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Abstract

Battery cell temperature is a key parameter in battery life degradation, safety, and dynamic

performance. Intense charging-discharging operations and high-ambient temperatures escalate

battery cell temperature, which in turn accelerates its degradation. Therefore, accurate battery

cell temperature estimation can play a significant role in ensuring the optimal operation of a

battery energy storage system (BESS). In order to estimate battery cell temperature as accurate

as possible, use of non-linear models is imperative due to the non-linear nature of the battery

operation. This paper proposes a data-driven model based on a Non-linear Autoregressive

Exogenous (NARX) neural network to estimate battery cell temperatures in a utility-scale

BESS, considering strongly-correlated independent variables, e.g., charging-discharging current

and ambient temperature. Due to different temperature and weather characteristics in each

season, seasonal NARX models have also been derived and compared with the universal one.

The proposed models’ performance has been verified using the field data collected from a

grid-connected BESS within a PV plant. The simulation results show high accuracy of the

proposed model compared to the measured data for both seasonal and universal models without

considering the complexity of the large-scale battery and container thermal dynamics. In

particular, in more than 95% of the time, the estimated values yield root mean squared errors

(RMSE) below 1 ○C in different conditions, which confirms the validity and accuracy of the

proposed model. Moreover, seasonal models show better performance with 18% to 50% less

RMSE on average (for 1 hour to 24 hours forward estimation) compared to the universal model.
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1. Introduction1

With the increasing amount of renewable energy sources (RES) in the power system, energy2

storage devices (e.g., batteries) are becoming an integral part of the power system for safe3

and secure operation. They can support solar and wind energy production by storing the4

excess energy when available. Additionally, due to high variability and unpredictability in the5

RES generation profiles, the BESS can be applied to smooth the output power [1]. While6

the application of BESS in the modern power system is inevitable and storage technologies7

are improving quickly on economic and technical aspects, battery degradation remains a big8

concern [2, 3]. The capacity of batteries deteriorates due to charging and discharging activities9

as well as during idle conditions. Among various factors affecting battery ageing process,10

battery cell temperature is known to have a major effect by escalating battery degradation11

exponentially [4, 5] and intensifying safety concerns [6]. In fact, every 10 ○C rise in the battery12

cell temperature doubles the battery degradation rate [7]. Surging battery cell temperature13

occurs because of charging-discharging operations and ambient temperature [8, 9]. Moreover,14

the accumulated heat in a utility-scale BESS that is placed in a confined container, elevates15

the temperature inside the battery container, which increases cooling cost by requiring air16

conditioning units to operate at a higher rate to maintain the temperature withing the desired17

range [6]. Therefore, it is important to estimate the battery cell temperature evolution in time18

with respect to a planned operation profile and ambient interactions to have a better evaluation19

of the incurred cost. In particular, accurate temperature estimation is important for battery20

energy management systems (EMS), which operate battery in an optimal way considering its21

degradation and cooling costs. Using a battery cell temperature estimation algorithm, an22

effective energy management strategy can be established with an accurate cell temperature23

model. It will help to prevent unnecessary battery operation by taking different factors into24

account. Therefore, the BESS lifetime can be extended, which positively affects economic25

benefits of the entire system.26

A number of research has been conducted on the battery thermal management of electric27

vehicles (EVs) and hybrid electric vehicles (HEVs), where they proposed general models of28
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battery thermal behaviour in [10–12] or specialised models for cold weather or lower temperatures [6,29

9]. However, there is no research to investigate thermal behaviour of a utility-scale BESS in30

connection with a PV plant and the main grid. In this paper, thermal behaviour of a battery31

with respect to charge-discharge activities and ambient weather conditions is studied. It is32

noticeable that in most of the studies, thermo-electric battery physical model and thermal-conductivity33

based approaches have been followed to analyse thermal behaviour of lithium-ion batteries34

[6, 13]. These approaches require laboratory-based experiments for a single battery module,35

considering various factors such as battery ambient temperature, age, state of charge (SOC)36

and other operational conditions. In [14], a complicated thermo-dynamical model is developed37

for sealed battery packs in EVs and HEVs in contact with a cooling agent. While the models38

are accurate, the application of such models could become overwhelmingly complicated in the39

utility-scale BESS due to the large number of battery modules. Moreover, some of these models40

typically need several internal parameters to be measured continuously, which might render the41

solution expensive and unscalable for the utility-scale applications. Detailed thermal modelling42

of the entire utility-scale BESS is time consuming as it requires complex thermal modelling43

and intensive computational requirements that are not feasible for the energy management44

applications. In other words, modelling the complex nature of thermal interactions of thousands45

of battery cells with each other and the larger surrounding area, and active/passive cooling46

mechanisms through thermodynamic models will be a computationally intractable approach.47

Typically, detailed thermal models of a battery requires a number of sensors in different parts48

of the cell to measure the necessary parameters [15]. These models usually consider the complex49

nature of the electrochemical components and their interactions in a chemical environment50

to estimate the battery cell temperature evolution under different operation regimes [16].51

Particularly, physical principles of the particles are considered in the literature to model thermal52

dynamics of a battery cell, which can be classified into detailed and simplified models, such as53

reduced equivalent electric circuit [17, 18] and reduced electro-thermal coupled [19]. They54

require precise measurements of the internal and external parameters in a battery cell to55

estimate its thermal behaviour, which is not practical in a utility-scale BESS. Calculating heat56

generation, conductive and convective heat transfers of a battery cell requires a good number57

of parameters’ measurements and estimations in a battery container, which is impractical or58
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expensive for a large-scale BESS. In addition, accumulated measurement errors and unknown59

disturbances lead to further inaccuracy in the cell temperature model. Therefore, an easy-to-use60

practical battery thermal model is needed for utility-scale applications, which can deal with61

non-linearity of the underlying system. It must also be computationally inexpensive to be62

integrated within on-line applications, such as an EMS. Therefore, a physics-free data-driven63

modelling is preferred in this paper.64

Artificial intelligence methods are widely used in various research fields to model the unknown65

or complicated physical systems based on measured input and output parameters, such as fuzzy66

systems, nonparametric regression, wavelets, neural network, or a combination of them which67

is known as hybrid systems [20–23]. These methods are extensively used to model non-linear68

black-box systems in different applications [24–26]. The studies conducted with these methods69

demonstrate that any complex nature of dynamics and non-linearity can be modelled effectively.70

