

A data-driven approach to estimate battery cell temperature using a nonlinear autoregressive exogenous neural network model

Md Mehedi Hasan^a, Seyyed Ali Pourmousavi Kani^{b,*}, Ali Jahanbani Ardakani^c, Tapan Kumar Saha^a

^a*School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia*

^b*The School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5005, Australia*

^c*Department of Electrical and Electronic Engineering, Iowa State University, IA 50011, United States*

Abstract

Battery cell temperature is a key parameter in battery life degradation, safety, and dynamic performance. Intense charging-discharging operations and high-ambient temperatures escalate battery cell temperature, which in turn accelerates its degradation. Therefore, accurate battery cell temperature estimation can play a significant role in ensuring the optimal operation of a battery energy storage system (BESS). In order to estimate battery cell temperature as accurate as possible, use of non-linear models is imperative due to the non-linear nature of the battery operation. This paper proposes a data-driven model based on a Non-linear Autoregressive Exogenous (NARX) neural network to estimate battery cell temperatures in a utility-scale BESS, considering strongly-correlated independent variables, e.g., charging-discharging current and ambient temperature. Due to different temperature and weather characteristics in each season, seasonal NARX models have also been derived and compared with the universal one. The proposed models' performance has been verified using the field data collected from a grid-connected BESS within a PV plant. The simulation results show high accuracy of the proposed model compared to the measured data for both seasonal and universal models without considering the complexity of the large-scale battery and container thermal dynamics. In particular, in more than 95% of the time, the estimated values yield root mean squared errors (RMSE) below 1 °C in different conditions, which confirms the validity and accuracy of the proposed model. Moreover, seasonal models show better performance with 18% to 50% less RMSE on average (for 1 hour to 24 hours forward estimation) compared to the universal model.

*Corresponding author

Email addresses: mdmehedi.hasan@uq.net.au (Md Mehedi Hasan), a.pourm@adelaide.edu.au (Seyyed Ali Pourmousavi Kani), alij@iastate.edu (Ali Jahanbani Ardakani), saha@itee.uq.edu.au (Tapan Kumar Saha)

Keywords: Battery cell temperature, Battery Energy Storage System (BESS), Time Series NARX feedback neural network, PV plant, Seasonality

1. Introduction

With the increasing amount of renewable energy sources (RES) in the power system, energy storage devices (e.g., batteries) are becoming an integral part of the power system for safe and secure operation. They can support solar and wind energy production by storing the excess energy when available. Additionally, due to high variability and unpredictability in the RES generation profiles, the BESS can be applied to smooth the output power [1]. While the application of BESS in the modern power system is inevitable and storage technologies are improving quickly on economic and technical aspects, battery degradation remains a big concern [2, 3]. The capacity of batteries deteriorates due to charging and discharging activities as well as during idle conditions. Among various factors affecting battery ageing process, battery cell temperature is known to have a major effect by escalating battery degradation exponentially [4, 5] and intensifying safety concerns [6]. In fact, every 10 °C rise in the battery cell temperature doubles the battery degradation rate [7]. Surging battery cell temperature occurs because of charging-discharging operations and ambient temperature [8, 9]. Moreover, the accumulated heat in a utility-scale BESS that is placed in a confined container, elevates the temperature inside the battery container, which increases cooling cost by requiring air conditioning units to operate at a higher rate to maintain the temperature within the desired range [6]. Therefore, it is important to estimate the battery cell temperature evolution in time with respect to a planned operation profile and ambient interactions to have a better evaluation of the incurred cost. In particular, accurate temperature estimation is important for battery energy management systems (EMS), which operate battery in an optimal way considering its degradation and cooling costs. Using a battery cell temperature estimation algorithm, an effective energy management strategy can be established with an accurate cell temperature model. It will help to prevent unnecessary battery operation by taking different factors into account. Therefore, the BESS lifetime can be extended, which positively affects economic benefits of the entire system.

A number of research has been conducted on the battery thermal management of electric vehicles (EVs) and hybrid electric vehicles (HEVs), where they proposed general models of

29 battery thermal behaviour in [10–12] or specialised models for cold weather or lower temperatures [6,
30 9]. However, there is no research to investigate thermal behaviour of a utility-scale BESS in
31 connection with a PV plant and the main grid. In this paper, thermal behaviour of a battery
32 with respect to charge-discharge activities and ambient weather conditions is studied. It is
33 noticeable that in most of the studies, thermo-electric battery physical model and thermal-conductivity
34 based approaches have been followed to analyse thermal behaviour of lithium-ion batteries
35 [6, 13]. These approaches require laboratory-based experiments for a single battery module,
36 considering various factors such as battery ambient temperature, age, state of charge (SOC)
37 and other operational conditions. In [14], a complicated thermo-dynamical model is developed
38 for sealed battery packs in EVs and HEVs in contact with a cooling agent. While the models
39 are accurate, the application of such models could become overwhelmingly complicated in the
40 utility-scale BESS due to the large number of battery modules. Moreover, some of these models
41 typically need several internal parameters to be measured continuously, which might render the
42 solution expensive and unscalable for the utility-scale applications. Detailed thermal modelling
43 of the entire utility-scale BESS is time consuming as it requires complex thermal modelling
44 and intensive computational requirements that are not feasible for the energy management
45 applications. In other words, modelling the complex nature of thermal interactions of thousands
46 of battery cells with each other and the larger surrounding area, and active/passive cooling
47 mechanisms through thermodynamic models will be a computationally intractable approach.

48 Typically, detailed thermal models of a battery requires a number of sensors in different parts
49 of the cell to measure the necessary parameters [15]. These models usually consider the complex
50 nature of the electrochemical components and their interactions in a chemical environment
51 to estimate the battery cell temperature evolution under different operation regimes [16].
52 Particularly, physical principles of the particles are considered in the literature to model thermal
53 dynamics of a battery cell, which can be classified into detailed and simplified models, such as
54 reduced equivalent electric circuit [17, 18] and reduced electro-thermal coupled [19]. They
55 require precise measurements of the internal and external parameters in a battery cell to
56 estimate its thermal behaviour, which is not practical in a utility-scale BESS. Calculating heat
57 generation, conductive and convective heat transfers of a battery cell requires a good number
58 of parameters' measurements and estimations in a battery container, which is impractical or

59 expensive for a large-scale BESS. In addition, accumulated measurement errors and unknown
60 disturbances lead to further inaccuracy in the cell temperature model. Therefore, an easy-to-use
61 practical battery thermal model is needed for utility-scale applications, which can deal with
62 non-linearity of the underlying system. It must also be computationally inexpensive to be
63 integrated within on-line applications, such as an EMS. Therefore, a physics-free data-driven
64 modelling is preferred in this paper.

65 Artificial intelligence methods are widely used in various research fields to model the unknown
66 or complicated physical systems based on measured input and output parameters, such as fuzzy
67 systems, nonparametric regression, wavelets, neural network, or a combination of them which
68 is known as hybrid systems [20–23]. These methods are extensively used to model non-linear
69 black-box systems in different applications [24–26]. The studies conducted with these methods
70 demonstrate that any complex nature of dynamics and non-linearity can be modelled effectively.
71 Therefore, these methods are considered for modelling battery thermal dynamics in this study
72 using available input and output data of the battery operation. In this procedure, historical data
73 of the input and output parameters are used to train a model considering the most influential
74 independent variables.

75 Another advantage of data-driven models over analytical methods is that they can deal with
76 the time-varying internal parameters of the BESS by receiving new data and re-training. For
77 instance, higher internal resistance of the battery cell is inevitable when the cell ages, which
78 contributes to higher cell temperature by excessive heat generation during charging-discharging
79 activities. For analytical methods to work accurately, internal resistance should be measured
80 periodically by interrupting battery operation and spending money on measurement tools and
81 personnel. In data-driven methods, however, new measurement of external parameters and
82 re-training the model can modify it according to the new changes in the battery cell operation.
83 It can be done continuously without requiring expensive procedures. Therefore, the overall
84 accuracy of the model will improve substantially with this low-cost solution over the lifetime
85 of the BESS.

86 In this study, a data-driven approach, namely a Non-linear Autoregressive Network with
87 Exogenous inputs (NARX), is used to estimate lithium-polymer battery cell temperature. This
88 study is a part of the research that has been reported in [27]. It is shown that NARX is

more effective in terms of learning the long temporal dependencies than the other complicated methods such as wavelets, nonparametric regression, and fuzzy models [28]. Instead of developing a model for a single cell in a controlled experimental setup, the proposed model created from the operation of thousands of cells affecting each other in a large-scale BESS. The main goal is to create a thermal model of the battery cells within a container equipped with passive and active cooling mechanisms, which can be utilised in the EMS. Also, the non-linear nature of the phenomenon (i.e., the cell temperature variations due to charge-discharge regime and thermal interactions among cells with outside and cooling mechanisms) can be effectively captured by the NARX model. Moreover, we tested seasonality hypothesis and we showed that a seasonal model will work more accurately. To the best of our knowledge, the application of NARX for day-ahead large-scale battery temperature estimation has not been reported in the literature considering active and passive cooling mechanisms. Despite ordinary neural networks, NARX can model temporal information in a given time series, which is quite important. In other words, not only the input features contain useful information for estimation, but also the changes in input/output over time can provide additional information to increase the accuracy of estimation, which can be modelled by NARX. An ordinary NN treats every sample individually; thus, it fails to model the temporal information.

As a black-box modelling approach, NARX does not need a physical model of the underlying system and the thermal interactions among different mediums and effective parameters. The model can be created by battery operation and ambient temperature historical values measured in a utility-scale PV-BESS plant. In this study, the best structure of the NARX model (i.e., number of neurons and feedback delay) is selected by sensitivity analysis. Minute-by-minute field data, collected from The University of Queensland Gatton campus PV-BESS plant, is used by dividing data into training and test sets for the NARX model development and evaluation, respectively. In addition, in an attempt to improve accuracy of the model and to evaluate seasonal impact on the cell temperature modelling, seasonal NARX models are developed using the training dataset and evaluation of each model is done using different set of seasonal data (i.e., test dataset) for each season. Finally, the results obtained from universal model are compared with the ones obtained from seasonal ones, where the latter outperformed the former.

In this study, autoregressive exogenous neural network approach is adopted to forecast

119 hourly battery cell temperature for up to 24 hours ahead window. Developed non-liner model
120 is established and tested with field data. The simulation outcomes presented in this paper
121 confirms the robustness of the estimation model. In addition, a comparison study is also
122 presented in this paper to compare the performance of two different models for battery cell
123 temperature estimation.

124 The rest of the paper is organised as follows: Section 2 explains the proposed methodology.
125 Section 3 presents the system under study, and Section 4 explains a wide range of results and
126 discussions. Finally, the paper is concluded in Section 5 and future works are outlined.

