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Abstract

Battery cell temperature is a key parameter in battery life degradation, safety, and dynamic
performance. Intense charging-discharging operations and high-ambient temperatures escalate
battery cell temperature, which in turn accelerates its degradation. Therefore, accurate battery
cell temperature estimation can play a significant role in ensuring the optimal operation of a
battery energy storage system (BESS). In order to estimate battery cell temperature as accurate
as possible, use of non-linear models is imperative due to the non-linear nature of the battery
operation. This paper proposes a data-driven model based on a Non-linear Autoregressive
Exogenous (NARX) neural network to estimate battery cell temperatures in a utility-scale
BESS, considering strongly-correlated independent variables, e.g., charging-discharging current
and ambient temperature. Due to different temperature and weather characteristics in each
season, seasonal NARX models have also been derived and compared with the universal one.
The proposed models’ performance has been verified using the field data collected from a
grid-connected BESS within a PV plant. The simulation results show high accuracy of the
proposed model compared to the measured data for both seasonal and universal models without
considering the complexity of the large-scale battery and container thermal dynamics. In
particular, in more than 95% of the time, the estimated values yield root mean squared errors
(RMSE) below 1 °C in different conditions, which confirms the validity and accuracy of the
proposed model. Moreover, seasonal models show better performance with 18% to 50% less

RMSE on average (for 1 hour to 24 hours forward estimation) compared to the universal model.
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1. Introduction

With the increasing amount of renewable energy sources (RES) in the power system, energy
storage devices (e.g., batteries) are becoming an integral part of the power system for safe
and secure operation. They can support solar and wind energy production by storing the
excess energy when available. Additionally, due to high variability and unpredictability in the
RES generation profiles, the BESS can be applied to smooth the output power [1]. While
the application of BESS in the modern power system is inevitable and storage technologies
are improving quickly on economic and technical aspects, battery degradation remains a big
concern [2, 3]. The capacity of batteries deteriorates due to charging and discharging activities
as well as during idle conditions. Among various factors affecting battery ageing process,
battery cell temperature is known to have a major effect by escalating battery degradation
exponentially [4, 5] and intensifying safety concerns [6]. In fact, every 10 °C rise in the battery
cell temperature doubles the battery degradation rate [7]. Surging battery cell temperature
occurs because of charging-discharging operations and ambient temperature [8, 9]. Moreover,
the accumulated heat in a utility-scale BESS that is placed in a confined container, elevates
the temperature inside the battery container, which increases cooling cost by requiring air
conditioning units to operate at a higher rate to maintain the temperature withing the desired
range [6]. Therefore, it is important to estimate the battery cell temperature evolution in time
with respect to a planned operation profile and ambient interactions to have a better evaluation
of the incurred cost. In particular, accurate temperature estimation is important for battery
energy management systems (EMS), which operate battery in an optimal way considering its
degradation and cooling costs. Using a battery cell temperature estimation algorithm, an
effective energy management strategy can be established with an accurate cell temperature
model. It will help to prevent unnecessary battery operation by taking different factors into
account. Therefore, the BESS lifetime can be extended, which positively affects economic
benefits of the entire system.

A number of research has been conducted on the battery thermal management of electric

vehicles (EVs) and hybrid electric vehicles (HEVs), where they proposed general models of
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battery thermal behaviour in [10-12] or specialised models for cold weather or lower temperatures [6,

9]. However, there is no research to investigate thermal behaviour of a utility-scale BESS in
connection with a PV plant and the main grid. In this paper, thermal behaviour of a battery

with respect to charge-discharge activities and ambient weather conditions is studied. It is

noticeable that in most of the studies, thermo-electric battery physical model and thermal-conductivity

based approaches have been followed to analyse thermal behaviour of lithium-ion batteries
[6, 13]. These approaches require laboratory-based experiments for a single battery module,
considering various factors such as battery ambient temperature, age, state of charge (SOC)
and other operational conditions. In [14], a complicated thermo-dynamical model is developed
for sealed battery packs in EVs and HEVs in contact with a cooling agent. While the models
are accurate, the application of such models could become overwhelmingly complicated in the
utility-scale BESS due to the large number of battery modules. Moreover, some of these models
typically need several internal parameters to be measured continuously, which might render the
solution expensive and unscalable for the utility-scale applications. Detailed thermal modelling
of the entire utility-scale BESS is time consuming as it requires complex thermal modelling
and intensive computational requirements that are not feasible for the energy management
applications. In other words, modelling the complex nature of thermal interactions of thousands
of battery cells with each other and the larger surrounding area, and active/passive cooling
mechanisms through thermodynamic models will be a computationally intractable approach.
Typically, detailed thermal models of a battery requires a number of sensors in different parts
of the cell to measure the necessary parameters [15]. These models usually consider the complex
nature of the electrochemical components and their interactions in a chemical environment
to estimate the battery cell temperature evolution under different operation regimes [16].
Particularly, physical principles of the particles are considered in the literature to model thermal
dynamics of a battery cell, which can be classified into detailed and simplified models, such as
reduced equivalent electric circuit [17, 18] and reduced electro-thermal coupled [19]. They
require precise measurements of the internal and external parameters in a battery cell to
estimate its thermal behaviour, which is not practical in a utility-scale BESS. Calculating heat
generation, conductive and convective heat transfers of a battery cell requires a good number

of parameters’ measurements and estimations in a battery container, which is impractical or
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expensive for a large-scale BESS. In addition, accumulated measurement errors and unknown
disturbances lead to further inaccuracy in the cell temperature model. Therefore, an easy-to-use
practical battery thermal model is needed for utility-scale applications, which can deal with
non-linearity of the underlying system. It must also be computationally inexpensive to be
integrated within on-line applications, such as an EMS. Therefore, a physics-free data-driven
modelling is preferred in this paper.

Artificial intelligence methods are widely used in various research fields to model the unknown
or complicated physical systems based on measured input and output parameters, such as fuzzy
systems, nonparametric regression, wavelets, neural network, or a combination of them which
is known as hybrid systems [20-23]. These methods are extensively used to model non-linear
black-box systems in different applications [24-26]. The studies conducted with these methods
demonstrate that any complex nature of dynamics and non-linearity can be modelled effectively.
Therefore, these methods are considered for modelling battery thermal dynamics in this study
using available input and output data of the battery operation. In this procedure, historical data
of the input and output parameters are used to train a model considering the most influential
independent variables.