Therefore, these methods are considered for modelling battery thermal dynamics in this study71

using available input and output data of the battery operation. In this procedure, historical data72

of the input and output parameters are used to train a model considering the most influential73

independent variables.74

Another advantage of data-driven models over analytical methods is that they can deal with75

the time-varying internal parameters of the BESS by receiving new data and re-training. For76

instance, higher internal resistance of the battery cell is inevitable when the cell ages, which77

contributes to higher cell temperature by excessive heat generation during charging-discharging78

activities. For analytical methods to work accurately, internal resistance should be measured79

periodically by interrupting battery operation and spending money on measurement tools and80

personnel. In data-driven methods, however, new measurement of external parameters and81

re-training the model can modify it according to the new changes in the battery cell operation.82

It can be done continuously without requiring expensive procedures. Therefore, the overall83

accuracy of the model will improve substantially with this low-cost solution over the lifetime84

of the BESS.85

In this study, a data-driven approach, namely a Non-linear Autoregressive Network with86

Exogenous inputs (NARX), is used to estimate lithium-polymer battery cell temperature. This87

study is a part of the research that has been reported in [27]. It is shown that NARX is88
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more effective in terms of learning the long temporal dependencies than the other complicated89

methods such as wavelets, nonparametric regression, and fuzzy models [28]. Instead of developing90

a model for a single cell in a controlled experimental setup, the proposed model created from91

the operation of thousands of cells affecting each other in a large-scale BESS. The main goal92

is to create a thermal model of the battery cells within a container equipped with passive and93

active cooling mechanisms, which can be utilised in the EMS. Also, the non-linear nature of the94

phenomenon (i.e., the cell temperature variations due to charge-discharge regime and thermal95

interactions among cells with outside and cooling mechanisms) can be effectively captured96

by the NARX model. Moreover, we tested seasonality hypothesis and we showed that a97

seasonal model will work more accurately. To the best of our knowledge, the application of98

NARX for day-ahead large-scale battery temperature estimation has not been reported in the99

literature considering active and passive cooling mechanisms. Despite ordinary neural networks,100

NARX can model temporal information in a given time series, which is quite important. In101

other words, not only the input features contain useful information for estimation, but also the102

changes in input/output over time can provide additional information to increase the accuracy of103

estimation, which can be modelled by NARX. An ordinary NN treats every sample individually;104

thus, it fails to model the temporal information.105

As a black-box modelling approach, NARX does not need a physical model of the underlying106

system and the thermal interactions among different mediums and effective parameters. The107

model can be created by battery operation and ambient temperature historical values measured108

in a utility-scale PV-BESS plant. In this study, the best structure of the NARX model (i.e.,109

number of neurons and feedback delay) is selected by sensitivity analysis. Minute-by-minute110

field data, collected from The University of Queensland Gatton campus PV-BESS plant, is used111

by dividing data into training and test sets for the NARX model development and evaluation,112

respectively. In addition, in an attempt to improve accuracy of the model and to evaluate113

seasonal impact on the cell temperature modelling, seasonal NARX models are developed using114

the training dataset and evaluation of each model is done using different set of seasonal data (i.e.,115

test dataset) for each season. Finally, the results obtained from universal model are compared116

with the ones obtained from seasonal ones, where the latter outperformed the former.117

In this study, autoregressive exogenous neural network approach is adopted to forecast118
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hourly battery cell temperature for up to 24 hours ahead window. Developed non-liner model119

is established and tested with field data. The simulation outcomes presented in this paper120

confirms the robustness of the estimation model. In addition, a comparison study is also121

presented in this paper to compare the performance of two different models for battery cell122

temperature estimation.123

The rest of the paper is organised as follows: Section 2 explains the proposed methodology.124

Section 3 presents the system under study, and Section 4 explains a wide range of results and125

discussions. Finally, the paper is concluded in Section 5 and future works are outlined.126

2. Data-Driven Battery Cell Temperature Model127

The NARX approach based on ANN is employed for battery cell temperature modelling128

due to its capability for non-linearity modelling considering exogenous parameters and feedback129

signal. The NARX model is based on the non-linear autoregressive model, which is commonly130

used in time-series modelling. The model can accept exogenous parameters as well as a131

feedback from the output with a certain delay. In this study, exogenous parameters are the132

battery current and ambient temperature (weather temperature or outside of the container133

temperature). Battery current (i.e., charge-discharge and idle regime) has direct influence on134

the battery cell temperature because of the ohmic and non-ohmic internal losses [11]. Also,135

the ambient temperature can change the temperature inside the container, which essentially136

changes cell temperature with some delay. Small changes in the ambient temperature might137

lead to significant heat accumulation in the battery container and consequently in the battery138

cell during charging-discharging as well as idle conditions. It also contributes to lower efficiency139

of the battery plant by requiring cooling systems to operate intensively.140

Battery cell temperature, similar to many other natural phenomena, does not change like141

a step function. As it was shown in [5], battery cell temperature starts increasing gradually142

after a charge or discharge incident due to heat convection delay, physical layout of cells in the143

container, and cooling system operation. Therefore, limited number of samples from the past144

can be helpful to estimate future output with higher accuracy, which requires a feedback from145

output in the model.146
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2.1. NARX Models147

The NARX model can be mathematically represented as:

y(t) =f[y(t − 1), y(t − 2), .., y(t − ny),

u(t − 1), u(t − 2), .., y(t − nu), (1)

e(t − 1), e(t − 2), e(t − ne)] + e(t)

where, y(k) is the output or dependent variable; u(k) refers to the input parameters; e(k) is148

the noise sequence; t denotes the discrete time-step; and nu and ny represents the number of149

time-step delays for input and output parameters, respectively. Non-linear mapping function,150

f(⋅), is generally unknown. This function can be approximated using different model structures,151

such as fuzzy logic-based models, neural networks, etc. In this work, it is represented by a152

standard multi-layer perceptron (MLP) network in this study. MLP is a dominant structure153

of learning any type of continuous non-linear mapping when bundled with proper training154

algorithms.155

2.2. Artificial Neural Networks156

Artificial neural networks are simple imitations of how human brain processes the data.157

They can be used for several applications such as classification, regression, and pattern recognition.158

Fig. 1 shows a typical neural network consisting of three layers, namely, input, hidden, and159

output layer.160

An ANN model can be shown mathematically as follows:161

Ỹ = Ψ(
H

∑
h=1

who ⋅Φ(w1h ⋅X1 +w2h ⋅X2 + bh) + bo) (2)

where w1h and w2h are the weights of the neurons in the hidden layer; bh is the biases of the162

neurons in the hidden layer; who and bo are the weights and bias of the output layer; H is the163

number of neurons in the hidden layer (10 in this study); X1 and X2 are the samples vectors164

of the two predictors; and Ψ(⋅) and Φ(⋅) are the activation functions of the output and hidden165

layers, respectively. Linear and Tan-Sigmoid functions are chosen for the output and hidden166

layers, respectively:167

Ψ = 2

1 + e−2n
− 1 (3)