127 **2. Data-Driven Battery Cell Temperature Model**

128 The NARX approach based on ANN is employed for battery cell temperature modelling
129 due to its capability for non-linearity modelling considering exogenous parameters and feedback
130 signal. The NARX model is based on the non-linear autoregressive model, which is commonly
131 used in time-series modelling. The model can accept exogenous parameters as well as a
132 feedback from the output with a certain delay. In this study, exogenous parameters are the
133 battery current and ambient temperature (weather temperature or outside of the container
134 temperature). Battery current (i.e., charge-discharge and idle regime) has direct influence on
135 the battery cell temperature because of the ohmic and non-ohmic internal losses [11]. Also,
136 the ambient temperature can change the temperature inside the container, which essentially
137 changes cell temperature with some delay. Small changes in the ambient temperature might
138 lead to significant heat accumulation in the battery container and consequently in the battery
139 cell during charging-discharging as well as idle conditions. It also contributes to lower efficiency
140 of the battery plant by requiring cooling systems to operate intensively.

141 Battery cell temperature, similar to many other natural phenomena, does not change like
142 a step function. As it was shown in [5], battery cell temperature starts increasing gradually
143 after a charge or discharge incident due to heat convection delay, physical layout of cells in the
144 container, and cooling system operation. Therefore, limited number of samples from the past
145 can be helpful to estimate future output with higher accuracy, which requires a feedback from
146 output in the model.

147 2.1. NARX Models

The NARX model can be mathematically represented as:

$$\begin{aligned} y(t) &= f[y(t-1), y(t-2), \dots, y(t-n_y), \\ &u(t-1), u(t-2), \dots, u(t-n_u), \\ &e(t-1), e(t-2), e(t-n_e)] + e(t) \end{aligned} \quad (1)$$

148 where, $y(k)$ is the output or dependent variable; $u(k)$ refers to the input parameters; $e(k)$ is
149 the noise sequence; t denotes the discrete time-step; and n_u and n_y represents the number of
150 time-step delays for input and output parameters, respectively. Non-linear mapping function,
151 $f(\cdot)$, is generally unknown. This function can be approximated using different model structures,
152 such as fuzzy logic-based models, neural networks, etc. In this work, it is represented by a
153 standard multi-layer perceptron (MLP) network in this study. MLP is a dominant structure
154 of learning any type of continuous non-linear mapping when bundled with proper training
155 algorithms.

156 2.2. Artificial Neural Networks

157 Artificial neural networks are simple imitations of how human brain processes the data.
158 They can be used for several applications such as classification, regression, and pattern recognition.
159 Fig. 1 shows a typical neural network consisting of three layers, namely, input, hidden, and
160 output layer.

161 An ANN model can be shown mathematically as follows:

$$\tilde{Y} = \Psi \left(\sum_{h=1}^H w_{ho} \cdot \Phi(w_{1h} \cdot X_1 + w_{2h} \cdot X_2 + b_h) + b_o \right) \quad (2)$$

162 where w_{1h} and w_{2h} are the weights of the neurons in the hidden layer; b_h is the biases of the
163 neurons in the hidden layer; w_{ho} and b_o are the weights and bias of the output layer; H is the
164 number of neurons in the hidden layer (10 in this study); X_1 and X_2 are the samples vectors
165 of the two predictors; and $\Psi(\cdot)$ and $\Phi(\cdot)$ are the activation functions of the output and hidden
166 layers, respectively. Linear and Tan-Sigmoid functions are chosen for the output and hidden
167 layers, respectively:

$$\Psi = \frac{2}{1 + e^{-2n}} - 1 \quad (3)$$

168 Similar to a typical ANN structure, the NARX network consists of three layers, namely

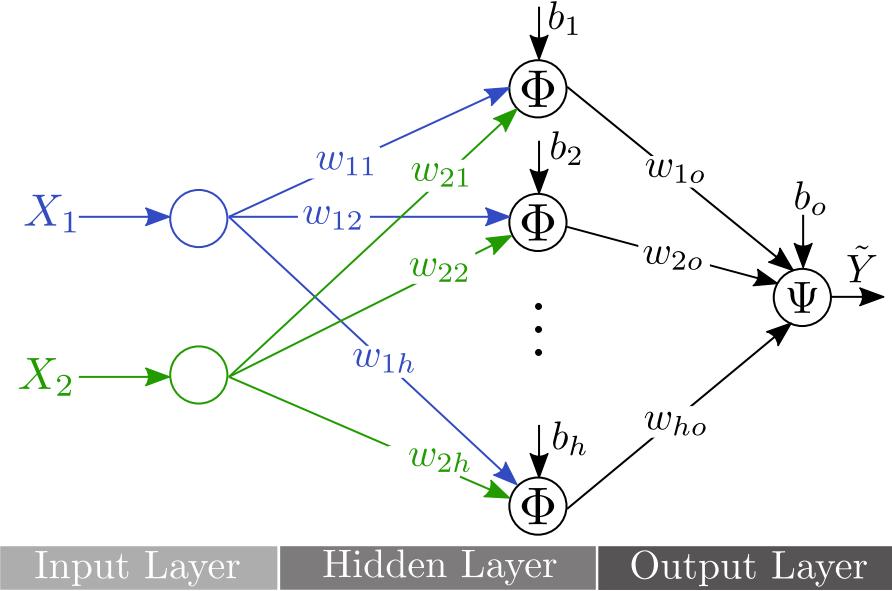


Figure 1: The structure of a feed-forward neural network model.

169 input, hidden and output layers. Figure 2 shows block diagram of an NARX model for
 170 estimation. Each layer consists of a specific number of neurons. In this study, a three-layer
 171 feedforward network with a sigmoid transfer function and a linear function in the hidden
 172 and output layers, respectively, is used for the approximation of the function, $f(\cdot)$. The
 173 estimated output is used as an input parameter to estimate the battery cell temperature in
 174 the future time steps. The weights and biases, shown in Figure 2, are important to optimise
 175 the network performance. Tuning the values of the weights and biases occurs during training
 176 of the NARX model. If there are any difference between estimated and actual output values,
 177 weights and biases will be adjusted during training process using a gradient descent-based (i.e.,
 178 Levenberg-Marquardt in this study) algorithm to minimise the errors. Network training process
 179 will continue with the same input and output values until the error reaches to an acceptable
 180 limit. Tapped delay line (TDL), shown in Figure 2, is an embedded memory in feedforward
 181 network, which stores present and previous time series as per the defined delay.

182 Two different architectures of NARX are used for training and finally estimating battery cell
 183 temperature, which are series-parallel and parallel architectures. Series-parallel architecture,
 184 shown in Figure 3a and Eq.(4), is used during training stage, where actual battery cell temperature
 185 is available from the past observations. The future values are estimated from the present and
 186 past values of the input variables, $u(t) \dots u(t - n_u)$ and true battery cell temperature from the
 187 past, i.e., $y(t - n), \dots, y(t - n_y)$. The advantage of this model is that the trained network has

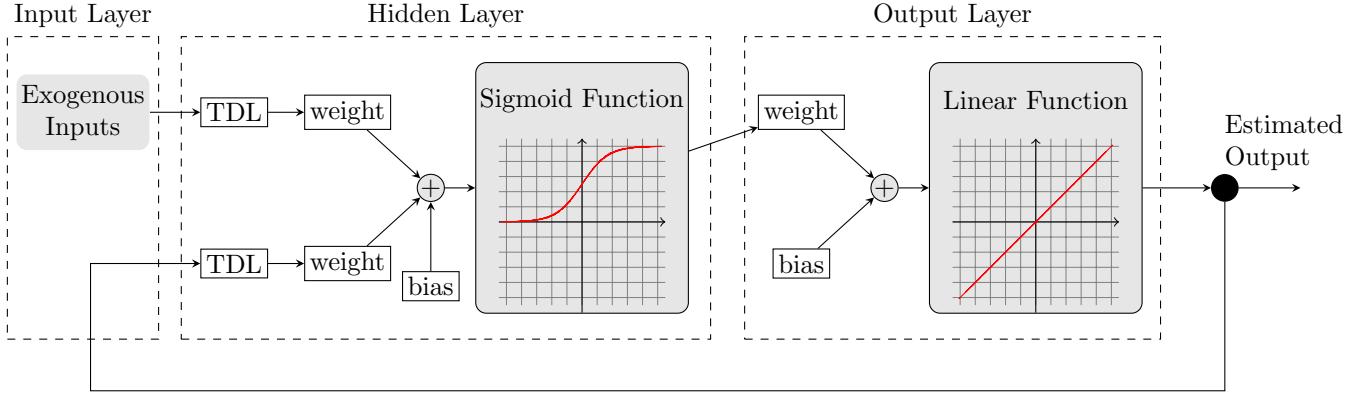


Figure 2: NARX structural model based on MLP neural network

188 a purely feedforward architecture and static back-propagation can be used for training. The
 189 series-parallel architecture can be represented as:

$$\hat{y}(t)_{\text{Training}} = \hat{f}(y(t-1), y(t-2), \dots, y(t-n_y), u(t), u(t-1), u(t-2), \dots, u(t-n_u)) \quad (4)$$

190 where, $\hat{y}(t)_{\text{Training}}$ is the Series-parallel mode output. However, the series-parallel architecture
 191 is not capable of estimating multi-step ahead cell temperature. Therefore, parallel architecture,
 192 shown in Figure 3b and Eq.(5), is used to perform future estimation for the test data and
 193 real-world simulation. The estimation is performed by taking the past and present values of
 194 the input parameters, i.e., $u(t), \dots, u(t-n_u)$ and previously estimated battery cell temperature
 195 values, $\hat{y}(t)_{\text{Testing}}, \dots, \hat{y}(t-n_y)_{\text{Testing}}$ during testing stage, the results of which will be shown and
 196 discussed in section 4. The parallel NARX architecture can be shown mathematically by:

$$\hat{y}(t)_{\text{Testing}} = \hat{f}(\hat{y}(t-1)_{\text{Testing}}, \hat{y}(t-2)_{\text{Testing}}, \dots, \hat{y}(t-n_y)_{\text{Testing}}, u(t), u(t-1), u(t-2), \dots, u(t-n_u)) \quad (5)$$

197 where, $\hat{y}(t)_{\text{Testing}}$ is the parallel mode output.