Another advantage of data-driven models over analytical methods is that they can deal with
the time-varying internal parameters of the BESS by receiving new data and re-training. For
instance, higher internal resistance of the battery cell is inevitable when the cell ages, which
contributes to higher cell temperature by excessive heat generation during charging-discharging
activities. For analytical methods to work accurately, internal resistance should be measured
periodically by interrupting battery operation and spending money on measurement tools and
personnel. In data-driven methods, however, new measurement of external parameters and
re-training the model can modify it according to the new changes in the battery cell operation.
It can be done continuously without requiring expensive procedures. Therefore, the overall
accuracy of the model will improve substantially with this low-cost solution over the lifetime
of the BESS.

In this study, a data-driven approach, namely a Non-linear Autoregressive Network with
Exogenous inputs (NARX), is used to estimate lithium-polymer battery cell temperature. This

study is a part of the research that has been reported in [27]. It is shown that NARX is
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more effective in terms of learning the long temporal dependencies than the other complicated
methods such as wavelets, nonparametric regression, and fuzzy models [28]. Instead of developing
a model for a single cell in a controlled experimental setup, the proposed model created from
the operation of thousands of cells affecting each other in a large-scale BESS. The main goal
is to create a thermal model of the battery cells within a container equipped with passive and
active cooling mechanisms, which can be utilised in the EMS. Also, the non-linear nature of the
phenomenon (i.e., the cell temperature variations due to charge-discharge regime and thermal
interactions among cells with outside and cooling mechanisms) can be effectively captured
by the NARX model. = Moreover, we tested seasonality hypothesis and we showed that a
seasonal model will work more accurately. To the best of our knowledge, the application of
NARX for day-ahead large-scale battery temperature estimation has not been reported in the
literature considering active and passive cooling mechanisms. Despite ordinary neural networks,
NARX can model temporal information in a given time series, which is quite important. In
other words, not only the input features contain useful information for estimation, but also the
changes in input /output over time can provide additional information to increase the accuracy of
estimation, which can be modelled by NARX. An ordinary NN treats every sample individually;
thus, it fails to model the temporal information.

As a black-box modelling approach, NARX does not need a physical model of the underlying
system and the thermal interactions among different mediums and effective parameters. The
model can be created by battery operation and ambient temperature historical values measured
in a utility-scale PV-BESS plant. In this study, the best structure of the NARX model (i.e.,
number of neurons and feedback delay) is selected by sensitivity analysis. Minute-by-minute
field data, collected from The University of Queensland Gatton campus PV-BESS plant, is used
by dividing data into training and test sets for the NARX model development and evaluation,
respectively. In addition, in an attempt to improve accuracy of the model and to evaluate
seasonal impact on the cell temperature modelling, seasonal NARX models are developed using
the training dataset and evaluation of each model is done using different set of seasonal data (i.e.,
test dataset) for each season. Finally, the results obtained from universal model are compared
with the ones obtained from seasonal ones, where the latter outperformed the former.

In this study, autoregressive exogenous neural network approach is adopted to forecast
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hourly battery cell temperature for up to 24 hours ahead window. Developed non-liner model
is established and tested with field data. The simulation outcomes presented in this paper
confirms the robustness of the estimation model. In addition, a comparison study is also
presented in this paper to compare the performance of two different models for battery cell
temperature estimation.

The rest of the paper is organised as follows: Section 2 explains the proposed methodology.
Section 3 presents the system under study, and Section 4 explains a wide range of results and

discussions. Finally, the paper is concluded in Section 5 and future works are outlined.

2. Data-Driven Battery Cell Temperature Model

The NARX approach based on ANN is employed for battery cell temperature modelling
due to its capability for non-linearity modelling considering exogenous parameters and feedback
signal. The NARX model is based on the non-linear autoregressive model, which is commonly
used in time-series modelling. The model can accept exogenous parameters as well as a
feedback from the output with a certain delay. In this study, exogenous parameters are the
battery current and ambient temperature (weather temperature or outside of the container
temperature). Battery current (i.e., charge-discharge and idle regime) has direct influence on
the battery cell temperature because of the ohmic and non-ohmic internal losses [11]. Also,
the ambient temperature can change the temperature inside the container, which essentially
changes cell temperature with some delay. Small changes in the ambient temperature might
lead to significant heat accumulation in the battery container and consequently in the battery
cell during charging-discharging as well as idle conditions. It also contributes to lower efficiency
of the battery plant by requiring cooling systems to operate intensively.

Battery cell temperature, similar to many other natural phenomena, does not change like
a step function. As it was shown in [5], battery cell temperature starts increasing gradually
after a charge or discharge incident due to heat convection delay, physical layout of cells in the
container, and cooling system operation. Therefore, limited number of samples from the past
can be helpful to estimate future output with higher accuracy, which requires a feedback from

output in the model.



147

148

149

150

151

152

153

154

155

156

158

159

160

161

162

163

164

165

166

167

168

2.1. NARX Models

The NARX model can be mathematically represented as:

y(t) =fly(t-1),y(t-2),..,y(t - ny),
u(t-1),u(t-2),...y(t—ny,), (1)

e(t-1),e(t-2),e(t—n.)] +e(t)

where, y(k) is the output or dependent variable; u(k) refers to the input parameters; e(k) is
the noise sequence; t denotes the discrete time-step; and n,, and n, represents the number of
time-step delays for input and output parameters, respectively. Non-linear mapping function,
f(), is generally unknown. This function can be approximated using different model structures,
such as fuzzy logic-based models, neural networks, etc. In this work, it is represented by a
standard multi-layer perceptron (MLP) network in this study. MLP is a dominant structure
of learning any type of continuous non-linear mapping when bundled with proper training

algorithms.

2.2. Artificial Neural Networks

Artificial neural networks are simple imitations of how human brain processes the data.
They can be used for several applications such as classification, regression, and pattern recognition.
Fig. 1 shows a typical neural network consisting of three layers, namely, input, hidden, and
output layer.