Similar to a typical ANN structure, the NARX network consists of three layers, namely168
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Figure 1: The structure of a feed-forward neural network model.

input, hidden and output layers. Figure 2 shows block diagram of an NARX model for169

estimation. Each layer consists of a specific number of neurons. In this study, a three-layer170

feedforward network with a sigmoid transfer function and a linear function in the hidden171

and output layers, respectively, is used for the approximation of the function, f(⋅). The172

estimated output is used as an input parameter to estimate the battery cell temperature in173

the future time steps. The weights and biases, shown in Figure 2, are important to optimise174

the network performance. Tuning the values of the weights and biases occurs during training175

of the NARX model. If there are any difference between estimated and actual output values,176

weights and biases will be adjusted during training process using a gradient descent-based (i.e.,177

Levenberg-Marquardt in this study) algorithm to minimise the errors. Network training process178

will continue with the same input and output values until the error reaches to an acceptable179

limit. Tapped delay line (TDL), shown in Figure 2, is an embedded memory in feedforward180

network, which stores present and previous time series as per the defined delay.181

Two different architectures of NARX are used for training and finally estimating battery cell182

temperature, which are series-parallel and parallel architectures. Series-parallel architecture,183

shown in Figure 3a and Eq.(4), is used during training stage, where actual battery cell temperature184

is available from the past observations. The future values are estimated from the present and185

past values of the input variables, u(t)...u(t − nu) and true battery cell temperature from the186

past, i.e., y(t − n),...,y(t − ny). The advantage of this model is that the trained network has187
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Figure 2: NARX structural model based on MLP neural network

a purely feedforward architecture and static back-propagation can be used for training. The188

series-parallel architecture can be represented as:189

ŷ(t)Training = f̂(y(t − 1), y(t − 2), .., y(t − ny), u(t), u(t − 1), u(t − 2), .., u(t − nu)) (4)

where, ŷ(t)Training is the Series-parallel mode output. However, the series-parallel architecture190

is not capable of estimating multi-step ahead cell temperature. Therefore, parallel architecture,191

shown in Figure 3b and Eq.(5), is used to perform future estimation for the test data and192

real-world simulation. The estimation is performed by taking the past and present values of193

the input parameters, i.e., u(t),...,u(t − nu) and previously estimated battery cell temperature194

values, ŷ(t)Testing,...,ŷ(t−ny)Testing during testing stage, the results of which will be shown and195

discussed in section 4. The parallel NARX architecture can be shown mathematically by:196

ŷ(t)Testing = f̂(ŷ(t−1)Testing, ŷ(t−2)Testing, .., ŷ(t−ny)Testing, u(t), u(t−1), u(t−2), .., u(t−nu)) (5)

where, ŷ(t)Testing is the parallel mode output.197

The number of neurons in the input and output layers of the NARX model are equal to198

the number of independent (i.e., current and ambient temperature) and dependent variables199

(i.e., battery cell temperature), respectively. Only one hidden layer is considered in the NARX200

model as per universality theorem [29], where neural network with single hidden layer is able201

to approximate continuous function with desired accuracy most of the time. Selecting the202

number of neurons in the hidden layer is important to have the most efficient and accurate203

network. Employing few or too many neurons in the hidden layer will result in underfitting or204

overfitting, respectively. Underfitting occurs when a small number of neurons are unable to learn205

the patterns in the training signal adequately. On the other hand, overfitting happens when the206
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Figure 3: NARX Architectures: (a) Series-parallel architecture for NARX during training; (b) Parallel
architecture for NARX during testing and actual simulation
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trained model rely on the training dataset too much, which might provide unacceptable results207

for the test dataset. In addition to the importance of the number of neurons in the hidden208

layer, the time delay (i.e., the number of samples from the past) of the exogenous input and209

feedback signals are important in the performance and accuracy of the model. A sensitivity210

analysis has been proposed in this study to select the best number of neurons in the hidden211

layer and time delay in the feedback signal. In this analysis, different time delays (i.e., 10, 20,212

30, 40, 50 and 60 minutes) and number of neurons (i.e., 2, 4, 6, 8, 10, 12, 14, 16, 18, 20) have213

been used to train the neural network and then test the model with completely different set214

of data. Data is normalised for training and model evaluation purposes throughout this study,215

where maximum value of input and output parameters in the historical data are considered as216

the base value for normalisation. Normalising the original data can eliminate negative influence217

of large numbers, which is apt to improve the convergence rate of the training process.218

Three standard measures are used in this study to quantify the accuracy of the NARX219

model in estimating battery cell temperature. Root mean squared error (RMSE), correlation220

coefficient (R) and adjusted R2 (R2
Adjusted) given in Eq. (6), Eq. (7) and Eq. (8), respectively,221

are used to determine the trained network outcomes in training, testing and validation stages.222

The best trained NARX model is indicated by the RMSE value close to 0, R and R2
Adjusted223

value close to 1.224

RMSE =

¿
ÁÁÁÁÁÀ

N

∑
i=1

(Tai − Tmi
)2

N
(6)

225

R =

N

∑
i=1

[(Tai − T a) × (Tmi
− Tm)]

¿
ÁÁÁÀ

N

∑
i=1

(Tai − T a)2 ×
N

∑
i=1

(Tmi
− Tm)2

(7)

226

R2
Adjusted = 1 − (1 −R2)(N − 1)

N − k − 1
(8)

where, in Eq. (6), Tai , Tmi
and N represent actual battery cell temperature, estimated battery227

cell temperature using NARX model and the total number of samples, respectively. In Eq. (7),228

T a denotes mean value of actual temperature for battery cell. Similarly, Tm represents the229

average of estimated temperature. In Eq. (8), k represents the number of variables in the230
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model. Since network training involves solving an optimisation problem, values of biases and231

weights might be different in multiple runs of the training process with the same input and232

output values. This also can affect the performance of the network when it is used for different233

test dataset because different NARX network can give altered results for the same set of test234

samples. To resolve this issue, neural network is trained several times for the better accuracy.235

In this model, one year of minute-by-minute data has been used to train a NARX network236

for estimating battery cell temperature. One year of data contains significant number of237

charging-discharging and ambient temperature data points, which covers many different combinations.238

