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Abstract

Swimming pool heating systems are known as one of the best flexible resources in build-
ings. However, they can be flexible only for a certain number of hours throughout a day
due to the comfort constraints of the users. In this study, a new approach is proposed
to determine a group of contract hour sets to procure maximum flexibility of swimming
pool heating systems supplied by heat pumps for trading in the regulation market while
respecting the comfort of users. The main advantage of the contract hour sets is the cer-
tainty in response to flexibility requests. The proposed approach consists of three main
steps. First, a stochastic mixed-integer linear program is proposed to find the optimal
operation of a swimming pool heating system that has agreed to provide flexibility in a
contract hours set. Then, a metric is proposed to evaluate the effectiveness of contract
hour sets using the results obtained in the first step. Finally, an algorithm is proposed
to identify a group of the most efficient contract hour sets using the calculated metric.
The proposed approach is validated through comprehensive simulation studies for a sum-
merhouse with an indoor pool heated by a heat pump. Also, a cost-benefit analysis is
performed to examine the feasibility of these contract hour sets from financial viewpoint.
Simulation results show that the maximum contract hours can vary from 2 to 12 hours
depending on the building occupation pattern and the minimum payment to owners is
between 0.03 to 0.06 (Euro/kW).
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Acronyms

ACHN Average Contract Hour Numbers.

CHS Contract Hour Set.

EMS Energy Management System.

HP Heat Pump.

MPC Model Predictive Control.
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SMILP Stochastic Mixed Integer Linear Programming.

SPHS swimming pool heating system.

Nomenclature

Indices

f Clusters

i System uncertainty scenario

sa flexibility request uncertainty scenario at hour a

t time intervals

Sets

A,B Subsets of CHSs, where CHS = {A,B}

A1,A2 Subsets of set A, where A = {A1, A2}

B1,B2 Subsets of set B, where B = {B1, B2}

F Set of clusters

N Set of time intervals

S Set of system uncertainty scenarios

Parameters

βt Weighting coefficient for prioritizing the violation from comfort constraints

∆t The length of each time interval (h)

ṁ Flow rate of water (kg/s)

ρasa Probability of flexibility request uncertainty scenario s at hour a

ρi Probability of system uncertainty scenario i

Ci
t Electricity price (Euro/kWh)

cp Specific heat capacity of water (kj/kgK)

Ho Overall heat transfer coefficient (kW/K)

K0 CHSs’ evaluating metric

M Mass of water in the swimming pool (kg)

m Mass of water in the heat exchanger (kg)
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Pn Nominal power of the HP (kW )

Qth Thermal power of the heating system (Kw)

T i
ext,t Ambient temperature at hour t

Tmax
t Maximum water temperature at hour t

Tmin
t Minimum water temperature at hour t

Z Number of contract hours in a CHS

Variables

T in,i
t,sa,sb,...,sz

Outgoing water temperature from the swimming pool

T out,i
t,sa,sb,...,sz

Incoming water temperature to the swimming pool

ui
t,sa,sb,...,sz

Binary decision variable for SPHS operation

vit,sa,sb,...,sz Minimum necessary violation from maximum water temperature limit to avoid
infeasibility.

wi
t,sa,sb,...,sz

Minimum necessary violation from minimum water temperature limit to avoid
infeasibility

