power system with high PV genera-
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tion [5]. To reduce the negative impacts of the medium- and large-scale PV
plants, electricity utilities imposed obligatory connection rules, such as ramp-
rate and voltage violations limit, as a part of interconnection agreement [6, 7.
Any failure to meet the requirements could have financial consequences for
the plant owners/operator.

To address the PV variability problem, researchers proposed various ap-
proaches and techniques to control rapid changes in PV production, as sum-
marised in [8]. While distributing panels over a wide area can smooth ramp
effects, it is not going to resolve the issue completely, as will be shown in
this paper. Power-electronic-based control techniques are also developed
in literature to smooth PV output fluctuations within short-time intervals
9, 10]. These approaches, however, cannot compensate ramp events with
high energy and power due to technical limitations of power electronic inter-
faces. Most recent solutions are mainly focused on the application of various
storage technologies (specifically battery) for medium- and large-scale PV
ramp compensation. Optimal and intelligent algorithms are proposed in
(11, 12, 13, 14, 15, 16, 17, 18] to operate battery in ramp-rate control mode .
Also, storage sizing for PV ramp-rate control has been reported in multiple
papers, e.g., in [19, 20]. In these studies, the mathematical model of a single
PV module is used to generate PV power time series to further calculate
ramp-rates in different time resolution. In addition, pure simulation studies
were mainly employed to assess battery operation under the ramp-rate reg-
ulation mode. To the best of our knowledge, however, there is no research

study that looked into battery operation in ramp-rate control mode using

field data.
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In this paper, operational data from a 3.275 MWp PV plant with 600kW /760kWh

Li-Polymer battery system is utilised for analyses from different perspectives.
The PV plant is located at the University of Queensland (UQ) Gatton cam-
pus, Australia. The plant with battery system is in operation for more than
a year and a half. The battery system is operated by a central supervisory
controller in different modes based on pre-defined rules. One of the battery
operation modes, which is considered in this study, is designed to compen-
sate quick drop in the PV output in real-time. Despite other research studies,
where mathematical models and simulation framework were used to identify
ramp requirements, actual ramp incidents from the PV modules and battery
response to the events are investigated in this study. Therefore, real-world
operational characteristics of the plant, such as system-wide losses, inverter’s
operation for smoothing PV output and reactive power control, PV module
degradation, etc., are represented in the experimental data and consequently
in the analyses. To shed light on the battery operation in the ramp-rate
control mode, this paper offers a thorough evaluation of battery operational
behaviour in terms of energy, power, rate of change of power (RoCoP), and
battery state-of-charge (SOC). Additionally, time gap between consecutive
ramp events, which have been compensated by the battery, are analysed to
identify technical requirements in real-world operational conditions. Season-
ality effect on the ramping events is also investigated and statistical behaviour
of the battery operation is derived from the experimental data. The key find-
ings of the analyses can be used in the future battery sizing and operation
studies to account for stochastic nature of the underlying system. To show

the effectiveness of the hybrid energy storage system in ramp-rate control
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mode, a simple super-capacitor sizing study carried out. It is shown that
low-energy incidents (which often coincide with low-power events) can be
conveniently mitigated by super-capacitor. This will, in turn, help to extend
battery lifetime and improve economic operation of the whole plant. Ulti-
mately, ramping incidents on the DC and AC sides of the PV inverters are
assessed for a year of field data. As a result, a set of new requirements are
identified, which will have implications on the future research in this area.
The rest of the paper is organised as follows. Section 2 explains sys-
tem under study including the plant control mechanism and interconnection
agreement with the local utility. In Section 3, a general overview of the bat-
tery operation under ramp-rate control is presented. Moreover, statistical
tools and concepts, which have been used for the analyses, are outlined and
explained in this section. Battery operation is then evaluated from different

perspective in Section 4. Finally, paper is concluded in Section 5.

2. System Under Study

The UQ owns and operates a 3.275 MWp PV plant along with 600kW /760kWh

battery system at the Gatton campus, located in the Lockyer Valley region
of South East Queensland, Australia. A schematic diagram of the plant is
shown in Fig. 1, in connection to the UQ Gatton substation and local util-
ity grid. The UQ Gatton 11-kV substation has two complementary parts.
Onsite diesel generator (1IMVA), capacitor banks (2x550 kVAr), and most of
campus loads are connected to the left busbar. Power can flow between the
two busbars through a normally closed circuit breaker, as shown in Fig. 1.