In this paper, two types of model are created. In the first type, data from the entire training239

set is used to develop a single NARX model for the entire year (called universal NARX model).240

In the second type, training data is partitioned in four different seasons and a specialised NARX241

model is developed for each season (called seasonal NARX model). In this case, apart from242

whole-year modelling structure, seasonality has been given priority since ambient temperature243

is highly dependent on the seasonal variations with different characteristics. Moreover, solar244

panels generation behaves differently in various seasons because it dominantly depends on the245

solar irradiation and ambient temperature. As solar radiation varies in seasons, the charging246

and discharging activities of the BESS varies accordingly. Therefore, more fluctuations in247

charging and discharging may occur during winter compared to summer or vice versa. As will248

be shown in the simulation results, the seasonal NARX model outperforms the universal model249

considerably.250

3. System Under Study251

In this study, operational data from a grid-connected 600 kW/760 kWh lithium-polymer252

battery in a 3.275 MWp PV plant is considered. The plant is located at the University of253

Queensland (UQ) Gatton campus, Australia. This plant is connected to the local 11 kV254

distribution network. Figure 4 and Table 1 show a detail overview of the battery configuration255

and characteristics in the plant.256

The total BESS capacity and power are divided into two battery banks. Each battery bank257

has four racks of battery modules in parallel and each of the racks comprises ten series of258

battery modules. Each module has two parallel strings of 18 battery cells in series. Battery259

cell specification details are shown in Table 1. Please refer to [5] and [30] for more details.260
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Figure 4: Schematic diagram of the BESS configuration in the PV plant

Table 1: Battery cell specifications

Description Specification

Battery Cell Type Lithium Polymer
Cell Capacity 75 Ah
Cell Voltage 2.7 V to 4.1 V, average 3.7 V
Cycle-Life 4000 Cycles at 80% Depth of Discharge (DoD)

Charging Temperature 10 to 35 ○C
Discharging Temperature -10 to 55 ○C

In order to keep the battery cells and battery room temperature within an acceptable261

range, a cooling system is used in the battery container. Battery module and cell ventilation is262

achieved through a) passive cooling mechanisms including air vent holes along the sides of the263

battery casing and spacing of cells, which ensures an even temperature distribution between264

the cells, and b) active cooling consisting of rack fans and air-conditioning units with 7.7 kW265

rated cooling capacity. Three fans are placed at the top of each battery bank to draw air up266

through vents in the front panel by passing through the modules and out at the top. The fans267

start operating when cell temperature reaches 29 ○C. The consumption of each rack fan is 44.64268

W, which is powered by an external +24 V DC system. Battery modules are spaced inside the269

rack with gaps to allow airflow. The air conditioner is designed for maximum 30 ○C internal270

ambient and 50 ○C outside temperature [5, 27]271

The air conditioning unit is set at the room temperature of 23 ○C, which indicates that272

the evaporator of the air conditioning unit starts its operation along with fan when the room273
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temperature reaches above 23 ○C. The room temperature is measured and recorded by the274

thermostat installed with the air conditioning unit. The higher the room temperature, the275

more energy consumption by the air conditioning.276

A sophisticated and comprehensive measurement and data management and warehousing277

system is implemented in the UQ Gatton Solar Research Facility (GSRF). About 1390 points278

within the BESS and its container are monitored through measurement and data logging system,279

which gives detailed insights into the battery operation on the cell and module levels. The280

collected data is remotely accessible through a Wonderware Historian system interface. A281

significant number of variables including weather parameters, DC and AC side parameters of282

the inverters are measured and stored in Wanderware Historian system. The plant data logging,283

including BESS, is performed using a Delta Mode operation. Although data is sampled at a284

1-second rate, the Delta Mode operation is adopted to reduce data storage capacity requirement.285

For further details, please see [5, 27]. In this study, data with 1-minute resolution (60 samples286

per hour) have been used for training and testing the model, which are further explained in the287

following section.288

4. Simulation Study289

In this paper, two independent parameters, i.e., battery current and ambient temperature,290

have been considered to create and test battery cell temperature estimation model. The291

following data selection and analysis are carried out in the simulation studies for training292

and assessing the NARX networks:293

● For training purposes, 1-minute data of around 12 months from 1st April 2016 to 31st
294

March 2017 have been selected, which consists of 516,960 samples (359 days excluding 6 days295

used of each season that is used for testing) overall. Entire year is covered in the data to296

represent seasonal differences in the real-world condition. A universal NARX model is created297

for battery cell temperature estimation for the entire year. Another 90 days equivalent data298

is used for validation and testing the trained model during training process in the MATLAB299

Toolbox. Please note that the training, validation, and testing days are selected randomly and300

each simulations study has been run for several times to check on the robustness of the results.301

Finally, the average results are reported in this section.302

● Seasonality analysis has been carried out by developing separate NARX model for each303
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season (i.e., seasonal NARX model). Similar procedure as universal model has been followed304

for training each seasonal model. Multiple days of each season were removed from the training305

dataset as for assessing performance of the respective seasonal model.306

● For further assessment of universal network model, 56 days of data from 10th July 2017307

to 31st October 2017 as well as the test days used for seasonal model assessment are used.308

The impact of time delay on the performance of the model also has been analysed for feedback309

signal by testing the network with test days and NARX with feedback configuration, as shown310

in Figure 3b.311

● NARX training has been repeated for different number of neurons (i.e., 2, 4, 6, 8, 10, 12,312

14, 16, 18 and 20 minutes) and time delay (i.e., 10, 20, 30, 50 and 60 minutes), separately, as313

a sensitivity analysis to reveal their impact on the accuracy of the model and to find the best314

number of neurons and time delay for the rest of the simulation studies. The assessment of315

each model with different time delay was carried out by arbitrarily selected test data.316

● A comparison study between the universal and seasonal NARX models has been carried317

out in the simulation study to determine the best NARX model.318

MATLAB/Neural Net Time Series toolbox is used in this study for training and testing319

NARX models. During training process in MATLAB Neural Net Time Series toolbox, battery320

cell temperature is estimated for 1 minute ahead. In reality, however, we need estimated cell321

temperature for longer time horizons. For instance, a day-ahead EMS of a microgrid plans322

the system operation for 24 hours ahead. In this case, it is needed to estimate battery cell323

temperature for a given charge-discharge profile in the next 24 hours. To estimate temperature324

in multi-hour ahead, the trained model is recursively used, where the estimated cell temperature325

from previous time step (1 minute before) is used as an input parameter in the feedback loop.326