198 The number of neurons in the input and output layers of the NARX model are equal to
 199 the number of independent (i.e., current and ambient temperature) and dependent variables
 200 (i.e., battery cell temperature), respectively. Only one hidden layer is considered in the NARX
 201 model as per universality theorem [29], where neural network with single hidden layer is able
 202 to approximate continuous function with desired accuracy most of the time. Selecting the
 203 number of neurons in the hidden layer is important to have the most efficient and accurate
 204 network. Employing few or too many neurons in the hidden layer will result in underfitting or
 205 overfitting, respectively. Underfitting occurs when a small number of neurons are unable to learn
 206 the patterns in the training signal adequately. On the other hand, overfitting happens when the

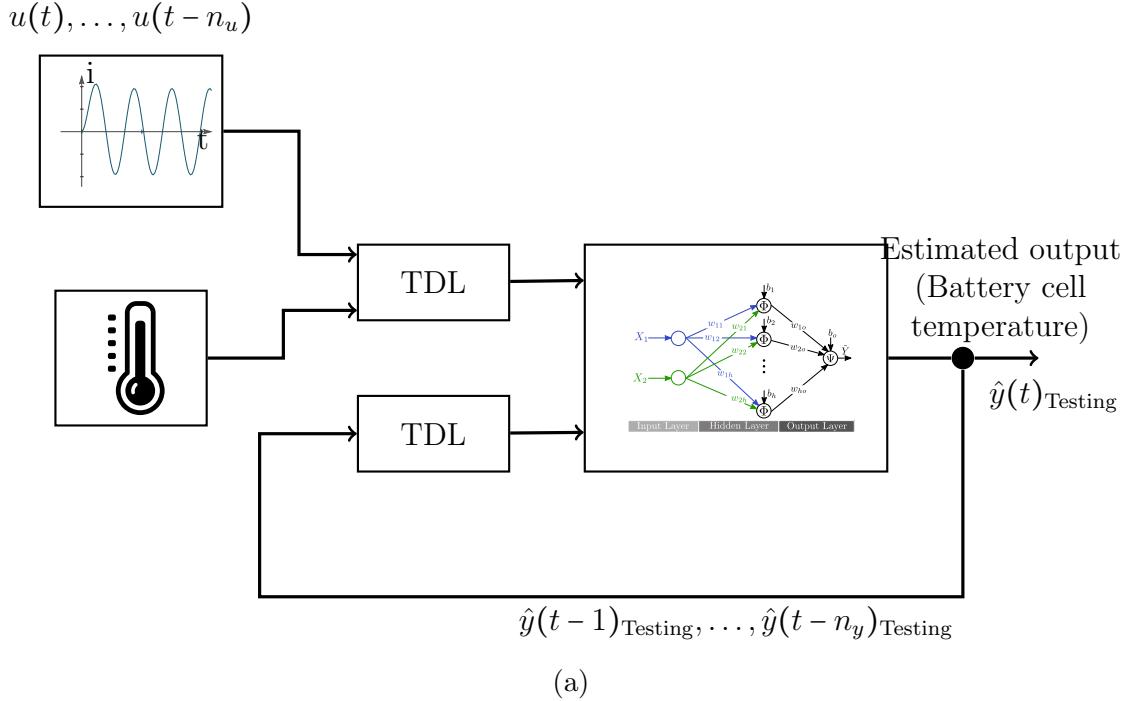
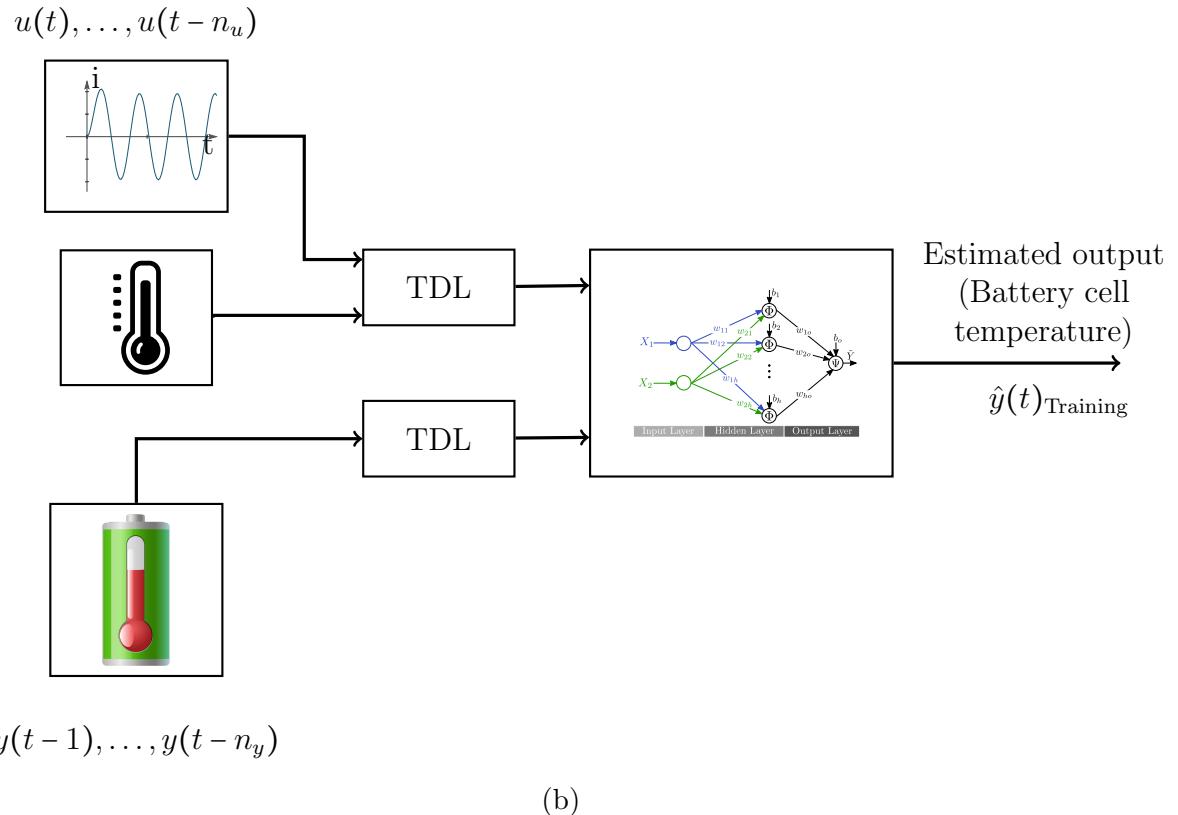


Figure 3: NARX Architectures: (a) Series-parallel architecture for NARX during training; (b) Parallel architecture for NARX during testing and actual simulation

207 trained model rely on the training dataset too much, which might provide unacceptable results
 208 for the test dataset. In addition to the importance of the number of neurons in the hidden
 209 layer, the time delay (i.e., the number of samples from the past) of the exogenous input and
 210 feedback signals are important in the performance and accuracy of the model. A sensitivity
 211 analysis has been proposed in this study to select the best number of neurons in the hidden
 212 layer and time delay in the feedback signal. In this analysis, different time delays (i.e., 10, 20,
 213 30, 40, 50 and 60 minutes) and number of neurons (i.e., 2, 4, 6, 8, 10, 12, 14, 16, 18, 20) have
 214 been used to train the neural network and then test the model with completely different set
 215 of data. Data is normalised for training and model evaluation purposes throughout this study,
 216 where maximum value of input and output parameters in the historical data are considered as
 217 the base value for normalisation. Normalising the original data can eliminate negative influence
 218 of large numbers, which is apt to improve the convergence rate of the training process.

219 Three standard measures are used in this study to quantify the accuracy of the NARX
 220 model in estimating battery cell temperature. Root mean squared error (RMSE), correlation
 221 coefficient (R) and adjusted R^2 ($R^2_{Adjusted}$) given in Eq. (6), Eq. (7) and Eq. (8), respectively,
 222 are used to determine the trained network outcomes in training, testing and validation stages.
 223 The best trained NARX model is indicated by the RMSE value close to 0, R and $R^2_{Adjusted}$
 224 value close to 1.

$$RMSE = \sqrt{\frac{\sum_{i=1}^N (T_{a_i} - T_{m_i})^2}{N}} \quad (6)$$

$$R = \frac{\sum_{i=1}^N [(T_{a_i} - \bar{T}_a) \times (T_{m_i} - \bar{T}_m)]}{\sqrt{\sum_{i=1}^N (T_{a_i} - \bar{T}_a)^2 \times \sum_{i=1}^N (T_{m_i} - \bar{T}_m)^2}} \quad (7)$$

$$R^2_{Adjusted} = 1 - \frac{(1 - R^2)(N - 1)}{N - k - 1} \quad (8)$$

227 where, in Eq. (6), T_{a_i} , T_{m_i} and N represent actual battery cell temperature, estimated battery
 228 cell temperature using NARX model and the total number of samples, respectively. In Eq. (7),
 229 \bar{T}_a denotes mean value of actual temperature for battery cell. Similarly, \bar{T}_m represents the
 230 average of estimated temperature. In Eq. (8), k represents the number of variables in the

231 model. Since network training involves solving an optimisation problem, values of biases and
232 weights might be different in multiple runs of the training process with the same input and
233 output values. This also can affect the performance of the network when it is used for different
234 test dataset because different NARX network can give altered results for the same set of test
235 samples. To resolve this issue, neural network is trained several times for the better accuracy.

236 In this model, one year of minute-by-minute data has been used to train a NARX network
237 for estimating battery cell temperature. One year of data contains significant number of
238 charging-discharging and ambient temperature data points, which covers many different combinations.

239 In this paper, two types of model are created. In the first type, data from the entire training
240 set is used to develop a single NARX model for the entire year (called universal NARX model).

241 In the second type, training data is partitioned in four different seasons and a specialised NARX
242 model is developed for each season (called seasonal NARX model). In this case, apart from
243 whole-year modelling structure, seasonality has been given priority since ambient temperature
244 is highly dependent on the seasonal variations with different characteristics. Moreover, solar
245 panels generation behaves differently in various seasons because it dominantly depends on the
246 solar irradiation and ambient temperature. As solar radiation varies in seasons, the charging
247 and discharging activities of the BESS varies accordingly. Therefore, more fluctuations in
248 charging and discharging may occur during winter compared to summer or vice versa. As will
249 be shown in the simulation results, the seasonal NARX model outperforms the universal model
250 considerably.

251 3. System Under Study

252 In this study, operational data from a grid-connected 600 kW/760 kWh lithium-polymer
253 battery in a 3.275 MWp PV plant is considered. The plant is located at the University of
254 Queensland (UQ) Gatton campus, Australia. This plant is connected to the local 11 kV
255 distribution network. Figure 4 and Table 1 show a detail overview of the battery configuration
256 and characteristics in the plant.

257 The total BESS capacity and power are divided into two battery banks. Each battery bank
258 has four racks of battery modules in parallel and each of the racks comprises ten series of
259 battery modules. Each module has two parallel strings of 18 battery cells in series. Battery
260 cell specification details are shown in Table 1. Please refer to [5] and [30] for more details.