1. Introduction

According to the definition by International Energy Association (IEA), “power system
flexibility is its ability to reliably and cost-effectively manage the variability and uncer-
tainty of demand and supply across all relevant timescales” [1]. Flexibility is crucial for
reliable operation of power system during because generation and demand must match
momentarily. In the past, flexibility was achieved by supply side of the power grid, i.e.,
synchronous generation such as thermal power plants. However, increasing the pene-
tration of renewable energy sources, with their uncertain characteristics together with
reducing the share of thermal power plants in the supply side requires new sources of
flexibility in the power grids [2]. As a result, efforts have been made to procure required
energy flexibility from the demand side of power systems [3]. Demand-side flexibility
can be used in different ways depending on the nature of the demand flexibility and the
duration over which it can sustain a change in load [4]. For instance, it can be used for
frequency regulating with an immediate impact on the system operation, or in congestion
management and voltage regulation at the distribution electricity network to postpone
the expansion plans [5]. While there is nothing to prohibit many residential appliances
from providing flexibility, in reality, however, only a few of them are capable of provid-
ing it in a reliable and effective way. Heat pumps (HPs) coupled with either active or
passive thermal energy storage are one of the most promising sources of flexibility from
end-users [6]. Thermal inertia of buildings and thermal energy storage units together can
help us to shift the operation of HPs in time. Moreover, power consumption level of HPs
is typically high compared to other appliances, thus making them capable of providing a
greater amount of flexibility when available.
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The growing interest in exploiting the flexibility of HPs can be seen in the number of
papers published on this topic in recent years. Schibuola et al. [7] investigated different
heuristic price-based control strategies for an electric HP coupled with thermal energy
storage and PV panels to minimize energy costs and self-consumption of locally produced
electricity under a dynamic electricity tariff. Similarly, Rodriguez et al. in [8] analyzed
the potential benefits of demand response strategies for HPs incentivized by day-ahead
pricing signals. Yuan et al. [9] proposed a price-based method for controlling the water
and space temperature of a swimming hall using district heating. A rule-based algorithm
is used to exploit peak shaving and load shifting demand response programs, which led
to 1.1% reduction in total energy cost and 3% increase in the average water tempera-
ture. The influence of electricity tariffs on energy flexibility in buildings and associated
energy costs was investigated by Fizpatrick et al. [10]. The authors showed that real-
time pricing is the most favourable tariff structure, capable of offering the greatest energy
flexibility with lowest associated electricity costs. Baeten et al. [11] studied the impact
of a large-scale deployment of actively controlled HPs and thermal energy storage on the
power grid using a multi-objective predictive control (MPC) strategy. The optimal sizing
strategy of domestic air-source HPs with thermal storage considering different electrical
load shifting strategies in different dwellings was investigated by Marini et al. [12]. Their
results showed that the amount of flexibility can change by consumption pattern, thermal
energy storage volume and the electricity tariff.
Unlike the previous works which are mainly based on simulations, Müller et al. [13]
presented the results from a large-scale trial of a demand response scheme involving a
population of more than 300 residential buildings with HPs. Similarly, Sweetnam et al.
[14] presented results of a trial of a control system aimed at optimising HP operation,
within a time-varying electricity tariffs framework. In [15], Pèan et al. developed and
experimentally tested different MPC strategies for space heating in a semi-virtual envi-
ronment laboratory setup. The aim of the controller was to minimize either the delivered
thermal energy to the building, the operational costs of the HP, or the CO2 emissions
related to HP operation. A rule-based control strategy for an air-source HP coupled with
PV panels for heating applications was proposed by Bee et al. [16] in an Italian context
with the purpose of enhancing the level of self-consumption. Fischer et al. [17] analyzed
different operational strategies for capacity-controlled HPs connected to thermal storage
in German multifamily houses to maximize energy performance and utilisation of on-site
PV production, while minimizing energy costs. Leerbeck et al. [18] developed an opti-
mal controller using model predictive control and external parameters such as weather
and CO2 emission forecasts, to minimize CO2 emissions of buildings equipped with a HP
unit.
Rominger et al. [19] experimentally investigated a new system architecture to provide
frequency containment reserve through aggregation of heating, ventilation, and air con-
ditioning systems. An industrial site containing workshop and office buildings, where
the proposed architecture was installed and pre-qualified by the transmission system op-
erators, was used as a case study. It has been shown that the system was capable of
providing almost 300kW of frequency containment reserve. The technical and financial
viability of the use of HPs to participate in the frequency restoration reserve market was
investigated by Rodriguez et al. [20]. A simulation model was developed and validated
using data from a household in a plus-energy neighborhood in southern Germany. Kim
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et al. [21] analyzed the extent to which a direct load control strategy can unlock the
energy flexibility potential of a commercial building equipped with a variable speed HP
for frequency regulation. A coordinated control strategy of HP water heaters has been
proposed by Mufaris et al. in [22] to minimize voltage violation and reverse power flow
due to local PV generation in a residential distribution system in Japan. The results
showed the effectiveness of the proposed coordinated control method in mitigating volt-
age violations without compromising end-user comfort, namely no shortage of domestic
hot water during voltage control periods.
Our extensive literature review shows that we can categorize these papers in two main
groups, 1) studies that focused on exploiting the implicit flexibility of HPs, i.e., [7]-[18],
and 2) research works that developed algorithms to procure flexibility of HPs explicitly,
i.e., [19]-[22]. In implicit flexibility procurement, the flexibility is obtained by offering
time-varying electricity prices to the end-users. In explicit flexibility, however, end users’
flexibility is offered to energy markets (e.g. through an aggregator) and a payment is
received in return for the load variation offered and accepted in the market [23].

This paper proposes an approach to exploit the maximum explicit flexibility of HPs
for participation in the power regulation market. Our focus is on using HPs in swimming
pool heating systems (SPHSs), which is found to be an ideal flexibility resource in many
studies [9] [24] [25] due to the high thermal storage capacity of the pools . Moreover,
there are companies that provide large number of rental properties equipped with pools
heated by HPs. For instance, NOVASOL manages more than 900 summerhouses with
indoor pools in Denmark alone [26]. Making contracts with these companies gives the
aggregators an access to significant flexibility of SPHSs that can be used to offer different
services to the power grid. The main idea of the paper originates from the fact that it is
not possible to utilize the flexibility of SPHSs throughout a day without any uncertainty
because of their operational limits. This, in turn, increases the risk of bidding their
flexibility capacity in the regulation market because the anticipated flexibility may not
realise in real-time. To address this issue, we suggest tying the availability of SPHSs for
flexibility provision to specific hours of a day, which is called a contract hour set (CHS).
Each hour of a CHS is called a contract hour. The aggregator and end-user negotiate
and agree on the service hours for the contract period. During each contract hour, the
SPHSs are ready to respond to the requests issued by the aggregator. For instance, if
the SPHS is supposed to provide downward reserve (more power consumption), it must
remain off during the contract hours. Then, if the downward regulation reserve is needed
in the power grids during the contract hour, the SPHS will be turned on and stays on
until the end of the hour.
Since occurring power imbalance in the grid and its volume at each hour of the day is hard
to predict, there is an uncertainty in utilizing the flexibility of SPHSs by the aggregator.
This uncertainty must be considered in the proposed method. Moreover, parameters
like building occupancy, electricity prices, weather condition, and initial state of system
variables affect the feasibility of the plan; hence, should be included in the model.

The results of the proposed methodology provide a guideline for both aggregators and
end-users before agreeing on a flexibility contract. This guideline gives a group of efficient
CHSs in which a SPHS can provide maximum explicit flexibility for an aggregator without
violating the users’ comfort level above a certain threshold.
The main contributions of the paper are as follows:
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1. Proposing a framework to procure the flexibility of SPHSs in specific hours of the
day, without violating operational constraints and with no uncertainty in response to
the flexibility request. The latter means the response to the flexibility request from
the aggregator will always be positive in specific hours of the day; which guarantees
a certain capacity for aggregator to bid in ancillary service markets, e.g., regulation
market.

2. Introducing a stochastic mixed integer linear programming (SMILP) method for
modeling the optimal operation of SPHSs considering the uncertainties in weather,
electricity prices, initial state of the system variables, and using the available flexi-
bility in each contract hour;

3. Proposing an analytical approach for obtaining a group of CHSs among all pos-
sible combinations of contract hours that maximizes the available flexibility while
respecting the operational constraints of the system.