For instance, if 24 hours ahead estimation is required for a given charge-discharge and ambient327

temperature profiles, the estimation will be repeated 1440 times to cover the entire period.328

4.1. Sensitivity analysis on the number of neurons and time delay329

The number of neurons in the hidden layer and time delay of feedback signal are determined330

by sensitivity analysis. To find the appropriate number of neurons, different NARX model is331

trained with different number of neurons in the hidden layer, while input and output samples332

were remained the same. The number of neurons in the hidden layer is increased from 2 to333
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20 with an interval of two neurons to determine the optimal network model. Each model was334

run for 20 times for a specific number of neurons to reduce the impact of initialisation and335

optimisation of the weights and biases on the results. Average estimation error on the test336

dataset is used to determine the best number of neurons. As per Figure 5a, the average value337

of RMSE is higher when the number of neurons is at the lower and higher ranges. 10 neurons338

resulted in only 0.59 ○C average RMSE, indicating the best performance among different cases.339

Therefore, NARX model with 10 neurons in the hidden layer will be used in the rest of the340

paper.341

In order to find the best time delay of the feedback signal for the parallel network shown342

in Figure 3b, different NARX models are trained for different time delays (i.e., 10, 20, 30,343

40, 50 and 60 minutes). In each case, the number of neurons in the hidden layer was 10 and344

the performance of the NARX model is assessed by using the test dataset. 56 days of data345

is randomly selected with 24 hours horizon for assessing the network performance. Hourly346

average RMSE values are calculated from minute-by-minute data of 56 days test data, which347

are shown in Figure 5b. From the figure, it is clear that 20 minutes feedback delay yields348

the best performance on the test dataset. 10 and 30 minutes time delay also shows reliable349

performance. However, creating a model with 20 minutes delay is comparatively more efficient350

and accurate. For the rest of the paper, 10 neurons will be considered in the hidden layer and351

cell temperature feedback of 20 minutes will be used. Please note that the sensitivity analyses352

are done for 1 minute ahead estimation.353

4.2. The universal NARX model354

This section presents the universal NARX model training and its performance estimation355

with completely different set of test data. Table 2 and Table 3 show the parameters for network356

training and selection of data with outcomes during training process, respectively. 449 days357

(excluding 6 days used for evaluating seasonality in the next section) of the data have been358

used for training, validation and testing. 359 days (80%) or a complete year of data has only359

been used to train the NARX model. 90 days (20%) of data for validation and testing stages360

(45 days each) are randomly chosen from the remaining data to validate the model during361

training stage and evaluate the trained model during testing stage. Since the data selection362

affects the performance of the NARX model, the training process has been repeated 10 times to363
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Figure 5: Sensitivity Analysis: (a) Average RMSE of different NARX model with different number of neurons
in the hidden layer; (b) Sensitivity analysis results on the cell temperature feedback delay
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minimise the impact of the training process and to choose the best NARX model. It has been364

observed that although different combinations provide different results, the performance of the365

model (i.e., RMSE, R and R2
Adjusted) remains almost the same. Validation dataset is used to366

minimise overfitting during training by MATLAB toolbox. This dataset does not adjust the367

weights of the network model but weights are checked for accuracy in the model estimation.368

Testing dataset is completely unseen set of samples that is used by the Neural Net Time369

Series toolbox in MATLAB at the end of training to provide an unbiased assessment of the370

trained model. A good performance of a model on the test dataset is the key to a successful371

modelling.372

Table 2: Parameters for training the NARX networks

Parameter Description

Problem Nonlinear auto-regressive time-series network with external input (NARX)
Training Algorithm Levenberg-Marquardt

Input Charging-Discharging Current and Ambient Temperature
Output Battery Cell Temperature

Data Division Training (80%), Validation (10%) and Testing (10%)
Hidden layer size 10 neurons
Feedback Delay 20 minutes

Table 3: Data selection and training outcomes from MATLAB Neural Net Time Series toolbox

Data Type Number of Sample Sample Percentage Regression (R) Adjusted R2 RMSE (○C)

Training 516,960 80% 0.989 0.978 0.452
Validation 64,800 10% 0.987 0.974 0.551

Testing 64,800 10% 0.99 0.98 0.415

The performance of the universal model in comparison with the actual data is tabulated in373

Table. 3 for training, validation, and testing processes during training in the MATLAB Neural374

Net Time Series toolbox, where one time step ahead estimation is carried out. The RMSE,375

coefficient of determination, i.e., R, and Adjusted R2 are calculated using Eq.(6), Eq.(7) and376

Eq.(8), respectively. There is a close agreement between actual battery cell temperature values377

with those estimated by the network. According to Table 3, the R2
Adjusted values for training,378

validation and testing are very close to 1, which indicates a good model fit. Moreover, it379

indicates that the model is not overfitted by providing a true goodness of fit by yielding similar380

performance for test dataset. In addition, the RMSE is 0.454 ○C, 0.55 ○C and 0.42 ○C for381

training, validation and testing, respectively, which is very accurate for many applications such382

as EMS. As per both assessment criteria of the trained network, it can be stated that the383

universal model is able to provide a good estimation of the battery cell temperature for many384
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combination of input parameters.385

The universal NARX model is further validated by testing with completely different set of386

data. In this analysis, 56 days of data (outside of training, testing and validation dataset) have387

been considered to estimate battery cell temperature in 24 hours ahead (minute-by-minute388

samples) using the trained model recursively. Figure 6 shows the hourly-averaged RMSE389

histogram of the 56 days of estimation, where 96.1% of incidents are experiencing an RMSE390

below 1 ○C. Only 3.9% of incidents are yielding more than 1 ○C. The majority of the incidents391

are between 0.17 ○C and 0.22 ○C RMSE range. Also, it is clear from the histogram that392

estimated RMSE never exceeded 1.95 ○C for the 56 test days. It indicates a relatively robust393

performance of the NARX model, which can be effective in determining battery cell temperature394

in advance with a high accuracy. On average, the computation time for training the universal395

model and estimating the battery cell temperature for each day are 904 seconds and 40 seconds,396

respectively. It indicates a fast process in estimating battery cell temperature.397

Figure 6: Hourly RMSE histogram for 56 days of test data obtained by the universal model for 24-hour ahead