The campus load is served by onsite PV generation and storage as well as
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utility grid. Excess PV generation, when available, is exported to the grid
using the same circuit. As it is shown in Fig. 1, there are five PV arrays,
three of them are fixed-tilt (FT) arrays (684KWp DC each), one array with
single-axis (SA) tracking system (684KWp DC), and the fifth array with
dual-axis (DA) tracking mechanism (684KWp DC). Each array is linked to
the substation through an exclusive inverter, which is limited to deliver 630
kW AC at any moment of time. Interested readers are referred to [21] for
more detail on the plant operation.

Li-Polymer batteries are installed in the plant. As shown in Fig. 1, bat-
tery power/energy capacity is divided into two 300kW /380kWh banks, each
of which is connected to a 300kVA, 415V, 3-phase inverter capable of sourc-
ing/sinking reactive power at £0.9 power factor. The two inverters are con-
nected to the campus substation through a single 1000k VA transformer. Each
battery bank consists of four racks in parallel, as shown in Fig. 1, where 10
battery modules are assembled in series in every rack. Every module con-
tains two parallel strings, where each string has 18 battery cells in series.
Voltage at the DC side of the battery inverter varies between 576 and 748
V based on the battery SOC and internal resistances. As expected, several
constraints are defined for battery operation in the central supervisory sys-
tem (CSS). For instance, battery SOC is strictly limited between 15% and
95%. The CSS operates the whole plant consisting of PV arrays, battery
storage system, diesel generator, capacitor banks, and local grid connection.
A comprehensive SCADA system is implemented to measure, collect, and
communicate data within the plant, which is essential for the CSS operation.

More details about smart metering and data collection in the plant can be
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Figure 1: Single-line diagram of the Gatton PV plant and local network interconnection

2.1. Agreement with the Local Utility

According to the agreement, PV inverters are limited to export 630 kW
AC. Additionally, they are required to regulate reactive power such that at
30% or more of the rated inverter output, the amount of reactive power is
at least 0.395 times the active power output [21]. This way, “Ramp Mode”
is defined for the PV inverters to regulate ramp-up events [21]. There are

multiple agreement on the voltage level and violations, which are not related
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to battery operation, and not discussed in this paper.

2.2. Battery Control Mechanism

Battery, similar to other devices in the plant, is monitored and controlled
by the CSS directly. In particular, ten operation modes (rules) are defined for
the battery with predefined priorities. Delta Solar, as one of the operation
rules, is activated when solar power reduction exceeds a certain level. Battery
contribution to the compensation of ramp-down events decreases slowly when
solar power generation stables at a certain level. This summarises ramp-down
control mechanism provided by the battery. In Solar Charge mode, on the
other hand, battery is charged when PV generation exceeds 800kW during
certain hours of each day. This is not exactly ramp-up control as it operates
based on the magnitude of the PV generation rather than the change in
the PV output. Other battery modes are not related to either ramp-up or
ramp-down events. Besides battery system, as explained in subsection 2.1,
PV inverters are setup to limit extreme ramp-up events. Therefore, battery
does not contribute in regulating ramp-up incidents in the Gatton plant. As
a result, battery performance will only be studied during ramp-down events

in this study.

3. Overview of the Battery Operation and Analysis

In this section, a general overview of the battery operation during ramp-
down events is given for one year of field data. Then, statistical terms and

methods, which have been used in Section 4, are explained.
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3.1. General Overview of the Ramp-Down Control Mode

As it was explained in subsection 2.2, Delta Solar mode is activated
during ramp-down events of 10kW /s or higher. While the CSS regulates
plant operation in second-by-second basis, our analyses are carried out for
minute-by-minute data for practical reasons (such as memory management
and tractable computational requirements). Data are averaged every minute
and relevant parameters are converted, when needed. For instance, ramp-
down event is re-defined as 600kW /min (instead of 10kW/s) or larger reduc-
tion of the PV generation. One year of the battery operation data starting
from 1%t of March 2016 is utilised for analysis. For simplicity, data for one
battery bank is assessed because the two banks show almost identical be-
haviour throughout the year.