The rest of the paper is organized as follows. The problem definition and assump-
tions are presented in Section 2. In Section 3, different uncertainties in the system are
introduced. The proposed approach for finding the most efficient CHSs is presented in
Section 4. Simulation results are presented in Section 5. Finally, the paper is concluded
in Section 6.

2. Problem assumptions and definition

As mentioned before, this paper focuses on SPHSs in summerhouses. These summer-
houses are owned by a company and rented out on a daily/weekly basis. The swimming
pools are indoor. However, we had only access to the swimming pool based on the agree-
ment with the rental agency. Therefore, the control strategy is applied only to the SPHS.
The main structure of the SPHS is presented in Fig. 1. The energy management system
(EMS) receives price, weather and a summerhouse’s booking status from data providers
and also ambient and water temperature data from metering devices, and creates opti-
mal control signals (ON or OFF status) for the operation of the SPHS in the next time
intervals. The HP is equipped with a controller that determines ON/OFF status of the
HP based on the deviation of water temperature from a set-point. So, to apply the con-
trol signal provided by the EMS to the HP, the temperature set-point will be adjusted
accordingly. For instance, if the HP should be OFF (ON) in the next time interval, the

Figure 1: A typical structure of a SPHS in a summerhouse.
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temperature set-point is changed to a lower (higher) temperature than the current pool
water temperature. The EMS is ready at all times to receive a flexibility request from an
aggregator to provide flexibility.

The best way to use the SPHSs’ flexibility effectively is to aggregate a large number
of them into a single flexibility source using a flexibility contract through an aggregator.
Then, the aggregator can bid this flexibility in the regulation market. Since SPHSs’ capa-
bility to provide flexibility is limited by operational constraints and the occupant comfort
requirements, i.e., upper and lower limits of water temperature, their flexibility cannot
be sustained for a long time. As a result, it is beneficial to end-users and aggregators to
schedule flexibility of SPHSs for certain hours of a day through a CHS. The duration of a
flexibility contract can be a day, week, month, season or year. Without loss of generality,
however, the problem is discussed for a one month contract period in the rest of the paper.

Based on the flexibility contract, the SPHSs should be ready to provide flexibility for
the aggregator during a specific CHS. Two parameters should be specified in the contract:
1) the type of flexibility i.e., upward or downward, that is supposed to be provided, and 2)
agreed efficient CHSs for each possible occupation pattern of the summerhouse. During
the operation period, before participating in the regulation market, the aggregator should
be informed about the occupation of the summerhouses to choose the right CHS from the
flexibility contract and calculate the available flexibility accurately.

Different CHSs are agreed by both parties for each occupation pattern because the
water temperature limitations and consequently the ability to provide flexibility at each
occupation pattern is different. It is assumed that the occupation status changes at 12:00
a.m. So, for each day, four main booking patterns can be defined. Water temperature
limitations, and the ability to provide flexibility at each day depends on the occupation
pattern of that day and the days before and after that. During the rented hours, water
temperature limitations are more than other hours. Moreover, if the house is not rented for
a long time, temperature limitations will be different from the case that it was unoccupied
for only one day between two rented days. When the house is not rented for more than
one day, temperature limitations are relieved as much as possible to reduce the use of
SPHS. As a result, no flexibility services will be provided to the power grids until the
beginning of the next rented day. However, when the house is not rented for only one day,
there are still limitations on the water temperature to keep the swimming pool ready for
the next day and flexibility services can also be provided for the grid. Considering the
explanations above, possible occupation patterns and flexibility provision ability for each
pattern is depicted in Fig. 2. No flexibility services are provided in occupation pattern
(e) and the last 12 hours of occupation pattern (d). Therefore, the flexibility contract
will be executed only for occupation patterns (a), (b), (c), (f), and the first 12 hours of
occupation pattern (d).

It is useful for end-users as well as aggregators to have several options for each book-
ing pattern as suitable CHSs to choose from. In this case, the aggregator can choose an
optimal combination of CHSs from different contracts to maximize its profit by optimally
bidding in the market. Therefore, the goal of the aggregator is to find a group of CHSs
for each summerhouse that gives the parties a flexibility in choosing the suitable CHS.
The main objective of this study is to propose a framework to find the most efficient
CHSs at each occupation pattern for a SPHS. By an efficient CHS we mean a CHS with
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Figure 2: Possible occupation patterns, flexibility service availability, and related water temper-
ature limitations for a typical summerhouse.

maximum number of contract hours that satisfies the end-user comfort constraints above
a predefined threshold. This threshold represents the percentage of expected hours in
different scenarios during which comfort constraints of users should be satisfied.
It should be noted that in addition to providing flexibility during CHSs (explicit flexibil-
ity), the operation of SPHS during all 24 hours of the day should be cost efficient (implicit
flexibility). Therefore, feasibility of a CHS for the SPHS should be verified using an opti-
mization problem that aims to minimize the total operation cost considering the flexibility
contract. One of the main challenges regarding the flexibility contract modeling is un-
certainty in exploiting SPHS flexibility for regulation power market. A comprehensive
solution must take this uncertainty into account by solving a stochastic problem. Since at
each booking pattern, one CHS is agreed for the whole contract period, the uncertainty
in the ambient temperature, electricity prices, and initial state of system variables should
also be included in the model for the scheduling horizon when the contract is for more
than one day.

In this study, we focused on the problem at the building level, i.e., studying a single
SPHS; thus we present an approach for finding a group of efficient CHSs for occupation
patterns (a), (b), (c), (f), and the first 12 hours of booking pattern (d).

3. Introducing problem uncertainties

We categorized the different sources of uncertainties into two groups, 1) system un-
certainties and 2) flexibility request uncertainties. Weather temperature, electricity price
and a system’s initial state are considered as the system uncertainties, while the uncer-
tainties related to receiving a flexibility request from the aggregator in the next contract
hours are called the flexibility request uncertainties.