4.3. Seasonal Effects398

In order to evaluate the seasonal effects, an NARX model is trained for each season in399

this subsection, and their performance is compared with the universal model. The battery400

cell temperature estimation model for each season has been assessed using completely different401

set of data extracted from each season, explained in Table 4. The percentage of seasonal402
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data for training, testing, and validation differs from the the percentages in universal model,403

as given in Table 5. This is because there are fewer samples available for testing and validation404

for the seasonal model compared to the universal one. Using this approach, the number of405

testing samples is the same as the universal model. It is worth mentioning that the difference406

of outcome using 80 ∶ 10 ∶ 10 percentages was trivial without a significant deterioration of407

accuracy.408

Table 4: Seasonal data selection for training and evaluation

Season Months Year Days for training Test Days for evaluation

Spring September, October, November 2017 85 6 Days
Summer December, January, February 2016-2017 84 6 Days
Autumn March, April, May 2017 86 6 Days
Winter June, July, August 2017 86 6 Days

Similar NARX configuration with 10 neurons in the hidden layer and feedback time delay409

of 20 minutes are used in this analysis. Randomly selected test days from each season have410

been extracted for assessing the trained model. In order to make fair comparison, the same six411

days were taken out from the training dataset in the universal model. The computation time412

for training each seasonal model is 50 seconds to 65 seconds, while estimating the battery cell413

temperature for an entire day is 40 seconds on average. This indicates a fast process in training414

and testing seasonal models.415

Table 5: Seasonal data selection and training outcomes from MATLAB Neural Net Time Series toolbox

Season Data Type Number of Sample Sample Percentage Regression (R) Adjusted R2 RMSE (○C)

Training 85,680 70% 0.991 0.982 0.343
Validation 18,360 15% 0.983 0.966 0.702Spring

Testing 18,360 15% 0.991 0.982 0.358

Training 84,672 70% 0.989 0.978 0.479
Validation 18,144 15% 0.986 0.972 0.593Summer

Testing 18,144 15% 0.992 0.984 0.342

Training 86,688 70% 0.991 0.982 0.286
Validation 18,576 15% 0.993 0.986 0.276Autumn

Testing 18,576 15% 0.99 0.98 0.31

Training 86,688 70% 0.995 0.99 0.33
Validation 18,576 15% 0.992 0.984 0.337Winter

Testing 18,576 15% 0.992 0.984 0.336

Table 5 shows the number of samples and outcomes during training, validation and testing416

stages for each seasonal NARX model from MATLAB Neural Net Time Series toolbox. Adjusted417

R2 values for each season are close to 1 in all cases, which indicates an outstanding fit to the418

model by drawing a close relationship between estimated and actual battery cell temperature419

for all four seasons. The RMSE value has also been considered to evaluate the model. According420
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to the respective table of each season, the RMSE values are below 0.71 ○C. Most importantly421

the RMSE values during testing process are below 0.5 ○C in all seasons, which shows a close422

agreement between estimated and actual battery cell temperature.423

Figure 7 shows the performances of the seasonal NARX models for the test data on an424

hourly (i.e., RMSE hourly) basis. The battery cell temperatures are estimated recursively for425

24 hours ahead, as explained at the beginning of Section 4. To obtain hourly RMSE values,426

average of minute-by-minute RMSEs are calculated for every hour. The values are shown for427

summer only in this figure due to similar performance experienced for the rest of the seasonal428

models. It can be observed from the figure that the RMSE value is lower than 1 ○C, except a429

couple of hourly incidents on day 3, and the differences between days are minor. The RMSE430

outcomes during hour 1 to 3 and hour 10 to 16 (where battery operates rarely) of each day are431

comparatively better than the RMSE values during other hours. However, the differences are432

insignificant, which pointing out to a robust model performance throughout the whole day.433
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Figure 7: RMSE of the test days during summer season using recursive estimation for 24 hours ahead.
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Figure 8 shows the average RMSE comparison between seasonal and universal models. In434

this case, the average RMSE values of the test days for each season using seasonal NARX model435

and 24 days (4 Seasons × 6 Days) using the universal NARX model have been considered for436

each hourly RMSE. It can be seen that summer and spring seasons are yielding maximum of437

0.66 ○C on average using the seasonal network model. On the other hand, autumn, winter and438

spring have RMSE values of 0.46 ○C, 0.43 ○C and 0.42 ○C, respectively. Although couple of hours439

during summer show more RMSE than autumn, winter and spring, the daily average RMSE440

value differences between seasons are not significant, which suggests a better performance of441

the seasonal models in general. In comparison with the universal model, it is clear that the442

seasonal NARX models yield at least 0.1 ○C to 0.3 ○C smaller RMSE during most of the hours443

of a day for the same test days compared to the universal model.444

In order to investigate further on the performance of the seasonal and universal NARX445

models, the RMSE ratio has been calculated. RMSE ratio is used in this study to compare446

the performance of universal and seasonal models for the similar test days. The comparison is447

made for every hour separately to better illustrate the variations in performance in different448

hours. Figure 9a shows a comparison between performance of the seasonal and universal NARX449

models in summer using Eq.(9). The goal is to perform a quantitative comparison between the450

two models. It helps to determine which model is providing better results with lower RMSE451

value in an hourly basis.452

RMSE Ratio = RMSE of the Seasonal Model

RMSE of the Universal Model
(9)

When the RMSE ratio is lower than 1 (red dashed line in the figure), it represents a better453

performance of seasonal network model and above 1 always indicates better performance for454

the universal model. In this comparison, the same six days of test data has been used for both455

models and hourly estimated values up to 24 hours has been considered to compare the results.456

As per Figure 9a, the RMSE ratio is below 1 in most of the hourly incidents during summer457

test days, which denotes a better performance by the seasonal model. Although better outcomes458

by universal network is experienced on Day 5 for a couple of hours, the ratio is below 1 most459

of the time, indicating better outcomes by the seasonal network. The values are shown for460

summer only in this figure due to similar performance experienced for the rest of the seasonal461

models. Figure 9b shows almost similar outcome during autumn, where the hourly ratios are462
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Figure 9: The RMSE ratio for the seasonal model: (a) summer; (b) autumn; (c) winter; (d) spring
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less than 1 most of the time, except a couple of instances. Similar conclusion can be drawn463

for winter in Figure 9c. While the ratios are closer to 1 compared to summer, most of the464

cases are still below 1, indicating a better performance of the seasonal model compared to the465

universal model over the selected test days. During spring season, shown in Figure 9d, the466