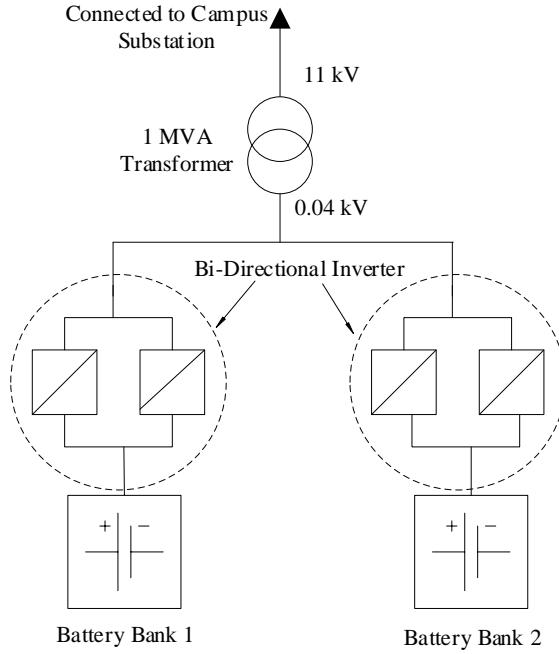


Figure 4: Schematic diagram of the BESS configuration in the PV plant

Table 1: Battery cell specifications

Description	Specification
Battery Cell Type	Lithium Polymer
Cell Capacity	75 Ah
Cell Voltage	2.7 V to 4.1 V, average 3.7 V
Cycle-Life	4000 Cycles at 80% Depth of Discharge (DoD)
Charging Temperature	10 to 35 °C
Discharging Temperature	-10 to 55 °C

261 In order to keep the battery cells and battery room temperature within an acceptable
 262 range, a cooling system is used in the battery container. Battery module and cell ventilation is
 263 achieved through a) passive cooling mechanisms including air vent holes along the sides of the
 264 battery casing and spacing of cells, which ensures an even temperature distribution between
 265 the cells, and b) active cooling consisting of rack fans and air-conditioning units with 7.7 kW
 266 rated cooling capacity. Three fans are placed at the top of each battery bank to draw air up
 267 through vents in the front panel by passing through the modules and out at the top. The fans
 268 start operating when cell temperature reaches 29 °C. The consumption of each rack fan is 44.64
 269 W, which is powered by an external +24 V DC system. Battery modules are spaced inside the
 270 rack with gaps to allow airflow. The air conditioner is designed for maximum 30 °C internal
 271 ambient and 50 °C outside temperature [5, 27]

272 The air conditioning unit is set at the room temperature of 23 °C, which indicates that
 273 the evaporator of the air conditioning unit starts its operation along with fan when the room

274 temperature reaches above 23 °C. The room temperature is measured and recorded by the
275 thermostat installed with the air conditioning unit. The higher the room temperature, the
276 more energy consumption by the air conditioning.

277 A sophisticated and comprehensive measurement and data management and warehousing
278 system is implemented in the UQ Gatton Solar Research Facility (GSRF). About 1390 points
279 within the BESS and its container are monitored through measurement and data logging system,
280 which gives detailed insights into the battery operation on the cell and module levels. The
281 collected data is remotely accessible through a Wonderware Historian system interface. A
282 significant number of variables including weather parameters, DC and AC side parameters of
283 the inverters are measured and stored in Wonderware Historian system. The plant data logging,
284 including BESS, is performed using a Delta Mode operation. Although data is sampled at a
285 1-second rate, the Delta Mode operation is adopted to reduce data storage capacity requirement.
286 For further details, please see [5, 27]. In this study, data with 1-minute resolution (60 samples
287 per hour) have been used for training and testing the model, which are further explained in the
288 following section.

289 4. Simulation Study

290 In this paper, two independent parameters, i.e., battery current and ambient temperature,
291 have been considered to create and test battery cell temperature estimation model. The
292 following data selection and analysis are carried out in the simulation studies for training
293 and assessing the NARX networks:

- 294 • For training purposes, 1-minute data of around 12 months from 1st April 2016 to 31st
295 March 2017 have been selected, which consists of 516,960 samples (359 days excluding 6 days
296 used of each season that is used for testing) overall. Entire year is covered in the data to
297 represent seasonal differences in the real-world condition. A universal NARX model is created
298 for battery cell temperature estimation for the entire year. Another 90 days equivalent data
299 is used for validation and testing the trained model during training process in the MATLAB
300 Toolbox. Please note that the training, validation, and testing days are selected randomly and
301 each simulations study has been run for several times to check on the robustness of the results.
302 Finally, the average results are reported in this section.
- 303 • Seasonality analysis has been carried out by developing separate NARX model for each

304 season (i.e., seasonal NARX model). Similar procedure as universal model has been followed
305 for training each seasonal model. Multiple days of each season were removed from the training
306 dataset as for assessing performance of the respective seasonal model.

307 • For further assessment of universal network model, 56 days of data from 10th July 2017
308 to 31st October 2017 as well as the test days used for seasonal model assessment are used.
309 The impact of time delay on the performance of the model also has been analysed for feedback
310 signal by testing the network with test days and NARX with feedback configuration, as shown
311 in Figure 3b.

312 • NARX training has been repeated for different number of neurons (i.e., 2, 4, 6, 8, 10, 12,
313 14, 16, 18 and 20 minutes) and time delay (i.e., 10, 20, 30, 50 and 60 minutes), separately, as
314 a sensitivity analysis to reveal their impact on the accuracy of the model and to find the best
315 number of neurons and time delay for the rest of the simulation studies. The assessment of
316 each model with different time delay was carried out by arbitrarily selected test data.

317 • A comparison study between the universal and seasonal NARX models has been carried
318 out in the simulation study to determine the best NARX model.

319 MATLAB/Neural Net Time Series toolbox is used in this study for training and testing
320 NARX models. During training process in MATLAB Neural Net Time Series toolbox, battery
321 cell temperature is estimated for 1 minute ahead. In reality, however, we need estimated cell
322 temperature for longer time horizons. For instance, a day-ahead EMS of a microgrid plans
323 the system operation for 24 hours ahead. In this case, it is needed to estimate battery cell
324 temperature for a given charge-discharge profile in the next 24 hours. To estimate temperature
325 in multi-hour ahead, the trained model is recursively used, where the estimated cell temperature
326 from previous time step (1 minute before) is used as an input parameter in the feedback loop.
327 For instance, if 24 hours ahead estimation is required for a given charge-discharge and ambient
328 temperature profiles, the estimation will be repeated 1440 times to cover the entire period.

329 4.1. *Sensitivity analysis on the number of neurons and time delay*

330 The number of neurons in the hidden layer and time delay of feedback signal are determined
331 by sensitivity analysis. To find the appropriate number of neurons, different NARX model is
332 trained with different number of neurons in the hidden layer, while input and output samples
333 were remained the same. The number of neurons in the hidden layer is increased from 2 to

334 20 with an interval of two neurons to determine the optimal network model. Each model was
335 run for 20 times for a specific number of neurons to reduce the impact of initialisation and
336 optimisation of the weights and biases on the results. Average estimation error on the test
337 dataset is used to determine the best number of neurons. As per Figure 5a, the average value
338 of RMSE is higher when the number of neurons is at the lower and higher ranges. 10 neurons
339 resulted in only 0.59 °C average RMSE, indicating the best performance among different cases.
340 Therefore, NARX model with 10 neurons in the hidden layer will be used in the rest of the
341 paper.

342 In order to find the best time delay of the feedback signal for the parallel network shown
343 in Figure 3b, different NARX models are trained for different time delays (i.e., 10, 20, 30,
344 40, 50 and 60 minutes). In each case, the number of neurons in the hidden layer was 10 and
345 the performance of the NARX model is assessed by using the test dataset. 56 days of data
346 is randomly selected with 24 hours horizon for assessing the network performance. Hourly
347 average RMSE values are calculated from minute-by-minute data of 56 days test data, which
348 are shown in Figure 5b. From the figure, it is clear that 20 minutes feedback delay yields
349 the best performance on the test dataset. 10 and 30 minutes time delay also shows reliable
350 performance. However, creating a model with 20 minutes delay is comparatively more efficient
351 and accurate. For the rest of the paper, 10 neurons will be considered in the hidden layer and
352 cell temperature feedback of 20 minutes will be used. Please note that the sensitivity analyses
353 are done for 1 minute ahead estimation.

354 *4.2. The universal NARX model*

355 This section presents the universal NARX model training and its performance estimation
356 with completely different set of test data. Table 2 and Table 3 show the parameters for network
357 training and selection of data with outcomes during training process, respectively. 449 days
358 (excluding 6 days used for evaluating seasonality in the next section) of the data have been
359 used for training, validation and testing. 359 days (80%) or a complete year of data has only
360 been used to train the NARX model. 90 days (20%) of data for validation and testing stages
361 (45 days each) are randomly chosen from the remaining data to validate the model during
362 training stage and evaluate the trained model during testing stage. Since the data selection
363 affects the performance of the NARX model, the training process has been repeated 10 times to

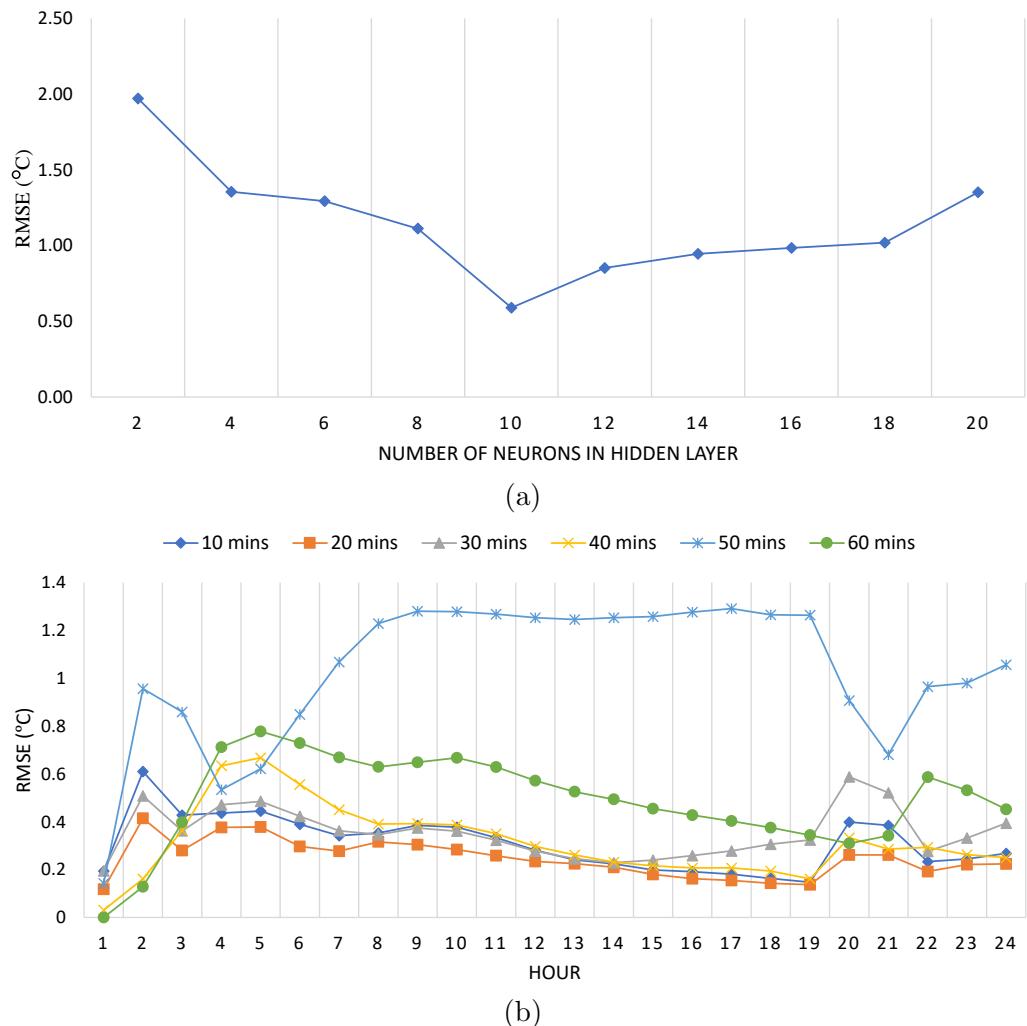


Figure 5: Sensitivity Analysis: (a) Average RMSE of different NARX model with different number of neurons in the hidden layer; (b) Sensitivity analysis results on the cell temperature feedback delay