In total, battery was discharged in Delta Solar mode for 7,928 minutes
(equivalent of 11 days, 19 hours, and 46 minutes accumulatively) throughout
the year. Total energy discharged from the battery during this time was
about 12.9 MWh per bank. This equals to 21.3 full cycles (based on the
installed capacity of the battery bank and 80% rated Depth-of-Discharge

(DoD)) cumulatively during discharging mode, calculated as follows:

7928

1
Cycles = (2 x DoD x E,qpeq) ™" % Z|Pi|x
i-1

50 (1)
where P; is the discharge power in it* time instance in kW for battery bank
1; DoD is the rated DoD of the battery (0.8 p.u.); and E,4.q is the rated ca-
pacity of the battery bank 1 in kWh (380 kWh). From the annual operation

point of view, 21 cycles per year is insignificant, which justifies stacked appli-

cation of the battery in such systems. From the battery operation standpoint,
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however, this means that the battery undergone almost 1.8 cycles per day
in Delta Solar mode, i.e., 21.3 cycles in almost 12 days. This is relatively
intense as the battery at the UQ Gatton plant experiences about half a cycle
on average per day. It further shows that battery capable of deep cycling
with high power, such as Li-based technologies, are needed for the PV ramp-
rate control application. In Section 4, significance of different parameters on

battery operation during Delta Solar mode will be investigated thoroughly.

3.2. Analysis Methods and Definitions

In this paper, different statistical tools and concepts are used to perform
the analyses. While average and standard deviation (SD) are calculated for
the experimental data to compare performance and operational stress on the
battery in different circumstances, Skewness and Kurtosis are computed to
characterise the stochastic nature of the data and detect potential outliers.
More specifically, skewness is used as a measure of asymmetry of any density
and probability distribution of a random variable about its mean [22]. The
skewness value can be positive or negative, or undefined. For a unimodal
distribution (i.e., a distribution with only one clear-cut peak), negative skew
indicates that the tail on the left side of the probability density function
is longer or fatter than the right side. Non-zero skewness means that the
random variable is not following a normal distribution [22]. Therefore, it
would be a mistake to statistically model such random variables with normal
distribution. Kurtosis is a descriptor of the shape of a distribution. Higher
kurtosis is a sign of rare extreme deviations (or outliers), as opposed to
frequent reasonably-sized deviations [22]. The sample kurtosis is a useful

measure of whether there is a problem with outliers in a data set. Larger

10
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kurtosis indicates existence of a serious outlier, which is recommended to be
removed from dataset.

Modelling statistical behaviour of random parameters are very useful in
sizing studies and developing operational algorithms for battery. These mod-
els can be applied to account for stochastic nature of the battery operation in
such studies. Since ramp events are random in nature, they can be modelled
by finding appropriate density or probability distribution for given exper-
imental data. To find the best distribution (either frequency or probabil-
ity) for a given set of data, a measure of comparison is needed. In this
paper, corrected Akaike Information Criterion (AICc) [22] is used which is
corrected AIC for sample size, i.e., it is independent of the sample size. It is
an information-based criteria that assess model fit based on -2Log-Likelihood
[22]. While AICc can help to find the best distribution for a set of data, it
is not able to determine the accuracy of the fitted distribution. Therefore,
quantile-quantile plot (Q-Q Plot) is used to visually verify the validity of the
best fit on the experimental data [23]. In a Q-Q plot, theoretical expected
values will be computed based on the fitted distribution function on x-axis
and the results are compared with the experimental values on Y axis. If the
experimental data truly follow the distribution, points on the Q-Q plot will
follow a straight line.

Frequency histograms are also used to draw insights from experimental
data. Selecting appropriate number of bins in a histogram, which further
defines the width of the bins, is critical for data with outliers. In this study,
number of bins in a histogram is selected based on Freedman-Diaconis rule

[24], which is less sensitive to outliers in the data and more suitable for

11
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heavy-tailed distributions. The optimal bin-width is calculated by:

h=2><IRQ><n‘1/3 (2)

where [ R(Q) is the interquartile range of data; and n is the number of samples.

Then, optimal number of bins is:

N = (maz®?® — mind**?)/h (3)

The tools and concepts, explained in this subsection, are used in the next
section to evaluate battery operation and performance in ramp-rate control
mode. The analyses will lead to identify useful insights for the battery sizing
and operation studies during ramp-down control within a medium-scale PV

plant.

4. Battery Operation Analysis

In this section, battery operation is evaluated from different perspectives
using available data through various statistical methods. Please note that
all the analyses in this section have been done for one battery bank. Similar
observations can be extended to the second battery bank. Different parame-
ters are calculated based on the raw data, which are shown for a hypothetical
ramp-down event in Fig. 2. P, is the ramp value in kW /min: and RoCoP,
is the RoCoP at time ¢. The concept of “unique ramp-down event”, “en-
ergy of the incident”, “maximum power of the incident”, “SOC at the end of

the incident”, and “time gap” between consecutive events are illustratively

shown in the figure.