RMSE ratio for couple of incidents from different test days are bigger than 1. However, more467

than 80% of the time, ratios are far below 1, which demonstrates a better performance of the468

seasonal network model than universal model for this season too. In few instances, hourly469

ratios are more than 2 in every season, which indicates the universal model is performing more470

than two times better than the seasonal model. However, 74.3%, 77.8%, 78.5%, 80.1% of the471

hours are showing better results for the seasonal model in summer, autumn, winter and spring,472

respectively.473

Overall, it can be concluded that training the neural network with seasonal data provides474

a better results than the network trained with the universal data. Although there are some475

variations between seasons, on average, all four seasons are performing equally well and more476

accurate results can be obtained compared to the universal model.477

Comparing the results presented in this paper against the results in [31], it can be seen that478

the proposed approach in this work results in lower RMSE values. The maximum difference479

reached to 1.48 ○C for universal model. The RMSE differences between ARIMAX and NARX480

is slightly higher and on average the value is 2.24 ○C, where ARIMAX is expressing 0.56 ○C,481

1.65 ○C, and 1.9 ○C more RMSE values than NARX models during summer, autumn, and winter,482

respectively. The proposed recursive estimation with NARX network in this manuscript shows483

better estimation results for an entire day than the ARIMAX model, which is a linear model.484

We have not tried ordinary NN models since they are not able to consider exogenous parameters485

as extra predictors in the model, which will degrade the performance of the model.486

5. Conclusion487

In this paper, a model based on non-linear autoregressive exogenous artificial neural network488

(NARX) is proposed to estimate battery cell temperature. The proposed method does not489

require to consider any complicated battery thermal dynamics and systematic thermo-dynamical490

model of the battery container. Only two dominant input parameters, namely charging-discharging491

current and ambient temperature, are considered for the battery cell temperature estimation,492
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which is shown to be sufficient. The proposed model is able to estimate battery cell temperature493

accurately using a relatively large historical dataset. Time-series NARX model has been chosen494

due to non-linear behaviour and time dependencies of the battery cell temperature. Moreover,495

seasonal impact on the modelling is investigated by creating different NARX model for each496

season. Based on the outcomes of comprehensive simulation studies, the universal model497

yielded a small RMSE value, where the RMSE was below 1 ○C most of the times, which is498

quite acceptable. Compared to the universal model, the seasonal NARX models provided more499

accurate results by 18% to 50% on average. In addition, proposed recursive estimation with500

NARX network shows good estimation results for an entire day. In our future work, we will use501

the developed NARX model in an optimal battery operation algorithm in an EMS considering502

battery degradation and cooling system costs, which can improve the technical economical503

performance of the hybrid energy system.504
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model. How to explain the 1-minute data? Every sample includes 1-minute data in each day?613

If so, in the simulation, only 1-minute data was considered for training and testing, so whether614

is the data representative?615

Answer: We would like to thank the Reviewer for her/his comments. Apologies for the616

confusion. The “1-minute” refers to the resolution of the data, i.e., there are 60 samples for617

every hour. We have modified page 14, line 277 of the text to remove the ambiguity.618

Comment 1.2: In Table 2, the percentage of Training, Validation, Testing is 8:1:1 in619

universal model, and in the seasonal model, the percentage is 7:1.5:1.5. Why? and whether it620

affect the comparison between the universal and seasonal model?621

Answer: The percentage of seasonal data for training, testing, and validation differs from622

that of the universal model since there are fewer sample points available for testing and623

validation of the seasonal model compared to the universal model. Therefore, we decided624

to reserve more samples for testing. Nevertheless, the difference of outcome using similar625
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percentages was trivial and it does not affect the estimation performances while testing the626

model with completely separated test data/days. It is worth mentioning that similar test days627

are used to check the universal and seasonal trained models for fair comparison. To clarify this,628

we have modified Section 4.3, page 19, line 402.629

Comment 1.3: In this work, the BESS has an active cooling systems 7.7 kW. How does630

the active cooling systems operate? It works in whole charging-discharing process, or other631

ways. For other BESS, it has different active cooling systems, are this models available for the632

temperature estimation?633

Answer: In order to keep the battery cells and battery room temperature within an634

acceptable range, a cooling system is used in the battery container. Battery module and cell635

ventilation is achieved through a) passive cooling mechanisms including air vent holes along the636

sides of the battery casing and spacing of cells, which ensures an even temperature distribution637

between the cells, and b) active cooling consisting of rack fans and air-conditioning units with638

7.7 kW rated cooling capacity. Three fans are placed at the top of each battery bank to draw639

air up through vents in the front panel by passing through the modules and out at the top. The640

fans start operating when cell temperature reaches 29 ○C. The consumption of each rack fan641

is 44.64 W, which is powered by an external +24 V DC system. Battery modules are spaced642

inside the rack with gaps to allow airflow. The air conditioner is designed for maximum 30 ○C643

internal ambient and 50 ○C outside temperature.644

The air conditioning unit is set at the room temperature of 23 ○C, which indicates that645

the evaporator of the air conditioning unit starts its operation along with fan when the room646

temperature reaches above 23 ○C. The room temperature is measured and recorded by the647

thermostat installed with the air conditioning unit. The higher the room temperature, the648

more energy consumption by the air conditioning.649

Section 3, page 13, line 261, of the paper is modified to reflect this discussion.650

651

Reviewer 2652

This paper presents a data-driven model based on a Non-linear Autoregressive Exogenous653

neural network to estimate battery cell temperatures in a utility-scale BESS, considering654

strongly-correlated independent variables such as charging-discharging current and ambient655
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temperature.656

Comment 2.1: The Non-linear Autoregressive Exogenous neural network is not new in657

literature. What are the main contributions made by the paper? It is not very clearly described.658

Answer: We would like to thank the reviewer for her/his comments. We agree with the659

reviewer that NARX modelling tool has been used in other literature for different purposes.660

However, to the best of our knowledge, the NARX application for day-ahead large-scale battery661

temperature estimation considering active and passive cooling mechanisms has not been reported662

in the literature. Ordinary neural networks have been used in the past for different purposes,663

however, the ordinary neural networks are not able to model temporal information in a time664

series. In other words, not only the input features contain useful information for estimation,665

but also the changes in input/output over time can provide additional information to increase666

the accuracy of estimation. An ordinary NN treats every sample individually; thus, it fails to667

model temporal information.668

We added a paragraph in the Introduction section, page 5, line 97, that outlines the669

contributions of this work.670

Comment 2.2: Pls be clear on ambient temperature. Are you referring to surface temperate671

of the cell?672

Answer: We apologies for the confusion. Weather temperature or outside of the container673

temperature is referred to as ambient temperature in this study. Although, charge-discharge674

activities of the battery are the main reasons of battery temperature, ambient temperature is675

also strongly responsible for the increase in the battery cell temperature [5]. Fig. 10 in the676

revised manuscript illustrates the concept.677

Following the Reviewer’s comment, we have clarified this matter in Section 2, page 6,678

line 130, of the manuscript.679

Comment 2.3: Also where and how did you measure the cell temperature?680

Answer: The UQ Gatton Solar Research Facility (UQ GSRF) is a multi-million dollar681

plant that is designed primarily as a research facility with sophisticated BMS for each battery682

bank, delivered by Kokam company. It is designed to provide critical information such as cell683

temperature, voltage, current, power etc. About 1390 points within the BESS is monitored684

through measurement and data logging systems, which gives detailed insights into the battery685