An ANN model can be shown mathematically as follows:

H
)7=\Il(thO~<I><w1h-X1+w2h-X2+bh)+bo) (2)

h=1

where wy;, and ws, are the weights of the neurons in the hidden layer; b, is the biases of the
neurons in the hidden layer; wy, and b, are the weights and bias of the output layer; H is the
number of neurons in the hidden layer (10 in this study); X; and X, are the samples vectors
of the two predictors; and W(-) and ®(-) are the activation functions of the output and hidden
layers, respectively. Linear and Tan-Sigmoid functions are chosen for the output and hidden
layers, respectively:

2
v =
l+e2n

-1 (3)

Similar to a typical ANN structure, the NARX network consists of three layers, namely



169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

Hidden Layer

Figure 1: The structure of a feed-forward neural network model.

input, hidden and output layers. Figure 2 shows block diagram of an NARX model for
estimation. Each layer consists of a specific number of neurons. In this study, a three-layer
feedforward network with a sigmoid transfer function and a linear function in the hidden
and output layers, respectively, is used for the approximation of the function, f(-). The
estimated output is used as an input parameter to estimate the battery cell temperature in
the future time steps. The weights and biases, shown in Figure 2, are important to optimise
the network performance. Tuning the values of the weights and biases occurs during training
of the NARX model. If there are any difference between estimated and actual output values,
weights and biases will be adjusted during training process using a gradient descent-based (i.e.,
Levenberg-Marquardt in this study) algorithm to minimise the errors. Network training process
will continue with the same input and output values until the error reaches to an acceptable
limit. Tapped delay line (TDL), shown in Figure 2, is an embedded memory in feedforward
network, which stores present and previous time series as per the defined delay.

Two different architectures of NARX are used for training and finally estimating battery cell
temperature, which are series-parallel and parallel architectures. Series-parallel architecture,
shown in Figure 3a and Eq.(4), is used during training stage, where actual battery cell temperature
is available from the past observations. The future values are estimated from the present and
past values of the input variables, u(t)...u(t — n,) and true battery cell temperature from the

past, i.e., y(t - n),...,.y(t —n,). The advantage of this model is that the trained network has
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Figure 2: NARX structural model based on MLP neural network

1

)

s a purely feedforward architecture and static back-propagation can be used for training. The

19 series-parallel architecture can be represented as:

Z)(t)Training = f(y(t - 1)7y(t - 2)7 "7y(t - ny)7 u(t)7u(t - 1)>u(t - 2)7 ) u(t - nu)) (4)

wo  where, §(t)1raining 15 the Series-parallel mode output. However, the series-parallel architecture
11 18 not capable of estimating multi-step ahead cell temperature. Therefore, parallel architecture,
102 shown in Figure 3b and Eq.(5), is used to perform future estimation for the test data and
13 real-world simulation. The estimation is performed by taking the past and present values of
e the input parameters, i.e., u(t),...,u(t — n,) and previously estimated battery cell temperature
15 values, §(t)resting, Y (t = Ty ) Testing during testing stage, the results of which will be shown and

106 discussed in section 4. The parallel NARX architecture can be shown mathematically by:

g(t)Testing = f(@(t_l)Testin@ g(t_Q)Testingy () g(t_ny)Testing> U(t), U(t—l), U(t—2), ) u(t_nu)) (5)

w7 where, §(t)resing is the parallel mode output.

108 The number of neurons in the input and output layers of the NARX model are equal to
1o the number of independent (i.e., current and ambient temperature) and dependent variables
20 (i.e., battery cell temperature), respectively. Only one hidden layer is considered in the NARX
20 model as per universality theorem [29], where neural network with single hidden layer is able
22 to approximate continuous function with desired accuracy most of the time. Selecting the
203 number of neurons in the hidden layer is important to have the most efficient and accurate
2a network. Employing few or too many neurons in the hidden layer will result in underfitting or
205 overfitting, respectively. Underfitting occurs when a small number of neurons are unable to learn

26 the patterns in the training signal adequately. On the other hand, overfitting happens when the
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trained model rely on the training dataset too much, which might provide unacceptable results
for the test dataset. In addition to the importance of the number of neurons in the hidden
layer, the time delay (i.e., the number of samples from the past) of the exogenous input and
feedback signals are important in the performance and accuracy of the model. A sensitivity
analysis has been proposed in this study to select the best number of neurons in the hidden
layer and time delay in the feedback signal. In this analysis, different time delays (i.e., 10, 20,
30, 40, 50 and 60 minutes) and number of neurons (i.e., 2, 4, 6, 8, 10, 12, 14, 16, 18, 20) have
been used to train the neural network and then test the model with completely different set
of data. Data is normalised for training and model evaluation purposes throughout this study,
where maximum value of input and output parameters in the historical data are considered as
the base value for normalisation. Normalising the original data can eliminate negative influence
of large numbers, which is apt to improve the convergence rate of the training process.

Three standard measures are used in this study to quantify the accuracy of the NARX
model in estimating battery cell temperature. Root mean squared error (RMSE), correlation
coefficient (R) and adjusted R? (R%,,.q) given in Eq. (6), Eq. (7) and Eq. (8), respectively,
are used to determine the trained network outcomes in training, testing and validation stages.
The best trained NARX model is indicated by the RMSE value close to 0, R and R?% djusted

value close to 1.

Z(Tai - Tmi )2

RMSE = \| = ¥ (6)
S (T, = Ta) % (T, = To)]
R=—21 (7)

N N
Z(Tai _Ta)z X Z(Tmz _Tm)z
=1 =1

(1-R*>)(N-1)
Ridjust@d =1- N-k-1 (8)

where, in Eq. (6), T,,, T,,, and N represent actual battery cell temperature, estimated battery
cell temperature using NARX model and the total number of samples, respectively. In Eq. (7),
T, denotes mean value of actual temperature for battery cell. Similarly, T, represents the

average of estimated temperature. In Eq. (8), k represents the number of variables in the
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model. Since network training involves solving an optimisation problem, values of biases and
weights might be different in multiple runs of the training process with the same input and
output values. This also can affect the performance of the network when it is used for different
test dataset because different NARX network can give altered results for the same set of test
samples. To resolve this issue, neural network is trained several times for the better accuracy.

In this model, one year of minute-by-minute data has been used to train a NARX network

for estimating battery cell temperature. One year of data contains significant number of

charging-discharging and ambient temperature data points, which covers many different combinations.

In this paper, two types of model are created. In the first type, data from the entire training
set is used to develop a single NARX model for the entire year (called universal NARX model).
In the second type, training data is partitioned in four different seasons and a specialised NARX
model is developed for each season (called seasonal NARX model). In this case, apart from
whole-year modelling structure, seasonality has been given priority since ambient temperature
is highly dependent on the seasonal variations with different characteristics. Moreover, solar
panels generation behaves differently in various seasons because it dominantly depends on the
solar irradiation and ambient temperature. As solar radiation varies in seasons, the charging
and discharging activities of the BESS varies accordingly. Therefore, more fluctuations in
charging and discharging may occur during winter compared to summer or vice versa. As will
be shown in the simulation results, the seasonal NARX model outperforms the universal model

considerably.