12
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Figure 2: Calculated parameters from raw data for the analyses

a1 4.1. Energy

238 The amount of energy extracted from the battery during ramp-down
230 events is of paramount importance because it affects battery health and its
20 readiness for the future incidents. It is also one of the two critical factors (the
21 other one is ramp-down power) in battery sizing studies in literature, e.g.,
22 [20, 25]. The general statistics for every unique ramp-down event are reported
23 in Table 1 for different seasons and annual values. A “unique ramp-down
as  event” is defined as a sequence of battery discharge with possibly different
us  level of power without interruption during the Delta Solar mode. Based
us on the raw data, the maximum annual energy drained from the battery oc-
27 curred in spring, where battery was discharged for 41 minutes consecutively
us  to compensate quick drop in the PV generation. This incident drained 163.1
29 kWh from the battery. It is clear from Table 1 that this event is far bigger
0 than the next maximum value in the whole dataset as well as within the

1 samples of spring. Also, the large Skewness and Kurtosis values in spring,

13
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compared to other seasons, further proves that the event is an outlier in a
statistical sense. It means that although the incident actually took place in
spring, it does not represent typical behaviour of the parameter, as it only
occurs once in a lifetime. In the battery sizing studies, such an event is a
rare incident, where accrued penalty does not justify the cost of an over-sized
battery. Therefore, the incident can be treated as an outlier to be safely re-
moved from the dataset for the rest of the paper. Maximum, average, SD,
Skewness, and Kurtosis of the samples in spring without outlier are given in
parenthesis in Table 1. It can be seen that the new parameters in spring are
reasonably close to the values of other seasons. Also, Kurtosis is significantly
decreased, which follows the general perception of Kurtosis as being highly

affected by the outliers in data.

Table 1: General statistics for Energy samples (in kWh) during Delta Solar mode.

Season  Maximum  Minimum  Average SD (o) Skewness Kurtosis
Autumn 16.1 0.053 2.9 2.7 1.31 4.83
Winter 14.7 0.051 2.5 2.3 1.46 5.48
Spring  163.1 (15.3)  0.05  3.05 (2.92) 5.21 (2.68) 22.70 (1.13) 693.499 (4.04)
Summer 19.6 0.052 3.4 3.13 1.22 4.25
Annual  163.1 (19.6)  0.05 2.9 3.63 (2.71) 20.02 (1.32) 861.63 (4.79)

According to Table. 1, maximum discharging event in terms of energy oc-
curred in summer, where the average and SD values are the highest. Among
all seasons, winter shows the most random behaviour because of the highest
Kurtosis. The average value is the lowest in winter and autumn, which is
not surprising as the sunlight intensity is less in these seasons. From energy

perspective, a battery bank of 21.7 kWh capacity (considering 90% round-

14
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trip efficiency for the battery) would be sufficient to successfully compensate

ramp-down events. In other words, this observation defines an upper limit

the kWh capacity of the battery in a sizing study, which statistically would

be able to compensate all ramp-down incidents. Based on this observation,

it can be concluded that an appropriate operational algorithm should pre-

serve at least 21.7 kWh energy in the battery at all times to effectively ride

through ramp-down events, when they occur.
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Additionally, it can be inferred from non-zero skewness in all seasons that

statistical behaviour of the samples is not following a normal distribution

closely. While considering only ramp-down events might seem to cause the

non-normal behaviour, it will be shown in Subsection 4.5 that it is true when

both ramp-up and ramp-down events are considered. This further has been

16
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verified by fitting the best density function (DF) on the experimental data,
as shown in Fig. 3. It contradicts with many papers in this area, which
assumed normal distribution of ramp events in their analysis [13, 14].

Seasonal and annual histogram of the battery energy, without outlier, are
shown in Fig. 3a and 3b, respectively, along with the best DFs. In all cases,
“Generalized Pareto” found to yield the best fit on the experimental samples.
To further show that the samples are not following a normal distribution,
seasonal Q-Q plot is shown in Fig. 4 for “Generalised Pareto” DF. It can
be seen that the field data is following the DF very well. The larger values
seem to deviate from the DF, which shows a longer tail in the distribution.
The AICc values of the fitted DF's are printed on the figure. One important
observation from the AICc values is that partitioning experimental data into
different seasons yields better statistical models.