3



operation on the cell and module levels.686

Following the Reviewer’s comment, we have added a paragraph to explain measurement687

and data collection systems at UQ GSRF in Section 3, page 14, line 277, of the manuscript.688

Comment 2.4: How do you collect the experimental data for the training?689

Answer: Central Supervisory System (CSS) PLC receives all the data from measurement690

units and sensors within the BESS through a sophisticated SCADA system. All the CSS691

collected data for the plant is remotely accessible through a Wonderware Historian system692

interface. A significant number of variables including weather parameters, cell level voltage,693

current, and temperature, and battery inverters’ DC and AC side parameters are measured694

and stored in Wanderware Historian system. The plant data logging, including BESS, is695

performed using a Delta Mode operation. Although data is sampled at a 1-second rate, the Delta696

Mode operation is adopted to reduce data storage capacity requirement. In this procedure, a697

measurement is recorded when the value is different from the previous measurement by a certain698

preset threshold.699

Following the comment of the Reviewer, we have added these explanations to the manuscript700

in Section 3, page 14, line 277.701

Comment 2.5: What do you mean by ”...90 days (20%) of data for validation and testing702

stages..”.703

Answer: During training stage, 20% of data or 90 days equivalent data is being used for704

validation and testing purposes. The validation data is used during NARX training process to705

prevent from over-fitting. The testing portion of data is used to finally verify the robustness706

and universality of the trained model. In this paper, data is separated on a daily basis (24707

hours window) to capture the operational and ambient temperature condition during each day708

and the 90 days are randomly selected.709

Comment 2.6: Do you do cross-validation? 5-fold/10-fold?710

Answer: For cross-validation, we ran the simulation studies by randomly selecting the711

days for each category, i.e., training, validation, and testing. Then, we ran simulation studies712

several times. The simulation results showed no significant variations in the performance of the713

universal and seasonal models. Finally, we reported the set of results with average performance714

as a measure of fairness. We added the explanations in the paper for the future audience.715
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Following the comment of the Reviewer, we have added a brief explanation to the manuscript716

in Section 4, page 14, line 300.717

Comment 2.7: The full hyperparameters values should be given.718

Answer: The hyperparameter values are reported in Table 2: “Parameters for training719

the NARX networks”, and more details are provided in Section 4 (Section 4.1, 4.2, 4.3) of the720

manuscript.721

Comment 2.8: What is the purpose of establishing the RMSE ratio in (9) where the aim722

is to estimate the battery cell temperature?723

Answer: RMSE ratio is used in this study to show the comparison between performance of724

universal and seasonal models for the similar test days. Using the RMSE ratio, we can compare725

the performance of the seasonal and universal models. Ultimately, the model with lower RMSE726

value is the one with a better performance.727

The manuscript has been modified on page 22, line 445 to reflect this discussion.728

Comment 2.9: Can the proposed recursive estimation with NARX network shows good729

estimation results for different day and time of a day? Pls show the results.730

Answer: The accuracy of the models are not identical in different hours and days, as731

shown in Fig. 7 for different test days and hours in summer, and in Fig. 8 for seasonal732

comparison. Nevertheless, the estimation error is mostly below 1 ○ C for different cases and733

hours. As mentioned previously in response to the Reviewer’s comment, we ran the simulation734

studies several times by randomly selecting training, validation and testing days. no significant735

variations have been observed in this study, which proves the robustness of the proposed model.736

Comment 2.10: There are lack of comparisons with other NN. It is not very convincing737

that the proposed method is the best. Not forgetting the proposed method is not new.738

Answer: Thank you for your comment. The authors have published another paper, Md739

Mehedi Hasan, S. Ali Pourmousavi, and Tapan K. Saha, “Battery cell temperature estimation740

model and cost analysis of a grid-connected PV-BESS plant”, IEEE PES ISGT Asia, Chengdu,741

China, May 21-24, 2019, where Autoregressive Integrated Moving Average with eXogenous742

inputs (ARIMAX) model was applied on the dataset. Comparing the results presented in743

this manuscript against the results of the previously-published paper, it can be seen that the744

proposed approach in this manuscript results in lower RMSE. The maximum hourly RMSE745
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using ARIMAX was 1.48 ○C higher than the maximum hourly RMSE using NARX for the746

universal model. For the seasonal models, the hourly RMSE using ARIMAX was 0.56 ○C, 1.65747

○C and 1.9 ○C more than NARX models during summer, autumn, and winter, respectively.748

Therefore, the proposed recursive estimation with NARX network yields much better estimation749

in comparison with the ARIMAX model, which is not surprising considering the linear nature750

of ARIMAX model and the ability of NARX in modeling non-linear relationships.751

As was explained in response to the first comment by the Reviewer, we have not tried752

ordinary NN models because they are not able to model temporal information in time series,753

which will degrade the performance of the model. This is explained in the revised manuscript754

on page 5, line 97.755

Comment 2.11: How robust is the proposed NARX as compared to other approaches756

based using NN?757

Answer: We would like to refer the Reviewer to our response to the previous comment.758

We have also offered a comparison between the proposed method with ARIMAX, a widely used759

approach.760

Comment 2.12: What is the computational time for just training?761

Answer: On average computation time for training is:762

• Universal model training: 15 minutes 4 seconds;763

• Seasonal model training: 50 seconds to 1 minute 5 seconds764

We have added these information to the manuscript in Section 4.1 on page 19, line 395 and765

Section 4.2 on page 20, line 412.766

Comment 2.13: What is the computational time for estimating the battery cell temperature?767

Answer: Training the model is the most time consuming part, while testing is fast.768

Computational time for estimating battery cell temperature for an entire day is 40 seconds769

on average. Explanations are added in Section 4.1 on page 19, line 395 and Section 4.2 on770

page 20, line 412 to indicate the estimation time.771
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