364 minimise the impact of the training process and to choose the best NARX model. It has been
 365 observed that although different combinations provide different results, the performance of the
 366 model (i.e., RMSE, R and $R^2_{Adjusted}$) remains almost the same. **Validation dataset** is used to
 367 minimise overfitting during training by MATLAB toolbox. This dataset does not adjust the
 368 weights of the network model but weights are checked for accuracy in the model estimation.
 369 **Testing dataset** is completely unseen set of samples that is used by the Neural Net Time
 370 Series toolbox in MATLAB at the end of training to provide an unbiased assessment of the
 371 trained model. A good performance of a model on the test dataset is the key to a successful
 372 modelling.

Table 2: Parameters for training the NARX networks

Parameter	Description
Problem	Nonlinear auto-regressive time-series network with external input (NARX)
Training Algorithm	Levenberg-Marquardt
Input	Charging-Discharging Current and Ambient Temperature
Output	Battery Cell Temperature
Data Division	Training (80%), Validation (10%) and Testing (10%)
Hidden layer size	10 neurons
Feedback Delay	20 minutes

Table 3: Data selection and training outcomes from MATLAB Neural Net Time Series toolbox

Data Type	Number of Sample	Sample Percentage	Regression (R)	Adjusted R^2	RMSE ($^{\circ}\text{C}$)
Training	516,960	80%	0.989	0.978	0.452
Validation	64,800	10%	0.987	0.974	0.551
Testing	64,800	10%	0.99	0.98	0.415

373 The performance of the universal model in comparison with the actual data is tabulated in
 374 Table. 3 for training, validation, and testing processes during training in the MATLAB Neural
 375 Net Time Series toolbox, where one time step ahead estimation is carried out. The RMSE,
 376 coefficient of determination, i.e., R , and Adjusted R^2 are calculated using Eq.(6), Eq.(7) and
 377 Eq.(8), respectively. There is a close agreement between actual battery cell temperature values
 378 with those estimated by the network. According to Table 3, the $R^2_{Adjusted}$ values for training,
 379 validation and testing are very close to 1, which indicates a good model fit. Moreover, it
 380 indicates that the model is not overfitted by providing a true goodness of fit by yielding similar
 381 performance for test dataset. In addition, the RMSE is 0.454 $^{\circ}\text{C}$, 0.55 $^{\circ}\text{C}$ and 0.42 $^{\circ}\text{C}$ for
 382 training, validation and testing, respectively, which is very accurate for many applications such
 383 as EMS. As per both assessment criteria of the trained network, it can be stated that the
 384 universal model is able to provide a good estimation of the battery cell temperature for many

385 combination of input parameters.

386 The universal NARX model is further validated by testing with completely different set of
387 data. In this analysis, 56 days of data (outside of training, testing and validation dataset) have
388 been considered to estimate battery cell temperature in 24 hours ahead (minute-by-minute
389 samples) using the trained model recursively. Figure 6 shows the hourly-averaged RMSE
390 histogram of the 56 days of estimation, where 96.1% of incidents are experiencing an RMSE
391 below 1 °C. Only 3.9% of incidents are yielding more than 1 °C. The majority of the incidents
392 are between 0.17 °C and 0.22 °C RMSE range. Also, it is clear from the histogram that
393 estimated RMSE never exceeded 1.95 °C for the 56 test days. It indicates a relatively robust
394 performance of the NARX model, which can be effective in determining battery cell temperature
395 in advance with a high accuracy. On average, the computation time for training the universal
396 model and estimating the battery cell temperature for each day are 904 seconds and 40 seconds,
397 respectively. It indicates a fast process in estimating battery cell temperature.

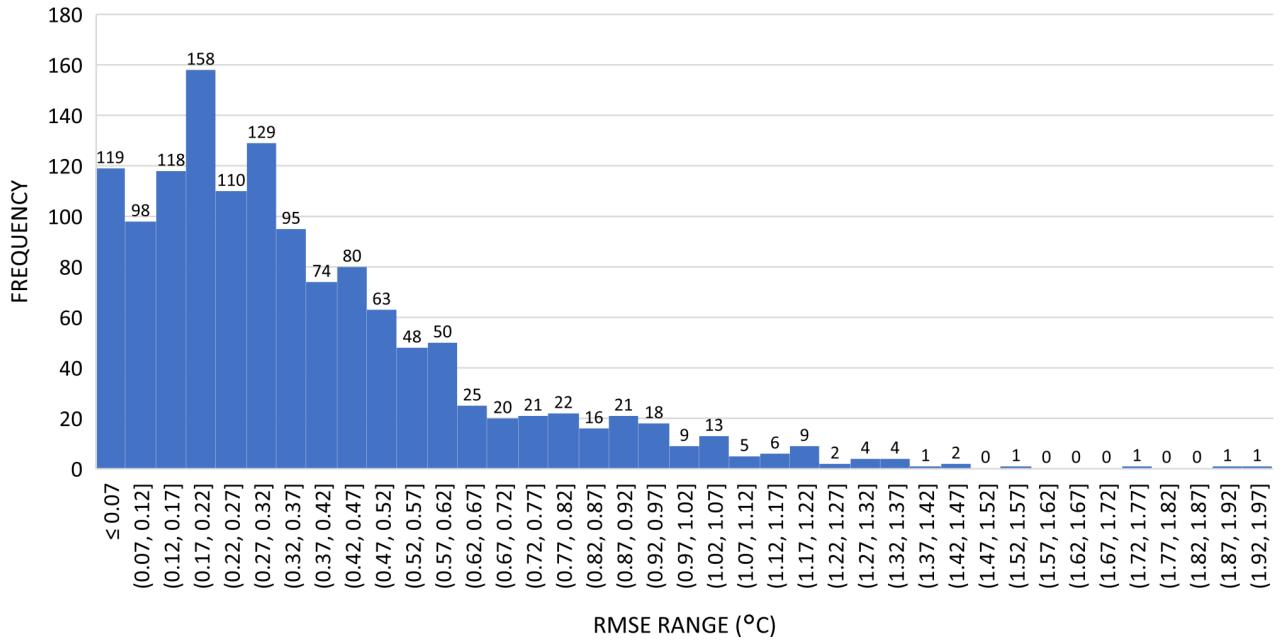


Figure 6: Hourly RMSE histogram for 56 days of test data obtained by the universal model for 24-hour ahead

398 *4.3. Seasonal Effects*

399 In order to evaluate the seasonal effects, an NARX model is trained for each season in
400 this subsection, and their performance is compared with the universal model. The battery
401 cell temperature estimation model for each season has been assessed using completely different
402 set of data extracted from each season, explained in Table 4. The percentage of seasonal

403 data for training, testing, and validation differs from the the percentages in universal model,
 404 as given in Table 5. This is because there are fewer samples available for testing and validation
 405 for the seasonal model compared to the universal one. Using this approach, the number of
 406 testing samples is the same as the universal model. It is worth mentioning that the difference
 407 of outcome using 80 : 10 : 10 percentages was trivial without a significant deterioration of
 408 accuracy.

Table 4: Seasonal data selection for training and evaluation

Season	Months	Year	Days for training	Test Days for evaluation
Spring	September, October, November	2017	85	6 Days
Summer	December, January, February	2016-2017	84	6 Days
Autumn	March, April, May	2017	86	6 Days
Winter	June, July, August	2017	86	6 Days

409 Similar NARX configuration with 10 neurons in the hidden layer and feedback time delay
 410 of 20 minutes are used in this analysis. Randomly selected test days from each season have
 411 been extracted for assessing the trained model. In order to make fair comparison, the same six
 412 days were taken out from the training dataset in the universal model. The computation time
 413 for training each seasonal model is 50 seconds to 65 seconds, while estimating the battery cell
 414 temperature for an entire day is 40 seconds on average. This indicates a fast process in training
 415 and testing seasonal models.

Table 5: Seasonal data selection and training outcomes from MATLAB Neural Net Time Series toolbox

Season	Data Type	Number of Sample	Sample Percentage	Regression (R)	Adjusted R^2	RMSE (°C)
Spring	Training	85,680	70%	0.991	0.982	0.343
	Validation	18,360	15%	0.983	0.966	0.702
	Testing	18,360	15%	0.991	0.982	0.358
Summer	Training	84,672	70%	0.989	0.978	0.479
	Validation	18,144	15%	0.986	0.972	0.593
	Testing	18,144	15%	0.992	0.984	0.342
Autumn	Training	86,688	70%	0.991	0.982	0.286
	Validation	18,576	15%	0.993	0.986	0.276
	Testing	18,576	15%	0.99	0.98	0.31
Winter	Training	86,688	70%	0.995	0.99	0.33
	Validation	18,576	15%	0.992	0.984	0.337
	Testing	18,576	15%	0.992	0.984	0.336

416 Table 5 shows the number of samples and outcomes during training, validation and testing
 417 stages for each seasonal NARX model from MATLAB Neural Net Time Series toolbox. Adjusted
 418 R^2 values for each season are close to 1 in all cases, which indicates an outstanding fit to the
 419 model by drawing a close relationship between estimated and actual battery cell temperature
 420 for all four seasons. The RMSE value has also been considered to evaluate the model. According

421 to the respective table of each season, the RMSE values are below 0.71 °C. Most importantly
 422 the RMSE values during testing process are below 0.5 °C in all seasons, which shows a close
 423 agreement between estimated and actual battery cell temperature.