3.1. System uncertainties

When the daily scheduling of the SPHS is performed, the electricity prices and weather
temperature for the next 24 hours and initial water temperature of the swimming pool
are known. However, in the case of multi-day contracts, these values are changing day by
day. As a result, uncertainty scenarios should be produced to represent the variations in
these parameters during the contract period.
Different methods such as using historic data or probabilistic forecasting approaches can
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be used to produce these scenarios [27] [28]. In this paper, it is suggested to use historical
data of the same interval of the contract period for creating electricity prices and weather
temperature scenarios. However, probabilistic forecasting approaches can be used in real
case implementations. Since the number of obtained scenarios of historical data is high,
the backward scenario reduction method in [29] (briefly explained in Appendix A) is
used to reduce the number of price and weather temperature scenarios to np and nw,
respectively. Each of these scenarios contains 24 electricity prices or temperature data for
24 hours of a day.

For initial water temperature uncertainty scenarios, if the historical data of the in-
put and output water temperatures of the swimming pool are available, we can use it to
produce these uncertainty scenarios. Otherwise, we can simulate the system for several
days under different prices and ambient temperature to obtain water temperature val-
ues. Then, the temperature values at hour 00:00 of each day can be used for initial state
scenario generation for the relevant booking pattern. Similar to price and weather uncer-
tainty scenarios, using the backward scenario reduction method, the number of scenarios
are reduced to nl.

Merging the price, weather and initial state scenarios into one set of system uncertainty
scenarios is preferred in order to reduce the complexity of the models in our paper. Each
system uncertainty scenario includes three sets of values for 24 hour electricity prices,
ambient temperature, and two values for initial input and output water temperatures of
a swimming pool. To produce system uncertainty scenarios, all combinations of these
three sets should be calculated, which equals ns = np × nw × nl that are recorded in the
S set. The probability of each system uncertainty scenario is calculated by multiplying
the probability of its related price, ambient temperature and initial state scenarios.

3.2. Flexibility request uncertainties

While the SPHS is ready to provide flexibility during contract hours, there is an
uncertainty about utilizing this flexibility by the aggregator due to the uncertainty in the
regulation power market. In this study, we assume that the EMS in the summerhouse
considers these uncertainties and updates the operation schedule of the SPHS during the
day based on the aggregator’s actions, whether activating the flexibility or not. A scenario
tree is used to model these uncertainties, as shown in Fig. 3, where it is assumed that the
CHS is the set of hours {u, v, w}. If t < u, there is no contract hour and consequently,
no flexibility request uncertainty in time intervals t < u. Hence, there will be a unique
schedule for the SPHS, i.e., ui

t,u in time intervals t < u. For u ⩽ t < v, the optimal value
of the HP’s control variable depends on whether the flexibility in hour u is used by the
aggregator, i.e., su = 1, or not, i.e., su = 2. Hence, the HP’s control variable in time
interval u ⩽ t < v can be represented by ui,uv

t,su . Similarly, the control variables in time

intervals v ⩽ t < w and w ⩽ t are expressed by ui,uv
t,su,sv and ui,w

t,su,sv ,sw , respectively.

4. The proposed approach for finding efficient CHSs

In this section, the process of finding a group of CHSs for a flexibility contract is
presented in three main steps as follows:

1. Step 1: An optimization problem is formulated to obtain optimal scheduling of the
SPHS considering the uncertainties in electricity prices, ambient temperature, initial
state of system variables, and chance of flexibility being used by the aggregator.
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Figure 3: Scenario tree for modeling the uncertainty of requesting flexibility from the aggregator.

2. Step 2: A new metric is formulated to evaluate the effectiveness of each CHS in
satisfying water temperature limitations using the results of the first step.

3. Step 3: Finally, an algorithm is suggested to find the group of most efficient CHSs
using the recommended metric in the second step.

These steps are explained in detail in the following subsections.

4.1. Step 1: Optimal SPHS’s operation formulation

In this section, the proposed formulation for determining the optimal daily operation
of the SPHS is presented considering the system and flexibility request uncertainties.
Therefore, a mathematical model representing the dynamics of the water temperature is
needed. According to Fig. 1 and the proposed method by Zemtsov et al. in [30], these
dynamics can be modeled by two differential equations. The first equation represents the
power balance in the heat exchange and is formulated as below:

CinṪ
in,i
t,sa,sb,...,sz

= Hw(T out,i
t,sa,sb,...,sz

− T in,i
t,sa,sb,...,sz

) + Qthu
i
t,sa,sb,...,sz

∀i ∈ S, sa = 1, 2, ..., sz = 1, 2 (1)

where Cin = m × cp and Hw = ṁ × cp (see Fig. 1). The thermal power is calculated as
Qth = COP × Pn, where COP represents the coefficient of performance and is assumed
to be constant and Pn is the rated power of the HP. The second equation is the power
balance in the pool and is presented below:

CoutṪ
out,i
t,sa,sb,...,sz

= Hw(T in,i
t,sa,sb,...,sz

− T out,i
t,sa,sb,...,sz

) + Ho(T
ext,i
t − T out,i

t,sa,sb,...,sz
)

∀i ∈ S, sa = 1, 2, ..., sz = 1, 2 (2)

where Cout = M × cp and Ho represents the overall heat transfer coefficient of the pool
(see Fig. 1).