3. System Under Study

In this study, operational data from a grid-connected 600 kW /760 kWh lithium-polymer
battery in a 3.275 MWp PV plant is considered. The plant is located at the University of
Queensland (UQ) Gatton campus, Australia. This plant is connected to the local 11 kV
distribution network. Figure 4 and Table 1 show a detail overview of the battery configuration
and characteristics in the plant.

The total BESS capacity and power are divided into two battery banks. Each battery bank
has four racks of battery modules in parallel and each of the racks comprises ten series of
battery modules. Each module has two parallel strings of 18 battery cells in series. Battery

cell specification details are shown in Table 1. Please refer to [5] and [30] for more details.
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Figure 4: Schematic diagram of the BESS configuration in the PV plant

Table 1: Battery cell specifications

Description Specification
Battery Cell Type Lithium Polymer
Cell Capacity 75 Ah

Cell Voltage
Cycle-Life
Charging Temperature
Discharging Temperature

2.7V to 4.1 V, average 3.7 V
4000 Cycles at 80% Depth of Discharge (DoD)
10 to 35 °C
-10 to 55 °C

In order to keep the battery cells and battery room temperature within an acceptable
range, a cooling system is used in the battery container. Battery module and cell ventilation is
achieved through a) passive cooling mechanisms including air vent holes along the sides of the
battery casing and spacing of cells, which ensures an even temperature distribution between
the cells, and b) active cooling consisting of rack fans and air-conditioning units with 7.7 kW
rated cooling capacity. Three fans are placed at the top of each battery bank to draw air up
through vents in the front panel by passing through the modules and out at the top. The fans
start operating when cell temperature reaches 29 °C. The consumption of each rack fan is 44.64
W, which is powered by an external +24 V DC system. Battery modules are spaced inside the
rack with gaps to allow airflow. The air conditioner is designed for maximum 30 °C internal
ambient and 50 °C outside temperature [5, 27

The air conditioning unit is set at the room temperature of 23 °C, which indicates that

the evaporator of the air conditioning unit starts its operation along with fan when the room
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temperature reaches above 23 °C. The room temperature is measured and recorded by the
thermostat installed with the air conditioning unit. The higher the room temperature, the
more energy consumption by the air conditioning.

A sophisticated and comprehensive measurement and data management and warehousing
system is implemented in the UQ Gatton Solar Research Facility (GSRF). About 1390 points
within the BESS and its container are monitored through measurement and data logging system,
which gives detailed insights into the battery operation on the cell and module levels. The
collected data is remotely accessible through a Wonderware Historian system interface. A
significant number of variables including weather parameters, DC and AC side parameters of
the inverters are measured and stored in Wanderware Historian system. The plant data logging,
including BESS, is performed using a Delta Mode operation. Although data is sampled at a
1-second rate, the Delta Mode operation is adopted to reduce data storage capacity requirement.
For further details, please see [5, 27]. In this study, data with 1-minute resolution (60 samples
per hour) have been used for training and testing the model, which are further explained in the

following section.

4. Simulation Study

In this paper, two independent parameters, i.e., battery current and ambient temperature,
have been considered to create and test battery cell temperature estimation model. The
following data selection and analysis are carried out in the simulation studies for training
and assessing the NARX networks:

e For training purposes, 1-minute data of around 12 months from 1%t April 2016 to 31
March 2017 have been selected, which consists of 516,960 samples (359 days excluding 6 days
used of each season that is used for testing) overall. Entire year is covered in the data to
represent seasonal differences in the real-world condition. A universal NARX model is created
for battery cell temperature estimation for the entire year. Another 90 days equivalent data
is used for validation and testing the trained model during training process in the MATLAB
Toolbox. Please note that the training, validation, and testing days are selected randomly and
each simulations study has been run for several times to check on the robustness of the results.
Finally, the average results are reported in this section.

e Seasonality analysis has been carried out by developing separate NARX model for each

14
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season (i.e., seasonal NARX model). Similar procedure as universal model has been followed
for training each seasonal model. Multiple days of each season were removed from the training
dataset as for assessing performance of the respective seasonal model.

e For further assessment of universal network model, 56 days of data from 10 July 2017
to 315t October 2017 as well as the test days used for seasonal model assessment are used.
The impact of time delay on the performance of the model also has been analysed for feedback
signal by testing the network with test days and NARX with feedback configuration, as shown
in Figure 3b.

e NARX training has been repeated for different number of neurons (i.e., 2, 4, 6, 8, 10, 12,
14, 16, 18 and 20 minutes) and time delay (i.e., 10, 20, 30, 50 and 60 minutes), separately, as
a sensitivity analysis to reveal their impact on the accuracy of the model and to find the best
number of neurons and time delay for the rest of the simulation studies. The assessment of
each model with different time delay was carried out by arbitrarily selected test data.

e A comparison study between the universal and seasonal NARX models has been carried
out in the simulation study to determine the best NARX model.

MATLAB/Neural Net Time Series toolbox is used in this study for training and testing
NARX models. During training process in MATLAB Neural Net Time Series toolbox, battery
cell temperature is estimated for 1 minute ahead. In reality, however, we need estimated cell
temperature for longer time horizons. For instance, a day-ahead EMS of a microgrid plans
the system operation for 24 hours ahead. In this case, it is needed to estimate battery cell
temperature for a given charge-discharge profile in the next 24 hours. To estimate temperature
in multi-hour ahead, the trained model is recursively used, where the estimated cell temperature
from previous time step (1 minute before) is used as an input parameter in the feedback loop.
For instance, if 24 hours ahead estimation is required for a given charge-discharge and ambient

temperature profiles, the estimation will be repeated 1440 times to cover the entire period.