According to Fig. 3, there are many discharging instances with very low
energy (as low as 0.05 kWh). Small discharge events can adversely influence
battery lifetime due to memory effect, as described in [26]. Using super-
capacitor alongside battery can mitigate these events properly. According to

[27], super-capacitor size in a hybrid storage system can be calculated by:

dmazx(|Esc|)
Coe= oo (4)

sc,max sc,min

where E. is the maximum energy in Joules; v,. ... and v,,,,;, are the maximum
and minimum operational voltages of the super-capacitor; and Cj, is the
capacity in Farads. Since the battery’s inverter operates within 576~748 V
range on the DC side, the same operational voltages are assumed for super-
capacitor, i.e., Ve = 748 and v,.,.,, = 576. Considering that voltage of a

super-capacitor’s cell is typically between 2.3 to 2.75 Vdc [28], 272 cells are

17
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needed in series to raise the voltage to the desired level. If it is intended
to cover 50" percentile of ramp-down energy by super-capacitor (i.e., 2.1
kWh which is about 7.56 MJ), then a 33.2 F super-capacitor is required.
This is the amount of energy which super-capacitor should deliver during
several minutes. However, energy delivery duration in capacitors depends on
the capacity and equivalent series resistance (ESR), Ryusg, of the capacitor

(excluding external resistances):

7=R,.,.C. (5)

where 17 is the time that takes a capacitor to discharge to 36.8% of its final
voltage. Since it is assumed that the super-capacitor can only be discharged

up to 50% of its final voltage, according to [27]:

36.8 T
50 ' RESR.CUU X Ns

Cye = (6)

where 7 = 60 seconds for 50** percentile of the unique events’ duration; R,,,..,
is about 1 m{2 per cell for modern super-capacitors; and N, is the number of
cells in series (272 in this study). By doing the calculation, battery capacity
should be at least 162.3 F. In Section 4.2, the required power will also be
determined.

If super-capacitor was used for the one year of the experimental data at
hand, 1.86 MWh of energy throughput (about 14.5% of total energy delivered
by the battery) could have been provided by the super-capacitor. It also
could have released the battery from operating in Delta Solar mode for
2,235 minutes (worth of 1 day, 13 hours, and 15 minutes) to operate in

other modes to provide other services to the plant. Moreover, it could have
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extended the battery lifetime by avoiding partial discharges and reducing

accumulated energy throughput.

4.2. Power

Besides the energy extracted from the battery, the charge/discharge power
magnitude is an important factor on the battery degradation. It also plays
an inevitable part in any sizing and operation study [20, 25]. Therefore, dis-
charge power magnitude, averaged per minute, is considered for investigation
in this subsection. General statistics of the battery power in Delta Solar
mode are derived for annual data as well as different seasons, reported in
Table 2. Seasonal and annual frequency histograms of the samples are also
shown in Fig. ba and 5b, respectively. Important remarks from the figures

and the table are summarised below:

Table 2: General statistics of power samples (in kW) during Delta Solar mode.

Season  Maximum Average SD (o) Skewness Kurtosis

Autumn 301.9 95.0 70.6 0.66 2.53
Winter 312.0 87.0 67.8 0.85 2.94
Spring  325.4 101.8  80.1 0.66 2.39
Summer 331.2 110.1 80.6 0.62 2.37
Annual 331.2 98.2 75.4 0.72 2.59

e Similar to the energy samples, the experimental power samples are best
modelled using “Generalised Pareto”. The largest incident occurred in sum-
mer, similar to the energy values, where power magnitude was 331.2 kW.

Summer also experiences higher ramp-down power on average whereas winter
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has the lowest average value. Winter, however, represents more stochastic
behaviour compared to the other seasons because of higher Skewness and
Kurtosis. These observations are aligned with those inferred from the energy
samples in the previous subsection.
e DF's fitted on the seasonal data are more accurate compared to those ones
fitted on the annual samples based on the AICs values given in Fig. 5. As
shown in the analyses so far, partitioning data into different clusters (e.g.,
seasons) have a considerable impact on the accuracy of the statistical models.
So far, it is shown that seasonality pattern exists in the battery operational
data. However, it is worth to use clustering techniques to identify different
categories in data beyond seasonality, and to fit more appropriate DF on
every cluster. This way, more accurate models can be developed from the
experimental data, which will be useful in the battery sizing and operation
studies in the future.
e In general, it is more difficult to statistically model the battery power dur-
ing ramp-down events compared to the energy samples. This further means
that a larger error should be anticipated for power in sizing or operation
studies, e.g., when predicting power for real-time operation.
e 86t percentile has power equal or less than 150 kW, which is half of the
battery rated capacity. This is good for battery health since high-power
incidents have occurred less frequently over the year.