424 Figure 7 shows the performances of the seasonal NARX models for the test data on an
 425 hourly (i.e., RMSE hourly) basis. The battery cell temperatures are estimated recursively for
 426 24 hours ahead, as explained at the beginning of Section 4. To obtain hourly RMSE values,
 427 average of minute-by-minute RMSEs are calculated for every hour. The values are shown for
 428 summer only in this figure due to similar performance experienced for the rest of the seasonal
 429 models. It can be observed from the figure that the RMSE value is lower than 1 °C, except a
 430 couple of hourly incidents on day 3, and the differences between days are minor. The RMSE
 431 outcomes during hour 1 to 3 and hour 10 to 16 (where battery operates rarely) of each day are
 432 comparatively better than the RMSE values during other hours. However, the differences are
 433 insignificant, which pointing out to a robust model performance throughout the whole day.

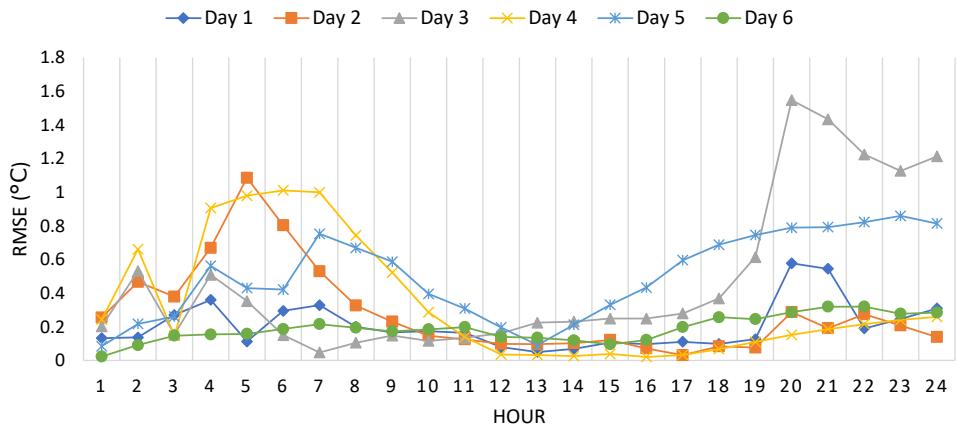


Figure 7: RMSE of the test days during summer season using recursive estimation for 24 hours ahead.

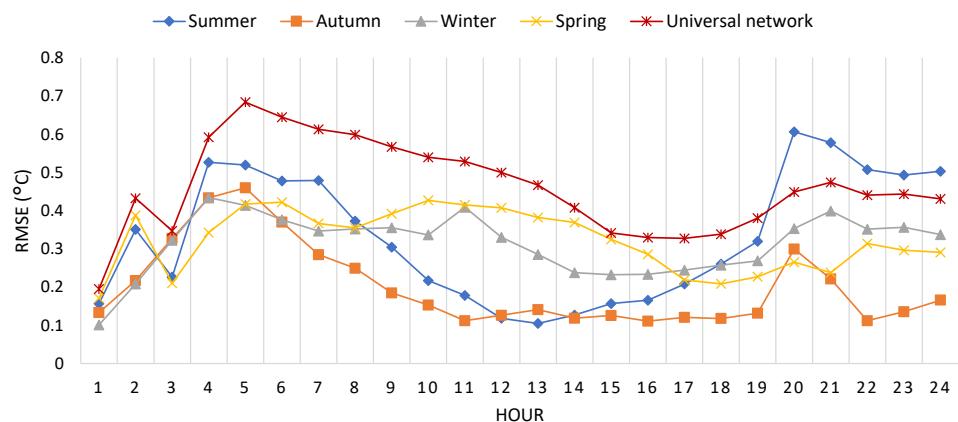


Figure 8: Seasonal comparison based on the average hourly RMSE obtained by using seasonal and universal network models.

434 Figure 8 shows the average RMSE comparison between seasonal and universal models. In
 435 this case, the average RMSE values of the test days for each season using seasonal NARX model
 436 and 24 days (4 Seasons \times 6 Days) using the universal NARX model have been considered for
 437 each hourly RMSE. It can be seen that summer and spring seasons are yielding maximum of
 438 0.66 $^{\circ}$ C on average using the seasonal network model. On the other hand, autumn, winter and
 439 spring have RMSE values of 0.46 $^{\circ}$ C, 0.43 $^{\circ}$ C and 0.42 $^{\circ}$ C, respectively. Although couple of hours
 440 during summer show more RMSE than autumn, winter and spring, the daily average RMSE
 441 value differences between seasons are not significant, which suggests a better performance of
 442 the seasonal models in general. In comparison with the universal model, it is clear that the
 443 seasonal NARX models yield at least 0.1 $^{\circ}$ C to 0.3 $^{\circ}$ C smaller RMSE during most of the hours
 444 of a day for the same test days compared to the universal model.

445 In order to investigate further on the performance of the seasonal and universal NARX
 446 models, the RMSE ratio has been calculated. RMSE ratio is used in this study to compare
 447 the performance of universal and seasonal models for the similar test days. The comparison is
 448 made for every hour separately to better illustrate the variations in performance in different
 449 hours. Figure 9a shows a comparison between performance of the seasonal and universal NARX
 450 models in summer using Eq.(9). The goal is to perform a quantitative comparison between the
 451 two models. It helps to determine which model is providing better results with lower RMSE
 452 value in an hourly basis.

$$\text{RMSE Ratio} = \frac{\text{RMSE of the Seasonal Model}}{\text{RMSE of the Universal Model}} \quad (9)$$

453 When the RMSE ratio is lower than 1 (red dashed line in the figure), it represents a better
 454 performance of seasonal network model and above 1 always indicates better performance for
 455 the universal model. In this comparison, the same six days of test data has been used for both
 456 models and hourly estimated values up to 24 hours has been considered to compare the results.

457 As per Figure 9a, the RMSE ratio is below 1 in most of the hourly incidents during summer
 458 test days, which denotes a better performance by the seasonal model. Although better outcomes
 459 by universal network is experienced on Day 5 for a couple of hours, the ratio is below 1 most
 460 of the time, indicating better outcomes by the seasonal network. The values are shown for
 461 summer only in this figure due to similar performance experienced for the rest of the seasonal
 462 models. Figure 9b shows almost similar outcome during autumn, where the hourly ratios are

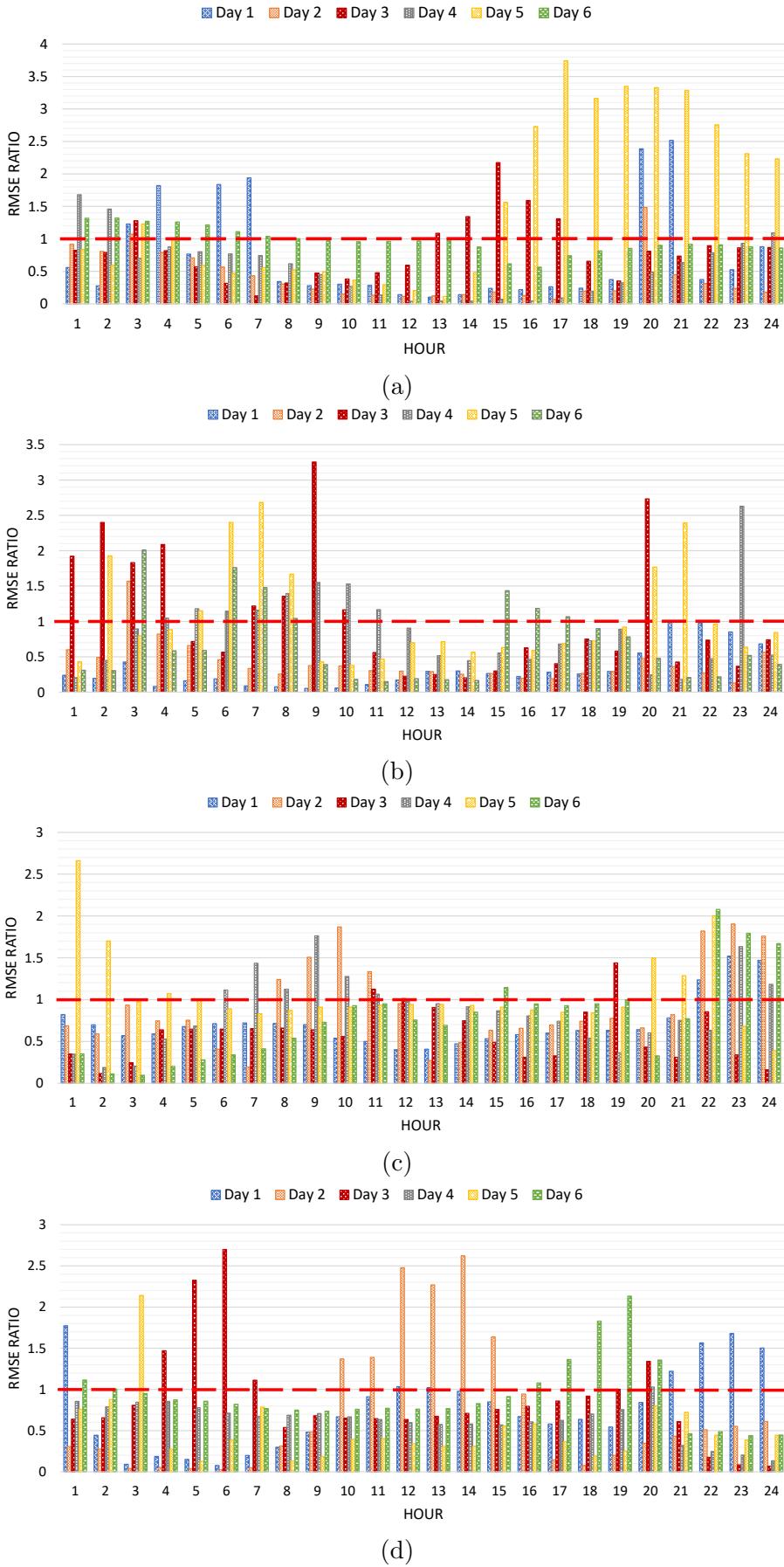


Figure 9: The RMSE ratio for the seasonal model: (a) summer; (b) autumn; (c) winter; (d) spring

463 less than 1 most of the time, except a couple of instances. Similar conclusion can be drawn
464 for winter in Figure 9c. While the ratios are closer to 1 compared to summer, most of the
465 cases are still below 1, indicating a better performance of the seasonal model compared to the
466 universal model over the selected test days. During spring season, shown in Figure 9d, the
467 RMSE ratio for couple of incidents from different test days are bigger than 1. However, more
468 than 80% of the time, ratios are far below 1, which demonstrates a better performance of the
469 seasonal network model than universal model for this season too. In few instances, hourly
470 ratios are more than 2 in every season, which indicates the universal model is performing more
471 than two times better than the seasonal model. However, 74.3%, 77.8%, 78.5%, 80.1% of the
472 hours are showing better results for the seasonal model in summer, autumn, winter and spring,
473 respectively.

474 Overall, it can be concluded that training the neural network with seasonal data provides
475 a better results than the network trained with the universal data. Although there are some
476 variations between seasons, on average, all four seasons are performing equally well and more
477 accurate results can be obtained compared to the universal model.