The optimization problem formulation is proposed for utilizing downward flexibility in
which the HP is OFF at the contract hours and will be turned ON upon an aggregator’s
request. Conversely, if upward flexibility is needed, the HP must be ON at the contract
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hours so that it can be turned OFF if the flexibility is requested. As far as the formulation
is concerned, there is only one difference between the two flexibility formulations, which
is the probability for activating flexibility by the aggregator. Therefore, the formulation
is only presented for the downward flexibility procurement. The proposed formulation
avoids infeasibility by leading to the results with lowest violations from water temperature
limitations.Assuming the CHS is denoted by {a, b, c, ..., z}, the following formulation must
be solved:

min
ui

∑
i∈S

ρi

2∑
sa=1

ρasa

2∑
sb=1

ρbsb × ...×
2∑

sz=1

ρzsz(
∑
t∈N

Ci
tu

i
t,sa,sb,...,sz

∆t

+
∑
t∈N

βt(v
i
t,sa,sb,...,sz

+ wi
t,sa,sb,...,sz

)) (3)

s.t.: T out,i
t,sa,sb,...,sz

≥ Tmin
t − vit,sa,sb,...,sz ∀i ∈ S, t ∈ N, sa = 1, 2, ..., sz = 1, 2 (4)

T out,i
t,sa,sb,...,sz

≤ Tmax
t + vit,sa,sb,...,sz ∀i ∈ S, t ∈ N, sa = 1, 2, ..., sz = 1, 2 (5)

T in,i
t,sa,sb,...,sz

≥ Tmin
t − wi

t,sa,sb,...,sz
∀i ∈ S, t ∈ N, sa = 1, 2, ..., sz = 1, 2 (6)

T in,i
t,sa,sb,...,sz

≤ Tmax
t + wi

t,sa,sb,...,sz
∀i ∈ S, t ∈ N, sa = 1, 2, ..., sz = 1, 2 (7)

ui
a,sa =

{
0 sa = 1

1 sa = 2
, ui

b,sa,sb
=

{
0 sb = 1

1 sb = 2
, ..., ui

z,sa,sb,...,sz
=

{
0 sz = 1

1 sz = 2
, (8)

Equations (1) and (2)

The first term in the objective function (i.e., (3)) represents the total cost of electricity
consumption by the SPHS. ui

t,sa,sb,...,sz
is the SPHS’s operation decision variable, which is

a binary variable. According to Fig. 3, we have:

ui
t,sa,sb,...,sz

=


ui,a
t t < a

ui,ab
t,sa a ⩽ t < b

ui,bc
t,sa,sb

b ⩽ t < c
...

ui,z
t,sa,sb,...,sz

z ⩽ t

 (9)

Please note that the optimization is solved for each CHS individually and the payment
is made based on the capacity. Therefore, the revenue from providing flexibility is a
constant term; hence is not considered in the objective function.

The second term in Eq. (3) refers to a penalty function that is added to the objective
function to avoid infeasibility in results. Slack variables vit,sa,sb,...,sz and wi

t,sa,sb,...,sz
in the

penalty function represent the minimum violation of the swimming pool water tempera-
ture constraints that is needed to avoid infeasibility in the scheduling program. vit,sa,sb,...,sz
and wi

t,sa,sb,...,sz
are also defined as below:
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vit,sa,sb,...,sz =


vi,at t < a

vi,abt,sa a ⩽ t < b

vi,bct,sa,sb
b ⩽ t < c

...

wi,z
t,sa,sb,...,sz

z ⩽ t

 (10)

wi
t,sa,sb,...,sz

=


wi,a

t t < a

wi,ab
t,sa a ⩽ t < b

wi,bc
t,sa,sb

b ⩽ t < c
...

wi,z
t,sa,sb,...,sz

z ⩽ t

 (11)

βt is a weighting coefficient that helps to prioritize violating comfort constraints in
different hours. For instance, greater values of βt means that the summerhouse is rented
during those hours. This way, the temperature violations, if inevitable, occur during the
summerhouse’s vacant hours in an attempt to provide higher comfort for the occupants.

The constraints in Eqs.(4)-(7) represent the limits for input and output water tem-
perature of the swimming pool. When the optimization problem is feasible, variables
vit,sa,sb,...,sz and wi

t,sa,sb,...,sz
are equal to zero and upper and lower bounds of the water

temperature are limited to Tmax
t and Tmin

t , respectively. When a feasible solution cannot
be reached, these upper and lower bounds are changed by vit,sa,sb,...,sz and wi

t,sa,sb,...,sz
to

keep the optimization problem feasible while finding a scheduling plan for the SPHS that
leads to the lowest possible violation in the water temperature limits.

Equality constraints in Eq. (8) represent the uncertainty scenarios of flexibility re-
quest. This means that if the CHS include hour a, two scenarios can happen for the
operation of HP in that hour, i.e., requesting (ON) or not requesting (OFF) flexibility.
Equations (1) and (2) describe the dynamics of the system. In order to form a SMILP
model, first, Eqs. (1) and (2) should be discretized, as in Eq. (12):T in,i

t+1,sa,sb,...,sz

T out,i
t+1,sa,sb,...,sz


︸ ︷︷ ︸

Tt+1,sa,sb,...,sz

=

1 − Hw∆t
Cin

Hw∆t
Cin

Hw∆t
Cout

1 − Hw∆t
Cout

− Ho∆t
Cout


︸ ︷︷ ︸

A

T in,i
t,sa,sb,...,sz

T out,i
t,sa,sb,...,sz


︸ ︷︷ ︸

Ti
t,sa,sb,...,sz

+

Qn∆t
Cin

0


︸ ︷︷ ︸

B

ui
t,sa,sb,...,sz

+

 0

Ho∆t
Cout


︸ ︷︷ ︸

E

T ext,i
t

(12)
Then, by denoting the initial water temperature of the swimming pool in system

uncertainty scenario i as Ti
t = Ti

0 and using Eq. (12), we can formulate the future states
over the next N time intervals, as shown in Eqs. (13)-(15) [30]:

Ti
t+1,sa,sb,...,sz

= A ·Ti
t,sa,sb,...,sz

+ B · ui
t,sa,sb,...,sz

+ E ·Text,i
t (13)

Ti
t+2,sa,sb,...,sz

= A ·Ti
t+1,sa,sb,...,sz

+ B · ui
t+1,sa,sb,...,sz

+ E ·Text,i
t+1

12



= A ·
[
A ·Ti

t,sa,sb,...,sz
+ B · ui

t,sa,sb,...,sz
+ E ·Text,i

t

]︸ ︷︷ ︸
Ti

t+1

+B · ui
t+1,sa,sb,...,sz

+ E ·Text,i
t+1

= A2 ·Ti
t,sa,sb,...,sz

+ AB · ui
t,sa,sb,...,sz

+ B · ui
t+1 + AE ·Text,i

t,sa,sb,...,sz
+ E ·Text,i

t+1 (14)

...