4.1. Sensitivity analysis on the number of neurons and time delay

The number of neurons in the hidden layer and time delay of feedback signal are determined
by sensitivity analysis. To find the appropriate number of neurons, different NARX model is
trained with different number of neurons in the hidden layer, while input and output samples

were remained the same. The number of neurons in the hidden layer is increased from 2 to
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20 with an interval of two neurons to determine the optimal network model. Each model was
run for 20 times for a specific number of neurons to reduce the impact of initialisation and
optimisation of the weights and biases on the results. Average estimation error on the test
dataset is used to determine the best number of neurons. As per Figure 5a, the average value
of RMSE is higher when the number of neurons is at the lower and higher ranges. 10 neurons
resulted in only 0.59 °C average RMSE, indicating the best performance among different cases.
Therefore, NARX model with 10 neurons in the hidden layer will be used in the rest of the
paper.

In order to find the best time delay of the feedback signal for the parallel network shown
in Figure 3b, different NARX models are trained for different time delays (i.e., 10, 20, 30,
40, 50 and 60 minutes). In each case, the number of neurons in the hidden layer was 10 and
the performance of the NARX model is assessed by using the test dataset. 56 days of data
is randomly selected with 24 hours horizon for assessing the network performance. Hourly
average RMSE values are calculated from minute-by-minute data of 56 days test data, which
are shown in Figure 5b. From the figure, it is clear that 20 minutes feedback delay yields
the best performance on the test dataset. 10 and 30 minutes time delay also shows reliable
performance. However, creating a model with 20 minutes delay is comparatively more efficient
and accurate. For the rest of the paper, 10 neurons will be considered in the hidden layer and
cell temperature feedback of 20 minutes will be used. Please note that the sensitivity analyses

are done for 1 minute ahead estimation.

4.2. The universal NARX model

This section presents the universal NARX model training and its performance estimation
with completely different set of test data. Table 2 and Table 3 show the parameters for network
training and selection of data with outcomes during training process, respectively. 449 days
(excluding 6 days used for evaluating seasonality in the next section) of the data have been
used for training, validation and testing. 359 days (80%) or a complete year of data has only
been used to train the NARX model. 90 days (20%) of data for validation and testing stages
(45 days each) are randomly chosen from the remaining data to validate the model during
training stage and evaluate the trained model during testing stage. Since the data selection

affects the performance of the NARX model, the training process has been repeated 10 times to
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Figure 5: Sensitivity Analysis: (a) Average RMSE of different NARX model with different number of neurons
in the hidden layer; (b) Sensitivity analysis results on the cell temperature feedback delay
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minimise the impact of the training process and to choose the best NARX model. It has been
observed that although different combinations provide different results, the performance of the
model (i.e., RMSE, R and R? diusted) TeMains almost the same. Validation dataset is used to
minimise overfitting during training by MATLAB toolbox. This dataset does not adjust the
weights of the network model but weights are checked for accuracy in the model estimation.
Testing dataset is completely unseen set of samples that is used by the Neural Net Time
Series toolbox in MATLAB at the end of training to provide an unbiased assessment of the

trained model. A good performance of a model on the test dataset is the key to a successful

modelling.
Table 2: Parameters for training the NARX networks
Parameter Description
Problem Nonlinear auto-regressive time-series network with external input (NARX)
Training Algorithm Levenberg-Marquardt
Input Charging-Discharging Current and Ambient Temperature
Output Battery Cell Temperature
Data Division Training (80%), Validation (10%) and Testing (10%)
Hidden layer size 10 neurons
Feedback Delay 20 minutes

Table 3: Data selection and training outcomes from MATLAB Neural Net Time Series toolbox

Data Type Number of Sample Sample Percentage Regression (R) Adjusted R? RMSE (°C)

Training 516,960 80% 0.989 0.978 0.452
Validation 64,800 10% 0.987 0.974 0.551
Testing 64,800 10% 0.99 0.98 0.415

The performance of the universal model in comparison with the actual data is tabulated in
Table. 3 for training, validation, and testing processes during training in the MATLAB Neural
Net Time Series toolbox, where one time step ahead estimation is carried out. The RMSE,
coefficient of determination, i.e., R, and Adjusted R? are calculated using Eq.(6), Eq.(7) and
Eq.(8), respectively. There is a close agreement between actual battery cell temperature values
with those estimated by the network. According to Table 3, the R% djusted values for training,
validation and testing are very close to 1, which indicates a good model fit. Moreover, it
indicates that the model is not overfitted by providing a true goodness of fit by yielding similar
performance for test dataset. In addition, the RMSE is 0.454 °C, 0.55 °C and 0.42 °C for
training, validation and testing, respectively, which is very accurate for many applications such
as EMS. As per both assessment criteria of the trained network, it can be stated that the

universal model is able to provide a good estimation of the battery cell temperature for many
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combination of input parameters.

The universal NARX model is further validated by testing with completely different set of
data. In this analysis, 56 days of data (outside of training, testing and validation dataset) have
been considered to estimate battery cell temperature in 24 hours ahead (minute-by-minute
samples) using the trained model recursively. Figure 6 shows the hourly-averaged RMSE
histogram of the 56 days of estimation, where 96.1% of incidents are experiencing an RMSE
below 1 °C. Only 3.9% of incidents are yielding more than 1 °C. The majority of the incidents
are between 0.17 °C and 0.22 °C RMSE range. Also, it is clear from the histogram that
estimated RMSE never exceeded 1.95 °C for the 56 test days. It indicates a relatively robust
performance of the NARX model, which can be effective in determining battery cell temperature
in advance with a high accuracy. On average, the computation time for training the universal
model and estimating the battery cell temperature for each day are 904 seconds and 40 seconds,

respectively. It indicates a fast process in estimating battery cell temperature.
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Figure 6: Hourly RMSE histogram for 56 days of test data obtained by the universal model for 24-hour ahead

4.3. Seasonal Effects

In order to evaluate the seasonal effects, an NARX model is trained for each season in
this subsection, and their performance is compared with the universal model. The battery
cell temperature estimation model for each season has been assessed using completely different

set of data extracted from each season, explained in Table 4. The percentage of seasonal
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data for training, testing, and validation differs from the the percentages in universal model,
as given in Table 5. This is because there are fewer samples available for testing and validation
for the seasonal model compared to the universal one. Using this approach, the number of
testing samples is the same as the universal model. It is worth mentioning that the difference

of outcome using 80 : 10 : 10 percentages was trivial without a significant deterioration of

accuracy.
Table 4: Seasonal data selection for training and evaluation
Season Months Year Days for training Test Days for evaluation
Spring  September, October, November 2017 85 6 Days
Summer  December, January, February — 2016-2017 84 6 Days
Autumn March, April, May 2017 86 6 Days
Winter June, July, August 2017 86 6 Days

Similar NARX configuration with 10 neurons in the hidden layer and feedback time delay
of 20 minutes are used in this analysis. Randomly selected test days from each season have
been extracted for assessing the trained model. In order to make fair comparison, the same six
days were taken out from the training dataset in the universal model. The computation time
for training each seasonal model is 50 seconds to 65 seconds, while estimating the battery cell
temperature for an entire day is 40 seconds on average. This indicates a fast process in training

and testing seasonal models.