In Fig. 6, the maximum power of every unique event is plotted against
the accumulated energy of the same event. It can be seen that there is
almost a linear relationship between the two parameters. Essentially, the

high-power incidents coincide with the high-energy events. The correlation
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coefficients for seasonal and annual samples are given in the caption, which
emphasis on the existence of a linear correlation between the two parameters.
It also means that a joint probability distribution between the energy and
power samples might better capture variations in the two random parameters.
While the correlation coefficients of the seasonal and annual values are fairly
close, slope of the line is not similar in all seasons. Therefore, accuracy of the
modelling (in terms of joint DF or cumulative distribution function (CDF))
will essentially improve if data is partitioned seasonally.

Besides power, rate of change of power (RoCoP) has significant impacts
on the battery lifetime. This is a well-known fact that highly fluctuating
charge and discharge regime can degrade battery faster [29]. RoCoP for every
unique incident is calculated in this study, seasonal and annual histograms
of which are shown in Fig. 7a and 7b, respectively. Negative values show
a drop in power with respect to the previous time instance. It can be seen
from Fig. 7 that the number of incidents close to zero is disproportionately
bigger than other range of values (i.e., bins), which could be another evidence
supporting hybrid energy system application. The application can further be
justified by the observation made from Fig. 6, in which low-energy incidents
correlate with low-power magnitude most of the time.

General statistics of the RoCoP samples are given in Table 3 for seasonal
and annual data. It can be seen that RoCoP can be as high as nominal
power of battery. This sort of power fluctuation is strenuous on the bat-
tery with significant consequences on its lifetime. Similar to the energy and
power samples, the largest RoCoP values occur in summer. However, the

average and SD values are bigger in spring. That being said, winter with
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highest Skewness and Kurtosis is the most unpredictable season for the Ro-
CoP modelling, which is similar to what have been observed for the energy

and power samples.

Table 3: General statistics of RoCoP samples (in kW /min) during Delta Solar mode.

Season  Maximum Average SD (o) Skewness Kurtosis

Autumn 265.3 83.0 101.95 0.202 2.57
winter 296.0 82.13  102.69 0.254 2.80
Spring 293.98 96.09 118.7 0.22 2.40

Summer 307.08 95.49 114.89 0.21 2.37
Annual 307.08 89.33 110.05 0.22 2.54

To finalise super-capacitor sizing from Section 4.1, power requirement
of the hypothetical super-capacitor is calculated. Nominal power of super-
capacitors is specified in kW /kg. This value changes from one model and
manufacturer to another. Therefore, power sizing of the super-capacitor de-
pends on the specific model that is going to be used in an application. If
it was intended to use a BCAP0650 super-capacitor (650 F) from Maxwell
Company [30] for the Gatton plant, which has specific power of 6.8 kW /kg
and each cell is about 200 g, it can handle power up to 369.9 kW which is
higher than maximum power of each battery inverter and bank. Moreover,
the maximum power incident over a year never exceeded 331.2 kW (accord-
ing to Table 2), which is still below nominal power of the super-capacitor.
Therefore, power as well as energy requirements can be fulfilled by selecting
BCAPO0650 super-capacitor from Maxwell company. According to [30], the

price of this model of super-capacitor is about AU$57 per cell and the overall
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cost of the super-capacitor for this application will be less than AU$16,000.
Please note that the cost of power electronic interface and controller is not

considered.

4.3. Battery SOC

Battery SOC at the end of each ramp-down event is another important
parameter in the battery health and sizing studies. SOC values are shown
in Fig. 8 at the end of each unique event for different seasons as well as the
whole year. General statistics of the SOC samples are also reported in Ta-
ble 4 for different seasons and annual data. In general, the battery SOC is
well-maintained within an acceptable range in different seasons. The max-
imum SOC is almost the same in all seasons and it is very high. It shows
that there are low energy events which might be better to be covered by
other storage devices, such as super-capacitor. In summer, we have the best
operation scenario for battery since the SOC values never go below 65% and
the average SOC is the highest at about 85%. In this case, the battery
will be ready for the future events in terms of available energy . It is an-
ticipated because summer has the highest amount of solar irradiation and
longer daylight hours so that battery has more opportunity to be charged.
High average SOC also implies a better operational practice for the battery
with less health implications. Other seasons experience low SOC levels (less
than 30%) in multiple occasions. Autumn and winter have the lowest aver-
age and minimum SOC. This is undesirable to discharge the battery below
20% because of its adverse impact on the battery lifetime. This problem
can be mitigated by changing current operational practice to charge battery

more often in these seasons. Despite other parameters which had positive
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Table 4: General statistics of battery SOC samples (in %) during Delta Solar mode.