Ti
t+N,sa,sb,...,sz

= AN ·Ti
t,sa,sb,...,sz

+
N∑
j=1

AN−jB ·ui
t+j−1,sa,sb,...,sz

+
N∑
j=1

AN−jE ·Text,i
t+j−1 (15)

Now, by defining the following parameters,

ui
sa,sb,...,sz

=
[
ui
1,sa,sb,...,sz

ui
2,sa,sb,...,sz

. . . ui
N,sa,sb,...,sz

]T
(16)

Text,i =
[
T ext,i
1 T ext,i

2 . . . T ext,i
N

]T
(17)

we can recast the above equations into the following linear equality constraints:

Ti
sa,sb,...,sz

= F·Ti
0+Ψ·ui

sa,sb,...,sz
+Φ·Text,i ∀m ∈ M, sa = 1, 2, sb = 1, 2, ..., sz = 1, 2

(18)

where,

Ti
sa,sb,...,sz

=



[
T in,i
t

T out,i
t

]
t < a[

T in,i
t,sa

T out,i
t,sa

]
a ⩽ t < b[

T in,i
t,sa,sb

T out,i
t,sa,sb

]
b ⩽ t < c

...[
T in,i
t,sa,sb,...,sz

T out,i
t,sa,sb,...,sz

]
z ⩽ t


(19)

F =


A
A2

A3

...
AN

 (20)

Ψ =


B 0 0 . . . 0
AB B 0 . . . 0
A2B AB B . . . 0

...
...

...
...

AN−1B AN−2B AN−3B . . . B

 (21)
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Φ =


E 0 0 . . . 0
AE E 0 . . . 0
A2E AE E . . . 0

...
...

...
...

AN−1E AN−2E AN−3E . . . E

 (22)

T i
ext is the weather temperature vector that includes hourly temperature values of a

day under uncertainty scenario i.
Now, replacing the system dynamic equations (1) and (2) by the linear equation (18),

the optimization problem in Eqs. (3)-(8) and (18) forms a SMILP problem that can be
solved by CPLEX solver in GAMS.

4.2. Step 2: Introducing the evaluation index for CHSs

The effectiveness of each CHS as a successful contract plan is measured using a metric,
which is specified by K0. The metric is defined as the percentage of the time intervals
among all hours in all scenarios, i.e, N × ns, that the water temperature limitations are
satisfied. Since vit,sa,sb,...,sz and wi

t,sa,sb,...,sz
represent the violations of the water temperature

limits in different hours and scenarios, we use these variables to calculate the metric for
each CHS as below:

I1,it,sa,sb,...,sz
=

{
0 vit,sa,sb,...,sz > 0

1 otherwise
(23)

I2,it,sa,sb,...,sz
=

{
0 wi

t,sa,sb,...,sz
> 0

1 otherwise
, (24)

K0 =
ns∑

m=1

ρi

2∑
sa=1

ρasa

2∑
sb=1

ρbsb × ...×
2∑

sz=1

ρzsz

N∑
t=1

(
I1,it,sa,sb,...,sz

+ I2,it,sa,sb,...,sz

N × ns

) × 100 (25)

4.3. Step 3: Determining the group of most efficient CHSs

In this section, the proposed method for obtaining the group of efficient CHSs is
presented for occupation patterns (a), (b), (c), (f), and the first 12 hours of occupation
pattern (d) (as shown in Fig. 2). We can classify these patterns into two main types: 1)
patterns (a), (c), and (f) in Fig. 2, which include both rented and vacant statuses and
are called ACF occupation class, and 2) booking pattern (b) and the first 12 hours of the
booking pattern (d) that include only rented status and are called the BD occupation
class. A generic approach is proposed to find the group of most efficient CHSs for both
occupation classes.

Trying all possible combinations, or using meta-heuristic optimization algorithms that
are based on iterative methods is not efficient because the process of computing evaluation
metrics for each CHS can be time consuming. Therefore, an analytical method is proposed
to find the efficient CHSs in this study. Moreover, to reduce the computational burden,
a standard format is defined to describe CHSs mathematically. Many formats can be
defined for CHSs, however, our goal is to choose the formats that are easy to understand
for both aggregators and end-users and efficient in covering a wide range of combination
of hours as much as possible.

We define the contract hours sequences as C
|A1|,|A2|
X1,X2 (h), which includes two subsets A1

and A2. The symbol |.| shows a set cardinality. The subset A2 has |A2| contract hours

14



Figure 4: Illustrative examples of CHSs in occupation class BD with set {C |A1|,|A2|
X1,X2 (h)} and b)

occupation class ACF with set {C |A1|,|A2|
X1,X2 (h1), D

|B1|,|B2|
Y 1,Y 2 (h2)}.

and comes right after subset A1 that also consists of |A1| contract hours. The number of
hours between each two contract hours in subset |A1| (|A2|) is X1 (X2) hours. h repre-
sents the starting hour of the contract sequence. An illustrative example of this contract
hours sequences is depicted in Fig. 4a.