478 Comparing the results presented in this paper against the results in [31], it can be seen that
479 the proposed approach in this work results in lower RMSE values. The maximum difference
480 reached to 1.48 °C for universal model. The RMSE differences between ARIMAX and NARX
481 is slightly higher and on average the value is 2.24 °C, where ARIMAX is expressing 0.56 °C,
482 1.65 °C, and 1.9 °C more RMSE values than NARX models during summer, autumn, and winter,
483 respectively. The proposed recursive estimation with NARX network in this manuscript shows
484 better estimation results for an entire day than the ARIMAX model, which is a linear model.
485 We have not tried ordinary NN models since they are not able to consider exogenous parameters
486 as extra predictors in the model, which will degrade the performance of the model.

487 5. Conclusion

488 In this paper, a model based on non-linear autoregressive exogenous artificial neural network
489 (NARX) is proposed to estimate battery cell temperature. The proposed method does not
490 require to consider any complicated battery thermal dynamics and systematic thermo-dynamical
491 model of the battery container. Only two dominant input parameters, namely charging-discharging
492 current and ambient temperature, are considered for the battery cell temperature estimation,

493 which is shown to be sufficient. The proposed model is able to estimate battery cell temperature
494 accurately using a relatively large historical dataset. Time-series NARX model has been chosen
495 due to non-linear behaviour and time dependencies of the battery cell temperature. Moreover,
496 seasonal impact on the modelling is investigated by creating different NARX model for each
497 season. Based on the outcomes of comprehensive simulation studies, the universal model
498 yielded a small RMSE value, where the RMSE was below 1 °C most of the times, which is
499 quite acceptable. Compared to the universal model, the seasonal NARX models provided more
500 accurate results by 18% to 50% on average. In addition, proposed recursive estimation with
501 NARX network shows good estimation results for an entire day. In our future work, we will use
502 the developed NARX model in an optimal battery operation algorithm in an EMS considering
503 battery degradation and cooling system costs, which can improve the technical economical
504 performance of the hybrid energy system.

505 Acknowledgment

506 This work was performed in part or in full using equipment and infrastructure funded
507 by the Australian Federal Governments Department of Education AGL Solar PV Education
508 Investment Fund Research Infrastructure Project. The University of Queensland is the Lead
509 Research Organization in partnership with AGL, First Solar, and the University of New South
510 Wales.

511 References

- 512 [1] S. Pourmousavi and T. K. Saha, “Evaluation of the battery operation in ramp-rate control
513 mode within a PV plant: A case study,” *Solar Energy*, vol. 166, pp. 242–254, 2018.
- 514 [2] B. Scrosati and J. Garche, “Lithium batteries: Status, prospects and future,” *Journal of
515 Power Sources*, vol. 195, no. 9, pp. 2419–2430, 2010.
- 516 [3] J. D. Bishop, C. J. Axon, D. Bonilla, M. Tran, D. Banister, and M. D. McCulloch,
517 “Evaluating the impact of V2G services on the degradation of batteries in PHEV and
518 EV,” *Applied energy*, vol. 111, pp. 206–218, 2013.

519 [4] A. Millner, "Modeling lithium ion battery degradation in electric vehicles," in *Innovative*
520 *Technologies for an Efficient and Reliable Electricity Supply (CITRES), 2010 IEEE*
521 *Conference on*, pp. 349–356, IEEE, 2010.

522 [5] M. M. Hasan, S. A. Pourmousavi, F. Bai, and T. K. Saha, "The impact of temperature on
523 battery degradation for large-scale bess in a PV plant," in *Universities Power Engineering*
524 *Conference (AUPEC), 2017 Australasian*, pp. 1–6, IEEE, 2017.

525 [6] Q. Wang, B. Jiang, B. Li, and Y. Yan, "A critical review of thermal management
526 models and solutions of lithium-ion batteries for the development of pure electric vehicles,"
527 *Renewable and Sustainable Energy Reviews*, vol. 64, pp. 106–128, 2016.

528 [7] O. Gross and S. Clark, "Optimizing electric vehicle battery life through battery thermal
529 management," *SAE International Journal of Engines*, vol. 4, no. 1, pp. 1928–1943, 2011.

530 [8] F. Leng, C. M. Tan, and M. Pecht, "Effect of temperature on the aging rate of li ion
531 battery operating above room temperature," *Scientific reports*, vol. 5, p. 12967, 2015.

532 [9] T. M. Bandhauer, S. Garimella, and T. F. Fuller, "A critical review of thermal issues in
533 lithium-ion batteries," *Journal of the Electrochemical Society*, vol. 158, no. 3, pp. R1–R25,
534 2011.

535 [10] J. Newman and K. E. Thomas-Alyea, *Electrochemical systems*. John Wiley & Sons, 2012.

536 [11] T. F. Fuller, T. Bandhauer, and S. Garimella, "Electrochemical-thermal modeling and
537 microscale phase change for passive internal thermal management of lithium ion batteries.,"
538 tech. rep., Sandia National Laboratories, 2012.

539 [12] J. Liang, Y. Gan, W. Song, M. Tan, and Y. Li, "Thermal–electrochemical simulation
540 of electrochemical characteristics and temperature difference for a battery module under
541 two-stage fast charging," *Journal of Energy Storage*, vol. 29, p. 101307, 2020.

542 [13] S. Panchal, I. Dincer, M. Agelin-Chaab, R. Fraser, and M. Fowler, "Experimental
543 temperature distributions in a prismatic lithium-ion battery at varying conditions,"
544 *International Communications in Heat and Mass Transfer*, vol. 71, pp. 35–43, 2016.

545 [14] L. Fan, J. Khodadadi, and A. Pesaran, “A parametric study on thermal management of
546 an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles,” *Journal of*
547 *Power Sources*, vol. 238, pp. 301–312, 2013.

548 [15] L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, “A review on the key issues for lithium-ion
549 battery management in electric vehicles,” *Journal of power sources*, vol. 226, pp. 272–288,
550 2013.

551 [16] S. Chen, C. Wan, and Y. Wang, “Thermal analysis of lithium-ion batteries,” *Journal of*
552 *power sources*, vol. 140, no. 1, pp. 111–124, 2005.

553 [17] V. H. Johnson, A. A. Pesaran, and T. Sack, *Temperature-dependent battery models for*
554 *high-power lithium-ion batteries*. National Renewable Energy Laboratory City of Golden,
555 2001.

556 [18] D. Kang, P.-Y. Lee, K. Yoo, and J. Kim, “Internal thermal network model-based inner
557 temperature distribution of high-power lithium-ion battery packs with different shapes for
558 thermal management,” *Journal of Energy Storage*, vol. 27, p. 101017, 2020.

559 [19] S. Basu, K. S. Hariharan, S. M. Kolake, T. Song, D. K. Sohn, and T. Yeo, “Coupled
560 electrochemical thermal modelling of a novel li-ion battery pack thermal management
561 system,” *Applied Energy*, vol. 181, pp. 1–13, 2016.

562 [20] G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with artificial neural networks:: The
563 state of the art,” *International journal of forecasting*, vol. 14, no. 1, pp. 35–62, 1998.

564 [21] M. Castilla, J. Álvarez, M. Ortega, and M. Arahal, “Neural network and polynomial
565 approximated thermal comfort models for hvac systems,” *Building and Environment*,
566 vol. 59, pp. 107–115, 2013.

567 [22] X. Wang, X. Wei, Q. Chen, J. Zhu, and H. Dai, “Lithium-ion battery temperature on-line
568 estimation based on fast impedance calculation,” *Journal of Energy Storage*, vol. 26,
569 p. 100952, 2019.

570 [23] M. Lucu, E. Martinez-Laserna, I. Gandiaga, K. Liu, H. Camblong, W. Widanage, and
571 J. Marco, “Data-driven nonparametric li-ion battery ageing model aiming at learning

572 from real operation data-part b: Cycling operation,” *Journal of Energy Storage*, vol. 30,
573 p. 101410, 2020.

574 [24] I. A. Basheer and M. Hajmeer, “Artificial neural networks: fundamentals, computing,
575 design, and application,” *Journal of microbiological methods*, vol. 43, no. 1, pp. 3–31,
576 2000.

577 [25] S. Chen and S. Billings, “Neural networks for nonlinear dynamic system modelling and
578 identification,” *International journal of control*, vol. 56, no. 2, pp. 319–346, 1992.

579 [26] A. Mellit, S. Kalogirou, S. Shaari, H. Salhi, and A. H. Arab, “Methodology for predicting
580 sequences of mean monthly clearness index and daily solar radiation data in remote
581 areas: Application for sizing a stand-alone pv system,” *Renewable Energy*, vol. 33, no. 7,
582 pp. 1570–1590, 2008.

583 [27] M. M. Hasan, “Thermal modelling and cost analysis for large-scale battery energy
584 storage system (BESS) in grid-connected pv plant,” Master’s thesis, School of Information
585 Technology and Electrical Engineering, 8 2019. <https://espace.library.uq.edu.au/view/UQ:5b302b9>.

586 [28] L. Ljung, “Black-box models from input-output measurements,” in *Instrumentation and
587 Measurement Technology Conference, 2001. IMTC 2001. Proceedings of the 18th IEEE*,
588 vol. 1, pp. 138–146, IEEE, 2001.

589 [29] K. Hornik, “Approximation capabilities of multilayer feedforward networks,” *Neural
590 networks*, vol. 4, no. 2, pp. 251–257, 1991.

591 [30] M. Alam, R. Yan, T. Saha, A. Chidurala, and D. Eghbal, “Learning from a 3.275 mw
592 utility scale pv plant project,” in *Proceedings of the CIGRE Paris Conference*, 2016.

593 [31] M. M. Hasan and S. Ali Pourmousavi, “Battery cell temperature estimation model and
594 cost analysis of a grid-connected pv-bess plant,” in *2019 IEEE Innovative Smart Grid
595 Technologies - Asia (ISGT Asia)*, pp. 1804–1809, 2019.

597 **Response to Decision Letter**

598 We thank the Editor and Reviewers for their thought-intriguing comments and useful
599 suggestions. We respond to each of them by both providing clarifications in this letter and
600 by modifying the paper accordingly. The reviewers' comments are shown in **blue** fonts in this
601 document, and the revised texts in the paper are highlighted in **red** fonts.

602

603 **Reviewers' Comments**

604 *Reviewer 1*

605 The manuscript reported an approach to estimate cell temperature using NARX neural
606 network for battery energy storage system. The paper is well-written in language and easy to
607 understand. The overall organization of sections and flow logic are acceptable. Most of the
608 figures and their captions present the idea clearly. The NARX neural model is described clearly,
609 and two models are established as universal model and seasonal model, which is thoughtful and
610 specific work. This work is significant to the thermal management for energy storage system.
611 However, there are some questions and incomprehension in this manuscript, as follows.