Table 5: Seasonal data selection and training outcomes from MATLAB Neural Net Time Series toolbox

Season Data Type Number of Sample Sample Percentage Regression (R) Adjusted B2 RMSE (°C)

Training 85,680 70% 0.991 0.982 0.343
Spring  Validation 18,360 15% 0.983 0.966 0.702
Testing 18,360 15% 0.991 0.982 0.358
Training 84,672 70% 0.989 0.978 0.479
Summer Validation 18,144 15% 0.986 0.972 0.593
Testing 18,144 15% 0.992 0.984 0.342
Training 86,688 70% 0.991 0.982 0.286
Autumn Validation 18,576 15% 0.993 0.986 0.276
Testing 18,576 15% 0.99 0.98 0.31
Training 86,688 70% 0.995 0.99 0.33
Winter  Validation 18,576 15% 0.992 0.984 0.337
Testing 18,576 15% 0.992 0.984 0.336

Table 5 shows the number of samples and outcomes during training, validation and testing
stages for each seasonal NARX model from MATLAB Neural Net Time Series toolbox. Adjusted
R? values for each season are close to 1 in all cases, which indicates an outstanding fit to the
model by drawing a close relationship between estimated and actual battery cell temperature

for all four seasons. The RMSE value has also been considered to evaluate the model. According
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to the respective table of each season, the RMSE values are below 0.71 °C. Most importantly
the RMSE values during testing process are below 0.5 °C in all seasons, which shows a close
agreement between estimated and actual battery cell temperature.

Figure 7 shows the performances of the seasonal NARX models for the test data on an
hourly (i.e., RMSE hourly) basis. The battery cell temperatures are estimated recursively for
24 hours ahead, as explained at the beginning of Section 4. To obtain hourly RMSE values,
average of minute-by-minute RMSEs are calculated for every hour. The values are shown for
summer only in this figure due to similar performance experienced for the rest of the seasonal
models. It can be observed from the figure that the RMSE value is lower than 1 °C, except a
couple of hourly incidents on day 3, and the differences between days are minor. The RMSE
outcomes during hour 1 to 3 and hour 10 to 16 (where battery operates rarely) of each day are
comparatively better than the RMSE values during other hours. However, the differences are

insignificant, which pointing out to a robust model performance throughout the whole day.
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Figure 7: RMSE of the test days during summer season using recursive estimation for 24 hours ahead.
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Figure 8: Seasonal comparison based on the average hourly RMSE obtained by using seasonal and universal
network models.
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Figure 8 shows the average RMSE comparison between seasonal and universal models. In
this case, the average RMSE values of the test days for each season using seasonal NARX model
and 24 days (4 Seasons x 6 Days) using the universal NARX model have been considered for
each hourly RMSE. It can be seen that summer and spring seasons are yielding maximum of
0.66 °C on average using the seasonal network model. On the other hand, autumn, winter and
spring have RMSE values of 0.46 °C, 0.43 °C and 0.42 °C, respectively. Although couple of hours
during summer show more RMSE than autumn, winter and spring, the daily average RMSE
value differences between seasons are not significant, which suggests a better performance of
the seasonal models in general. In comparison with the universal model, it is clear that the
seasonal NARX models yield at least 0.1 °C to 0.3 °C smaller RMSE during most of the hours
of a day for the same test days compared to the universal model.

In order to investigate further on the performance of the seasonal and universal NARX
models, the RMSE ratio has been calculated. RMSE ratio is used in this study to compare
the performance of universal and seasonal models for the similar test days. The comparison is
made for every hour separately to better illustrate the variations in performance in different
hours. Figure 9a shows a comparison between performance of the seasonal and universal NARX
models in summer using Eq.(9). The goal is to perform a quantitative comparison between the
two models. It helps to determine which model is providing better results with lower RMSE

value in an hourly basis.

. RMSE of the Seasonal Model
RMSE Ratio - RMSE of the Universal Model 9)

When the RMSE ratio is lower than 1 (red dashed line in the figure), it represents a better
performance of seasonal network model and above 1 always indicates better performance for
the universal model. In this comparison, the same six days of test data has been used for both
models and hourly estimated values up to 24 hours has been considered to compare the results.

As per Figure 9a, the RMSE ratio is below 1 in most of the hourly incidents during summer
test days, which denotes a better performance by the seasonal model. Although better outcomes
by universal network is experienced on Day 5 for a couple of hours, the ratio is below 1 most
of the time, indicating better outcomes by the seasonal network. The values are shown for
summer only in this figure due to similar performance experienced for the rest of the seasonal

models. Figure 9b shows almost similar outcome during autumn, where the hourly ratios are
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Figure 9: The RMSE ratio for the seasonal model: (a) summer; (b) autumn; (c) winter; (d) spring

23



463

464

466

467

468

469

470

471

472

473

474

476

477

478

479

480

481

482

483

484

485

486

487

489

490

491

492

less than 1 most of the time, except a couple of instances. Similar conclusion can be drawn
for winter in Figure 9c. While the ratios are closer to 1 compared to summer, most of the
cases are still below 1, indicating a better performance of the seasonal model compared to the
universal model over the selected test days. During spring season, shown in Figure 9d, the
RMSE ratio for couple of incidents from different test days are bigger than 1. However, more
than 80% of the time, ratios are far below 1, which demonstrates a better performance of the
seasonal network model than universal model for this season too. In few instances, hourly
ratios are more than 2 in every season, which indicates the universal model is performing more
than two times better than the seasonal model. However, 74.3%, 77.8%, 78.5%, 80.1% of the
hours are showing better results for the seasonal model in summer, autumn, winter and spring,
respectively.

Overall, it can be concluded that training the neural network with seasonal data provides
a better results than the network trained with the universal data. Although there are some
variations between seasons, on average, all four seasons are performing equally well and more
accurate results can be obtained compared to the universal model.