A block-diagram of the proposed method for finding efficient CHSs is presented in Fig.
5 and explained below:

1. The first step is to determine the maximum number of contract hours for efficient
CHSs. To that end, we use the fact that for the same number of contract hours,
consecutive-hour CHSs (CHCHSs) can give a lower bound to the effectiveness of
all combinations of CHSs with the same number of contract hours. This is true
because the ability of an EMS in CHCHSs for correcting the deviations enforced
by flexibility utilization is less than other combinations. CHCHSs can be defined
by sets {CZ,0

0,0 (h)}, where Z is the number of contract hours. Since the efficiency
of a CHCHS increases by converting it into a non-CHCHS, we suggest that the
maximum number of contract hours at each booking pattern, i.e., Z̄, be equal to
the minimum number of contract hours in which for all combinations of CHCHSs
(i.e., all possible values of h), K0 values are less than a predetermined threshold. By
turning Z̄-hour CHCHSs into Z̄-hour non-CHCHSs (increasing their efficiencies) in
the next steps, efficient CHSs will be determined.

2. For each occupation pattern in the class BD, all possible non-CHCHSs in the form
of {C |A1|,|A2|

X1,X2 (h)
∣∣ Z̄ = |A1| + |A2|} are created, the value of K0 index for each CHS

is calculated using Eq. (25), and the CHSs with K0 index greater than the threshold
are identified as efficient CHSs.

3. For ACF class, since there are both rented and vacant statuses in the occupation
pattern, the standard CHS is defined as in set {C |A1|,|A2|

X1,X2 (h1), D
|B1|,|B2|
Y 1,Y 2 (h2)}

∣∣ Z̄ =

|A1|+ |A2|+ |B1|+ |B2|. Subset A = C
|A1|,|A2|
X1,X2 (h1) is used to describe the contract

hours when the house is vacant, while subset B = D
|B1|,|B2|
Y 1,Y 2 (h2) describes the con-

tract hours when the house is rented. An example of these CHSs is depicted in Fig.
4b. Efficient CHSs for occupation patterns in class ACF are obtained as follows:

15



Figure 5: Process of determining the group of efficient CHSs.

• First, we find the most efficient subsets B by trying all their combinations
while the rest of the contract hours in subset A are constant. Since our focus
is on subset B in this step, the contract hours in subset A are defined in such
a way that the impact of uncertainty caused by these contract hours on K0

metric is minimized. Since temperature violations mainly occur during rental
hours, subsets A are defined as CHCHSs in C

|A1|,0
0,0 (h1) format, where h1 = 1 for

occupation patterns (a) and (f) and h1 = 25−|A1| for occupation pattern (c).
Choosing these values for h1 maximizes the timespan between contract hours in
subsets A and rental hours; hence minimizes their impacts on K0 values. So, all
possible combinations of CHSs in the forms of {C |A1|,0

0,0 (1), D
|B1|,|B2|
Y 1,Y 2 (h2)

∣∣ Z̄ =

|A1| + |B1| + |B2|} for occupation patterns (a) and (f) and {C |A1|,0
0,0 (25 −

|A1|), D|B1|,|B2|
Y 1,Y 2 (h2)

∣∣ Z̄ = |A1| + |B1| + |B2|} for occupation patterns (c) are
created and their related K0 indices are calculated.

• Subsets B with K0 greater than the threshold are identified and classified under
F clusters. In each cluster, a) K0 values should be in the same range and b)
the number of contract hours in the subset B of CHSs should be the same.
Determining the number of clusters and the range of K0 values at each cluster
depends on the occupation pattern and the defined threshold, and is performed
after obtaining the efficient subsets B. The set of all subsets B in cluster f is
called Bf

Se. The subset B of the least-efficient CHS in each cluster f is defined
as Bf

LE.

• Since Bf
LE has the lowest efficiency among other subsets B in cluster f , if its
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union with a subset {A
∣∣ |A| = |Z̄|−|Bf

LE|} leads to an efficient CHS, the union
of other subsets B in cluster f with this subset A will also lead to efficient CHSs.
So, for each cluster f , all combinations in the form of {C |A1|,|A2|

X1,X2 (h), Bf
LE} are

investigated and their related K0 indices are calculated. Subsets A, whose
union with Bf

LE leads to efficient CHSs, are identified and recorded in a set
called Af

Se.

• At each cluster, the union of each subset A ∈ Af
Se and each subset B ∈ Bf

Se

gives an efficient CHS.

5. Numerical results

A summerhouse located in Denmark is chosen as the case study in this paper. Without
loss of generality, September is chosen as the contract period. We define np = nw = ni = 5.
In order to create price and weather uncertainty scenarios, day-ahead market prices and
weather data from September 2020 are collected and then reduced to five scenarios as
shown in Fig. 6. To create initial water temperature scenarios, 1000 scenarios including
different prices, weather conditions, booking patterns, and initial states are generated
for two consecutive days. Then, the SPHS scheduling result for each scenario is obtained
using the proposed optimization problem in Section 4.1 after eliminating the uncertainty of
flexibility request in the formulation. The values of input and output water temperature of
the swimming pool at hour 00:00 of the second day is used as the initial input and output
water temperature scenarios. These scenarios are reduced to five main scenarios using
the backward scenario reduction method, as shown in Table 1. The probabilities of each
price, weather and initial water temperature scenario are reported in Table 2. Considering
different combinations of prices, weather and initial water temperature scenarios, 125
system uncertainty scenarios, i.e., ns = 125, are obtained.

Lower and upper bounds of swimming pool water temperature during rented hours
are 27 oCs and 29 oCs, respectively, while they change to 25 oCs and 31 oCs, respectively,
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Figure 6: System uncertainty scenarios a) electricity prices, and b) ambient temperature.

Table 1: Uncertainty scenarios for initial water temperature of the swimming pool

Scenario Number 1 2 3 4 5
T 0
in 28.8 28 26.8 26.7 25.6

T 0
out 28.7 26.5 26.7 25.5 25.5
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Table 2: Probability of each price, weather and initial water temperature scenario.