Season  Maximum Minimum Average SD (o) Skewness Kurtosis
Autumn 99.0 9.9 75.7 14.45 -0.71 4.09
winter 96.6 15.2 73.86 14.24 -0.71 3.85
Spring 97.5 224 82.24 9.14 -1.18 6.21
Summer 98.6 65.2 84.72 7.19 -0.17 2.25
Annual 99.0 9.9 79.11 12.46 -1.13 5.20

Figure. 9 shows the seasonal and annual histograms of the SOC exper-

imental data and the best DF fitted. Most of the values are in the upper

range of SOC, which is good for battery health. While there was always a

single DF', which could accurately model the seasonal and annual data for the

energy and power samples, different DFs found to model SOC experimental

data the best. Furthermore, the energy and power experimental data were

fitting well on unimodal distribution. However, the SOC samples, specially

in autumn and winter, represents bimodal distribution with two peaks. Nev-

ertheless, the importance of data partitioning (specifically based on different

seasons) can be realised from SOC histograms. For histogram and DF fitting,

data are centred around their average value because it yields better fit. The

average SOC was 79.11% from all available data.
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4.4. Time Gap

After every ramp-down incident, the battery energy will reduce. Hence,
there should be enough time to charge the battery for the future events if
battery energy is depleted. It will have significant consequences in the sizing
and operation studies. For instance, if incidents are too close, it leads to a
larger battery capacity to cover next incident in line. The time gap between
two events can be problematic when it is too short to charge the battery until
the next event. It depends on the battery SOC at the beginning of every
event, capacity of the battery, and the energy required for the next event,
f(SOCinita Ebatt7 Enext)'

To analyse this parameter, the time difference between the unique events
is calculated from the data, general statistics of which is reported in Table 5.
The first event of every day is not considered in this analysis. The max-
imum time gap in winter and spring are larger than their counterparts in
other two seasons. However, the average time gap is larger in autumn which
implies fewer incidents throughout the season. The time gap in winter is
more stochastic because of high Kurtosis value. This observation suggests
different operation algorithms for battery in different seasons to improve the
battery performance and health. The 50" percentile of the time gap samples
is 5 minutes, which means that the time gap is 5 minutes or less for 50%
of the time. This could have significant impacts on the battery sizing and
operation studies. Similar to the energy and power samples, the time gap
can be best modelled with “Generalised Pareto” DF for every season as well

as the annual samples.

25



O©CO~NOOOTA~AWNPE

473

474

476

477

478

479

480

481

482

483

484

486

487

488

Table 5: General statistics of time gap samples (in minute) between consecutive events

during Delta Solar mode.

Season  Maximum Minimum Average SD (o) Skewness Kurtosis

Autumn 370 2 16.1 33.4 6.3 53.8
Winter 388 2 12.1 26.2 7.7 81.6
Spring 400 2 12.8 27.8 7.2 74.5

Summer 367 2 13.0 27.0 7.2 74.0
Annual 400 2 13.4 28.8 7.1 69.5

4.5. PV-side Ramp-Rate Analysis

So far, only ramp-down control was investigated using battery operation
data, where commands sent by the CSS has been followed by the battery
inverter controller. The observations presented in this subsection could be
useful in battery sizing studies, which typically starts from predicting PV
plant. To do the analyses, data are collected for each PV string, shown in
Fig. 1, on both DC and AC sides of the inverters. Ramp-rate for the entire
PV generation is limited to 10 kW/s (i.e., 600 kW /min). To analyse PV
strings individually, ramp-rate limit is divided between five arrays according
to their rated capacity. Values are normalised based on the maximum power
on the DC side of the inverter, i.e., 684 kW, for comparison purposes. Also,
total PV plant production is simply calculated by adding generation of the
five PV arrays.

As expected, there is 100% correlation between DC and AC values of
every inverter. The number of ramp-rate violations, maximum, average of

absolute values, and SD of violations are plotted in Fig. 10 for every PV
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array and the overall plant. Values are given for both DC and AC sides of
every inverter for comparison.

Following observations can be made from Fig. 10:

e For all PV arrays and the overall plant production, it can be seen that

the ramp-rate violations on the DC side is always more than the AC
side of the inverter. This is mainly caused by the inverter losses and
reactive power compensation, as explained in Section 2. In the battery

sizing and operation studies, these factors are typically ignored.