Comparing the results presented in this paper against the results in [31], it can be seen that
the proposed approach in this work results in lower RMSE values. The maximum difference
reached to 1.48 °C for universal model. The RMSE differences between ARIMAX and NARX
is slightly higher and on average the value is 2.24 °C, where ARIMAX is expressing 0.56 °C,
1.65°C, and 1.9 °C more RMSE values than NARX models during summer, autumn, and winter,
respectively. The proposed recursive estimation with NARX network in this manuscript shows
better estimation results for an entire day than the ARIMAX model, which is a linear model.
We have not tried ordinary NN models since they are not able to consider exogenous parameters

as extra predictors in the model, which will degrade the performance of the model.

5. Conclusion

In this paper, a model based on non-linear autoregressive exogenous artificial neural network
(NARX) is proposed to estimate battery cell temperature. The proposed method does not

require to consider any complicated battery thermal dynamics and systematic thermo-dynamical

model of the battery container. Only two dominant input parameters, namely charging-discharging

current and ambient temperature, are considered for the battery cell temperature estimation,
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which is shown to be sufficient. The proposed model is able to estimate battery cell temperature
accurately using a relatively large historical dataset. Time-series NARX model has been chosen
due to non-linear behaviour and time dependencies of the battery cell temperature. Moreover,
seasonal impact on the modelling is investigated by creating different NARX model for each
season. Based on the outcomes of comprehensive simulation studies, the universal model
yielded a small RMSE value, where the RMSE was below 1 °C most of the times, which is
quite acceptable. Compared to the universal model, the seasonal NARX models provided more
accurate results by 18% to 50% on average. In addition, proposed recursive estimation with
NARX network shows good estimation results for an entire day. In our future work, we will use
the developed NARX model in an optimal battery operation algorithm in an EMS considering
battery degradation and cooling system costs, which can improve the technical economical

performance of the hybrid energy system.
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Response to Decision Letter

We thank the Editor and Reviewers for their thought-intriguing comments and useful
suggestions. We respond to each of them by both providing clarifications in this letter and
by modifying the paper accordingly. The reviewers’ comments are shown in blue fonts in this

document, and the revised texts in the paper are highlighted in red fonts.

Reviewers’ Comments

Reviewer 1

The manuscript reported an approach to estimate cell temperature using NARX neural
network for battery energy storage system. The paper is well-written in language and easy to
understand. The overall organization of sections and flow logic are acceptable. Most of the
figures and their captions present the idea clearly. The NARX neural model is described clearly,
and two models are established as universal model and seasonal model, which is thoughtful and
specific work. This work is significant to the thermal management for energy storage system.
However, there are some questions and incomprehension in this manuscript, as follows.

Comment 1.1: Line 257, 1-minute data has been considered for training and testing the
model. How to explain the 1-minute data? Every sample includes 1-minute data in each day?
If so, in the simulation, only 1-minute data was considered for training and testing, so whether
is the data representative?

Answer: We would like to thank the Reviewer for her/his comments. Apologies for the
confusion. The “lI-minute” refers to the resolution of the data, i.e., there are 60 samples for
every hour. We have modified page 14, line 277 of the text to remove the ambiguity.

Comment 1.2: In Table 2, the percentage of Training, Validation, Testing is 8:1:1 in
universal model, and in the seasonal model, the percentage is 7:1.5:1.5. Why? and whether it
affect the comparison between the universal and seasonal model?

Answer: The percentage of seasonal data for training, testing, and validation differs from
that of the universal model since there are fewer sample points available for testing and
validation of the seasonal model compared to the universal model. Therefore, we decided

to reserve more samples for testing. Nevertheless, the difference of outcome using similar
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percentages was trivial and it does not affect the estimation performances while testing the
model with completely separated test data/days. It is worth mentioning that similar test days
are used to check the universal and seasonal trained models for fair comparison. To clarify this,
we have modified Section 4.3, page 19, line 402.

Comment 1.3: In this work, the BESS has an active cooling systems 7.7 kW. How does
the active cooling systems operate? It works in whole charging-discharing process, or other
ways. For other BESS, it has different active cooling systems, are this models available for the
temperature estimation?

Answer: In order to keep the battery cells and battery room temperature within an
acceptable range, a cooling system is used in the battery container. Battery module and cell
ventilation is achieved through a) passive cooling mechanisms including air vent holes along the
sides of the battery casing and spacing of cells, which ensures an even temperature distribution
between the cells, and b) active cooling consisting of rack fans and air-conditioning units with
7.7 kW rated cooling capacity. Three fans are placed at the top of each battery bank to draw
air up through vents in the front panel by passing through the modules and out at the top. The
fans start operating when cell temperature reaches 29 °C. The consumption of each rack fan
is 44.64 W, which is powered by an external +24 V DC system. Battery modules are spaced
inside the rack with gaps to allow airflow. The air conditioner is designed for maximum 30 °C
internal ambient and 50 °C outside temperature.

The air conditioning unit is set at the room temperature of 23 °C, which indicates that
the evaporator of the air conditioning unit starts its operation along with fan when the room
temperature reaches above 23 °C. The room temperature is measured and recorded by the
thermostat installed with the air conditioning unit. The higher the room temperature, the
more energy consumption by the air conditioning.

Section 3, page 13, line 261, of the paper is modified to reflect this discussion.

Reviewer 2

This paper presents a data-driven model based on a Non-linear Autoregressive Exogenous
neural network to estimate battery cell temperatures in a utility-scale BESS, considering

strongly-correlated independent variables such as charging-discharging current and ambient
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temperature.

Comment 2.1: The Non-linear Autoregressive Exogenous neural network is not new in
literature. What are the main contributions made by the paper? It is not very clearly described.

Answer: We would like to thank the reviewer for her/his comments. We agree with the
reviewer that NARX modelling tool has been used in other literature for different purposes.
However, to the best of our knowledge, the NARX application for day-ahead large-scale battery
temperature estimation considering active and passive cooling mechanisms has not been reported
in the literature. Ordinary neural networks have been used in the past for different purposes,
however, the ordinary neural networks are not able to model temporal information in a time
series. In other words, not only the input features contain useful information for estimation,
but also the changes in input/output over time can provide additional information to increase
the accuracy of estimation. An ordinary NN treats every sample individually; thus, it fails to
model temporal information.

We added a paragraph in the Introduction section, page 5, line 97, that outlines the
contributions of this work.

Comment 2.2: Pls be clear on ambient temperature. Are you referring to surface temperate
of the cell?