612 **Comment 1.1:** Line 257, 1-minute data has been considered for training and testing the
613 model. How to explain the 1-minute data? Every sample includes 1-minute data in each day?
614 If so, in the simulation, only 1-minute data was considered for training and testing, so whether
615 is the data representative?

616 **Answer:** We would like to thank the Reviewer for her/his comments. Apologies for the
617 confusion. The “1-minute” refers to the resolution of the data, i.e., there are 60 samples for
618 every hour. We have modified page 14, line 277 of the text to remove the ambiguity.

619 **Comment 1.2:** In Table 2, the percentage of Training, Validation, Testing is 8:1:1 in
620 universal model, and in the seasonal model, the percentage is 7:1.5:1.5. Why? and whether it
621 affect the comparison between the universal and seasonal model?

622 **Answer:** The percentage of seasonal data for training, testing, and validation differs from
623 that of the universal model since there are fewer sample points available for testing and
624 validation of the seasonal model compared to the universal model. Therefore, we decided
625 to reserve more samples for testing. Nevertheless, the difference of outcome using similar

percentages was trivial and it does not affect the estimation performances while testing the model with completely separated test data/days. It is worth mentioning that similar test days are used to check the universal and seasonal trained models for fair comparison. To clarify this, we have modified Section 4.3, page 19, line 402.

Comment 1.3: In this work, the BESS has an active cooling systems 7.7 kW. How does the active cooling systems operate? It works in whole charging-discharing process, or other ways. For other BESS, it has different active cooling systems, are this models available for the temperature estimation?

Answer: In order to keep the battery cells and battery room temperature within an acceptable range, a cooling system is used in the battery container. Battery module and cell ventilation is achieved through a) passive cooling mechanisms including air vent holes along the sides of the battery casing and spacing of cells, which ensures an even temperature distribution between the cells, and b) active cooling consisting of rack fans and air-conditioning units with 7.7 kW rated cooling capacity. Three fans are placed at the top of each battery bank to draw air up through vents in the front panel by passing through the modules and out at the top. The fans start operating when cell temperature reaches 29 °C. The consumption of each rack fan is 44.64 W, which is powered by an external +24 V DC system. Battery modules are spaced inside the rack with gaps to allow airflow. The air conditioner is designed for maximum 30 °C internal ambient and 50 °C outside temperature.

The air conditioning unit is set at the room temperature of 23 °C, which indicates that the evaporator of the air conditioning unit starts its operation along with fan when the room temperature reaches above 23 °C. The room temperature is measured and recorded by the thermostat installed with the air conditioning unit. The higher the room temperature, the more energy consumption by the air conditioning.

Section 3, page 13, line 261, of the paper is modified to reflect this discussion.

651

652 *Reviewer 2*

This paper presents a data-driven model based on a Non-linear Autoregressive Exogenous neural network to estimate battery cell temperatures in a utility-scale BESS, considering strongly-correlated independent variables such as charging-discharging current and ambient

656 temperature.

657 **Comment 2.1:** The Non-linear Autoregressive Exogenous neural network is not new in
658 literature. What are the main contributions made by the paper? It is not very clearly described.

659 **Answer:** We would like to thank the reviewer for her/his comments. We agree with the
660 reviewer that NARX modelling tool has been used in other literature for different purposes.
661 However, to the best of our knowledge, the NARX application for day-ahead large-scale battery
662 temperature estimation considering active and passive cooling mechanisms has not been reported
663 in the literature. Ordinary neural networks have been used in the past for different purposes,
664 however, the ordinary neural networks are not able to model temporal information in a time
665 series. In other words, not only the input features contain useful information for estimation,
666 but also the changes in input/output over time can provide additional information to increase
667 the accuracy of estimation. An ordinary NN treats every sample individually; thus, it fails to
668 model temporal information.

669 We added a paragraph in the Introduction section, page 5, line 97, that outlines the
670 contributions of this work.

671 **Comment 2.2:** Pls be clear on ambient temperature. Are you referring to surface temperate
672 of the cell?

673 **Answer:** We apologies for the confusion. Weather temperature or outside of the container
674 temperature is referred to as ambient temperature in this study. Although, charge-discharge
675 activities of the battery are the main reasons of battery temperature, ambient temperature is
676 also strongly responsible for the increase in the battery cell temperature [5]. Fig. 10 in the
677 revised manuscript illustrates the concept.

678 Following the Reviewer's comment, we have clarified this matter in Section 2, page 6,
679 line 130, of the manuscript.

680 **Comment 2.3:** Also where and how did you measure the cell temperature?

681 **Answer:** The UQ Gatton Solar Research Facility (UQ GSRF) is a multi-million dollar
682 plant that is designed primarily as a research facility with sophisticated BMS for each battery
683 bank, delivered by Kokam company. It is designed to provide critical information such as cell
684 temperature, voltage, current, power etc. About 1390 points within the BESS is monitored
685 through measurement and data logging systems, which gives detailed insights into the battery

686 operation on the cell and module levels.

687 Following the Reviewer's comment, we have added a paragraph to explain measurement
688 and data collection systems at UQ GSRF in Section 3, page 14, line 277, of the manuscript.

689 **Comment 2.4: How do you collect the experimental data for the training?**

690 **Answer:** Central Supervisory System (CSS) PLC receives all the data from measurement
691 units and sensors within the BESS through a sophisticated SCADA system. All the CSS
692 collected data for the plant is remotely accessible through a Wonderware Historian system
693 interface. A significant number of variables including weather parameters, cell level voltage,
694 current, and temperature, and battery inverters' DC and AC side parameters are measured
695 and stored in Wonderware Historian system. The plant data logging, including BESS, is
696 performed using a Delta Mode operation. Although data is sampled at a 1-second rate, the Delta
697 Mode operation is adopted to reduce data storage capacity requirement. In this procedure, a
698 measurement is recorded when the value is different from the previous measurement by a certain
699 preset threshold.

700 Following the comment of the Reviewer, we have added these explanations to the manuscript
701 in Section 3, page 14, line 277.

702 **Comment 2.5: What do you mean by "...90 days (20%) of data for validation and testing
703 stages..".**

704 **Answer:** During training stage, 20% of data or 90 days equivalent data is being used for
705 validation and testing purposes. The validation data is used during NARX training process to
706 prevent from over-fitting. The testing portion of data is used to finally verify the robustness
707 and universality of the trained model. In this paper, data is separated on a daily basis (24
708 hours window) to capture the operational and ambient temperature condition during each day
709 and the 90 days are randomly selected.

710 **Comment 2.6: Do you do cross-validation? 5-fold/10-fold?**

711 **Answer:** For cross-validation, we ran the simulation studies by randomly selecting the
712 days for each category, i.e., training, validation, and testing. Then, we ran simulation studies
713 several times. The simulation results showed no significant variations in the performance of the
714 universal and seasonal models. Finally, we reported the set of results with average performance
715 as a measure of fairness. We added the explanations in the paper for the future audience.

716 Following the comment of the Reviewer, we have added a brief explanation to the manuscript
717 in Section 4, page 14, line 300.

718 **Comment 2.7:** The full hyperparameters values should be given.

719 **Answer:** The hyperparameter values are reported in Table 2: “Parameters for training
720 the NARX networks”, and more details are provided in Section 4 (Section 4.1, 4.2, 4.3) of the
721 manuscript.

722 **Comment 2.8:** What is the purpose of establishing the RMSE ratio in (9) where the aim
723 is to estimate the battery cell temperature?

724 **Answer:** RMSE ratio is used in this study to show the comparison between performance of
725 universal and seasonal models for the similar test days. Using the RMSE ratio, we can compare
726 the performance of the seasonal and universal models. Ultimately, the model with lower RMSE
727 value is the one with a better performance.

728 The manuscript has been modified on page 22, line 445 to reflect this discussion.

729 **Comment 2.9:** Can the proposed recursive estimation with NARX network shows good
730 estimation results for different day and time of a day? Pls show the results.

731 **Answer:** The accuracy of the models are not identical in different hours and days, as
732 shown in Fig. 7 for different test days and hours in summer, and in Fig. 8 for seasonal
733 comparison. Nevertheless, the estimation error is mostly below $1^\circ C$ for different cases and
734 hours. As mentioned previously in response to the Reviewer’s comment, we ran the simulation
735 studies several times by randomly selecting training, validation and testing days. no significant
736 variations have been observed in this study, which proves the robustness of the proposed model.

737 **Comment 2.10:** There are lack of comparisons with other NN. It is not very convincing
738 that the proposed method is the best. Not forgetting the proposed method is not new.

739 **Answer:** Thank you for your comment. The authors have published another paper, *Md*
740 *Mehedi Hasan, S. Ali Pourmousavi, and Tapan K. Saha, “Battery cell temperature estimation*
741 *model and cost analysis of a grid-connected PV-BESS plant”, IEEE PES ISGT Asia, Chengdu,*
742 *China, May 21-24, 2019*, where Autoregressive Integrated Moving Average with eXogenous
743 inputs (ARIMAX) model was applied on the dataset. Comparing the results presented in
744 this manuscript against the results of the previously-published paper, it can be seen that the
745 proposed approach in this manuscript results in lower RMSE. The maximum hourly RMSE

746 using ARIMAX was 1.48 °C higher than the maximum hourly RMSE using NARX for the
747 universal model. For the seasonal models, the hourly RMSE using ARIMAX was 0.56 °C, 1.65
748 °C and 1.9 °C more than NARX models during summer, autumn, and winter, respectively.
749 Therefore, the proposed recursive estimation with NARX network yields much better estimation
750 in comparison with the ARIMAX model, which is not surprising considering the linear nature
751 of ARIMAX model and the ability of NARX in modeling non-linear relationships.

752 As was explained in response to the first comment by the Reviewer, we have not tried
753 ordinary NN models because they are not able to model temporal information in time series,
754 which will degrade the performance of the model. This is explained in the revised manuscript
755 on page 5, line 97.

756 **Comment 2.11:** How robust is the proposed NARX as compared to other approaches
757 based using NN?

758 **Answer:** We would like to refer the Reviewer to our response to the previous comment.
759 We have also offered a comparison between the proposed method with ARIMAX, a widely used
760 approach.

761 **Comment 2.12:** What is the computational time for just training?

762 **Answer:** On average computation time for training is:

763 • Universal model training: 15 minutes 4 seconds;
764 • Seasonal model training: 50 seconds to 1 minute 5 seconds

765 We have added these information to the manuscript in Section 4.1 on page 19, line 395 and
766 Section 4.2 on page 20, line 412.

767 **Comment 2.13:** What is the computational time for estimating the battery cell temperature?

768 **Answer:** Training the model is the most time consuming part, while testing is fast.
769 Computational time for estimating battery cell temperature for an entire day is 40 seconds
770 on average. Explanations are added in Section 4.1 on page 19, line 395 and Section 4.2 on
771 page 20, line 412 to indicate the estimation time.