PV plant smoothing effect can be realised from the figure where the
number of ramp-rate violations, maximum, average, and SD of vio-
lations are significantly less for overall plant production compared to
the individual PV array performance. In theoretical studies reported
in the literature, the model of a single PV module is usually used to
generate PV power time series from solar irradiation and ambient tem-
perature data to calculate ramp events. It is clear from Fig. 10 that
neglecting smoothing effect in those studies leads to wrong decisions,

e.g., over-sized battery capacity in sizing studies.

SA and DA arrays have the largest maximum ramp incidents. Also,
the average ramp-rate violations is the highest for the SA and DA
arrays. It shows that although advanced tracking systems increase
overall generation in the plant, they require more efforts to control

ramping events (e.g., larger storage).

“Generalised Extreme Value” DF found to be the best for modelling the

ramp-rate events (combination of ramp-up and ramp-down). There-
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fore, using normal distribution for such application will lead to signifi-

cant error in calculations and modelling.

The maximum ramp-rate violation can be as high as the rated capacity
of the individual PV array. For the overall plant, it is still higher
than 85%, which is significant. Additionally, the average ramp-rate
violation for the overall plant is not significantly different from the
individual arrays. While the smoothing effect can reduce the number
of ramp events, it might not be as much effective during large ramping

incidents.

Compared to the maximum ramp-rate violations, the average and SD
values are relatively small. It proves that severe ramping incidents
rarely occurred. Therefore, appropriate statistical model of the ramp

events is needed to properly size and operate battery.

Ramp-up and ramp-down incidents are separately analysed in Fig. 11 for
the AC side of the inverter for all PV arrays. The following insights can be

inferred from the experimental data shown in Fig. 11:

e Despite the PV inverter effort to regulate ramp-up events and reactive

power compensation, the number of ramp-up incidents is significantly
more than ramp-down ones in the individual arrays. It suggests that
the ramp-up events happen more often than the ramp-down ones. It

will have consequences in the battery sizing and operation studies.

While both ramp-up and ramp-down events are considerably reduced
at the entire plant level, the smoothing effect has more impact on the

ramp-up incidents compared to the ramp-down events.
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e Although the number of incidents is more for the ramp-up events, max-
imum, average, and SD of violations for all cases occurred during the
ramp-down incidents. Higher average of the ramp-down events means
that the battery is more likely to be discharged rather than charged.
Therefore, battery should always maintain a high level of charge to be

able to ride through the ramp-down events by being regularly charged.

e The previous observation also shows that ramp-up and ramp-down
events are not energy neutral, i.e., accumulated charged and discharged
energy during ramping incidents are not equal. Therefore, the battery
operation algorithm should take this into account by regularly charging

the battery.

e It can also be seen from Fig. 11 that SD is bigger for the ramp-down

events, which makes it less predictable.

These observations are useful for the next generation of the sizing studies

and designing battery operation algorithms.

5. Conclusion

This paper offers thorough analyses of the battery operation under ramp-
down control mode within a medium-scale PV plant. One year of field data
is used to draw insights from the battery operation, which could be useful for
the battery sizing and operational studies in the future. Investigations are
carried out for the different parameters of the battery operation. It has been
shown that seasonality has an impact on the ramp events, which consequently

affect the battery operation in different ways, such as SOC level. As a result,
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statistical model of different parameters are more accurate when modelling
is carried out on the seasonal data. According to the statistical analyses,
the battery energy is more predictable compared to the battery power, while
there is a strong correlation between the two parameters. The application of
super-capacitor is also assessed, which showed that it can improve battery
lifetime and the economic operation of the whole plant. Analysing parame-
ters such as the time gap between two consecutive events revealed that they
should be considered in the sizing and operation studies.

Finally, investigation on the ramp events on the DC and AC sides of the
PV inverters shows that using theoretical model of PV module without ac-
counting for smoothing effects in medium- and large-scale PV plants, inverter
operation for reactive power consumption, system-wide losses, etc., can lead
to wrong decisions in the sizing and operation studies. It is also shown that

smoothing effect is not an ultimate solution to the PV ramp-rate problem.
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Figure 5: Histogram of the battery power samples during Delta Solar mode
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Figure 10: Ramp-rate violations for all PV arrays on DC and AC sides of inverters
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Figure 11: Ramp-up and ramp-down violations for all PV arrays on the AC side of inverters
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