Answer: We apologies for the confusion. Weather temperature or outside of the container
temperature is referred to as ambient temperature in this study. Although, charge-discharge
activities of the battery are the main reasons of battery temperature, ambient temperature is
also strongly responsible for the increase in the battery cell temperature [5]. Fig. 10 in the
revised manuscript illustrates the concept.

Following the Reviewer’s comment, we have clarified this matter in Section 2, page 6,
line 130, of the manuscript.

Comment 2.3: Also where and how did you measure the cell temperature?

Answer: The UQ Gatton Solar Research Facility (UQ GSRF) is a multi-million dollar
plant that is designed primarily as a research facility with sophisticated BMS for each battery
bank, delivered by Kokam company. It is designed to provide critical information such as cell
temperature, voltage, current, power etc. About 1390 points within the BESS is monitored

through measurement and data logging systems, which gives detailed insights into the battery
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operation on the cell and module levels.

Following the Reviewer’s comment, we have added a paragraph to explain measurement
and data collection systems at UQ GSRF in Section 3, page 14, line 277, of the manuscript.

Comment 2.4: How do you collect the experimental data for the training?

Answer: Central Supervisory System (CSS) PLC receives all the data from measurement
units and sensors within the BESS through a sophisticated SCADA system. All the CSS
collected data for the plant is remotely accessible through a Wonderware Historian system
interface. A significant number of variables including weather parameters, cell level voltage,
current, and temperature, and battery inverters’ DC and AC side parameters are measured
and stored in Wanderware Historian system. The plant data logging, including BESS, is
performed using a Delta Mode operation. Although data is sampled at a 1-second rate, the Delta
Mode operation is adopted to reduce data storage capacity requirement. In this procedure, a
measurement is recorded when the value is different from the previous measurement by a certain
preset threshold.

Following the comment of the Reviewer, we have added these explanations to the manuscript
in Section 3, page 14, line 277.

Comment 2.5: What do you mean by ”...90 days (20%) of data for validation and testing
stages..”.

Answer: During training stage, 20% of data or 90 days equivalent data is being used for
validation and testing purposes. The validation data is used during NARX training process to
prevent from over-fitting. The testing portion of data is used to finally verify the robustness
and universality of the trained model. In this paper, data is separated on a daily basis (24
hours window) to capture the operational and ambient temperature condition during each day
and the 90 days are randomly selected.

Comment 2.6: Do you do cross-validation? 5-fold/10-fold?

Answer: For cross-validation, we ran the simulation studies by randomly selecting the
days for each category, i.e., training, validation, and testing. Then, we ran simulation studies
several times. The simulation results showed no significant variations in the performance of the
universal and seasonal models. Finally, we reported the set of results with average performance

as a measure of fairness. We added the explanations in the paper for the future audience.
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Following the comment of the Reviewer, we have added a brief explanation to the manuscript
in Section 4, page 14, line 300.

Comment 2.7: The full hyperparameters values should be given.

Answer: The hyperparameter values are reported in Table 2: “Parameters for training
the NARX networks”, and more details are provided in Section 4 (Section 4.1, 4.2, 4.3) of the
manuscript.

Comment 2.8: What is the purpose of establishing the RMSE ratio in (9) where the aim
is to estimate the battery cell temperature?

Answer: RMSE ratio is used in this study to show the comparison between performance of
universal and seasonal models for the similar test days. Using the RMSE ratio, we can compare
the performance of the seasonal and universal models. Ultimately, the model with lower RMSE
value is the one with a better performance.

The manuscript has been modified on page 22, line 445 to reflect this discussion.

Comment 2.9: Can the proposed recursive estimation with NARX network shows good
estimation results for different day and time of a day? Pls show the results.

Answer: The accuracy of the models are not identical in different hours and days, as
shown in Fig. 7 for different test days and hours in summer, and in Fig. 8 for seasonal
comparison. Nevertheless, the estimation error is mostly below 1o C' for different cases and
hours. As mentioned previously in response to the Reviewer’s comment, we ran the simulation
studies several times by randomly selecting training, validation and testing days. no significant
variations have been observed in this study, which proves the robustness of the proposed model.

Comment 2.10: There are lack of comparisons with other NN. It is not very convincing
that the proposed method is the best. Not forgetting the proposed method is not new.

Answer: Thank you for your comment. The authors have published another paper, Md
Mehedi Hasan, S. Ali Pourmousavi, and Tapan K. Saha, “Battery cell temperature estimation
model and cost analysis of a grid-connected PV-BESS plant”, IEEE PES ISGT Asia, Chengdu,
China, May 21-24, 2019, where Autoregressive Integrated Moving Average with eXogenous
inputs (ARIMAX) model was applied on the dataset. Comparing the results presented in
this manuscript against the results of the previously-published paper, it can be seen that the

proposed approach in this manuscript results in lower RMSE. The maximum hourly RMSE
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using ARIMAX was 1.48 °C higher than the maximum hourly RMSE using NARX for the
universal model. For the seasonal models, the hourly RMSE using ARIMAX was 0.56 °C, 1.65
°C and 1.9 °C more than NARX models during summer, autumn, and winter, respectively.
Therefore, the proposed recursive estimation with NARX network yields much better estimation
in comparison with the ARIMAX model, which is not surprising considering the linear nature
of ARIMAX model and the ability of NARX in modeling non-linear relationships.

As was explained in response to the first comment by the Reviewer, we have not tried
ordinary NN models because they are not able to model temporal information in time series,
which will degrade the performance of the model. This is explained in the revised manuscript
on page 5, line 97.

Comment 2.11: How robust is the proposed NARX as compared to other approaches
based using NN7?

Answer: We would like to refer the Reviewer to our response to the previous comment.
We have also offered a comparison between the proposed method with ARIMAX, a widely used
approach.

Comment 2.12: What is the computational time for just training?

Answer: On average computation time for training is:

e Universal model training: 15 minutes 4 seconds;

e Seasonal model training: 50 seconds to 1 minute 5 seconds

We have added these information to the manuscript in Section 4.1 on page 19, line 395 and
Section 4.2 on page 20, line 412.

Comment 2.13: What is the computational time for estimating the battery cell temperature?

Answer: Training the model is the most time consuming part, while testing is fast.
Computational time for estimating battery cell temperature for an entire day is 40 seconds
on average. Explanations are added in Section 4.1 on page 19, line 395 and Section 4.2 on

page 20, line 412 to indicate the estimation time.
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