Scenario Number 1 2 3 4 5
Price 0.20 0.23 0.14 0.13 0.30

Weather temperature 0.17 0.20 0.16 0.30 0.17
Initial water temperature 0.24 0.02 0.58 0.04 0.12

Table 3: SPHS parameters for the simulation study.

Cout Cin Hon Hw Qn ∆t
(kWh/oCs) (kWh/oCs) (oCs/kW ) (oCs/kW ) (kW ) (h)

80 10 0.5 15 30 1

during non-rented hours. Probability of procuring flexibility by the aggregator is assumed
to be 0.5, i.e., ρasa = ρbsb = · · · = ρzsz = 0.5. In this case, the formulation and simulation
results would be the same for both upward and downward regulation. Parameter βt is
equal to 2 × 103 and 103 during rented and non-rented hours, respectively. Comfort level
threshold is assumed to be 98%, which means that maximum acceptable violation from
the water temperature limits is 2% of the all time intervals during the contract periods.
The SPHS parameters are defined in Table 3 [30]. The simulation results for occupation
pattern (a) of Fig. 2 are discussed thoroughly. The results from other booking patterns
are discussed briefly to avoid duplication and extra pages.

5.1. Investigating the impacts of different CHSs on the swimming pool water temperature
variations

To illustrate how choosing a CHS with specific contract hours can affect the feasi-
bility of SPHS’s operation, the simulation results of swimming pool water temperature
variations for two cases are compared in Fig. 7. In the first case, the CHS is chosen as
{5, 6, 7}, where no violation of the water temperature limits has occurred, as shown in
Fig. 7a. However, in the second case where CHS is {15, 16, 17}, water temperature limi-
tations are violated in some hours and flexibility request scenarios, as depicted in Fig. 7b.
Therefore, CHS of {5, 6, 7} is more efficient than CHS of {15, 16, 17} in this particular case.

5 10 15 20

Hour

25

26

27

28

29

30

31

T
em

p
er

at
u
re

 (
°C

)

T
out

1:4

T
out

5,s
5

T
out

6s
5
,s

6

T
out

7, s
5
,s

6
, s

7

T
out

8:24, s
5
,s

6
, s

7

T
in

1:4

T
in

5,s
5

T
in

6, s
5
,s

6

T
in

7, s
5
,s

6
, s

7

T
in

8:24, s
5
,s

6
, s

7

T
max

T
min

(a)

5 10 15 20

Hour

25

26

27

28

29

30

31

T
em

p
er

at
u
re

 (
°C

)

T
out

1:4

T
out

5, s
5

T
out

6, s
5
, s

6

T
out

7, s
5
, s

6
, s

7

T
out

8:24,  s
5
, s

6
,s

7

T
in

1:4

T
in

5, s
5

T
in

6,  s
5
, s

6

T
in

7,  s
5
, s

6
,s

7

T
in

8:24,  s
5
, s

6
,s

7

T
max

T
min

(b)

Figure 7: Swimming pool water temperature variations in different flexibility scenarios and a
specific system uncertainty scenario for the CHS a) {5, 6, 7} and b) {15, 16, 17}.
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5.2. Obtaining the group of efficient CHSs for occupation pattern (a)

In this subsection, the proposed algorithm from Section 4.3 and Fig. 5 is used to find
the group of most efficient CHSs for occupation pattern (a) in Fig. 2.

5.2.1. Determining maximum number of contract hours

The first step is to find the maximum number of contract hours. To this end, values
of evaluating index K0 for all combinations of CHCHSs with 1 to 7 contract hours are
calculated and presented in Fig. 8. Each point (h, k) on each curve in Fig. 8 represents
a CHCHS whose first contract hour is h, and whose related index value is k. According
to Fig. 8, we can conclude that:

• CHCHSs with equal or less than three contract hours satisfy the comfort level thresh-
old.

• For CHCHSs with equal or less than four contract hours during non-rented times,
violations of water temperature limitations are almost zero.

• All combinations of CHCHSs with Z ≥ 7 do not satisfy the required threshold.
According to the explanations in Section 4.3, a maximum of 7-hour contract duration
is selected for efficient CHS, i.e., Z̄ = 7.
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Threshold 1 hour contrat 2-hour CHCHSs

3-hour CHCHSs 4-hour CHCHSs 5-hour CHCHSs

6-hour CHCHSs 7-hour CHCHSs

Figure 8: Values of evaluation index K0 for 1 to 7 consecutive hour CHSs in occupation pattern
(a).

5.2.2. Obtaining efficient subsets B

In this step, each 7-hour CHS is divided into two subsets A and B. According to
section 4.3, contract hours in subset A should start from hour 1 and continue for several
hours, i.e., A = {C |A|,0

0,0 (1)
∣∣ |A| ≤ Z̄}. Subset B represents the contract hours of the

CHS when a house is rented, i.e., k > 12, which is defined in the standard format of
B = {C |B1|,|B2|

Y 1,Y 2 (h2)}, where Z̄ − |A| = |B1| + |B2| = |B|, and h2 ≥ 13. Choosing the
above-mentioned format for subset A minimizes the impact of the uncertainty caused by
this subset on calculation of K0; hence, the value of K0 mostly depends on the structure
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of subset B. By trying all possible combinations of subsets B, i.e., all possible values
of |B1|, |B2|, Y 1, Y 2 and h2, and calculating K0 index values, we can identify efficient
subsets B that give efficient CHSs.
The simulation results show that:

• All subsets B with |B| ≤ 1 or |B| ≥ 4 do not lead to efficient subsets.

• All subsets B with Y 1 ≤ 1 or Y 2 ≤ 1 are inefficient.

• There are a few subsets with |B| = 2, 3 and Y 1 ≥ 2 and Y 2 ≥ 2 that give efficient
CHSs, as shown in Fig. 9. In general, when |B| = 2, subsets are efficient for h2 ≥ 19,
while subsets are efficient for h2 ≥ 15 when |B| = 3.

• As shown in Fig. 9, efficient subsets cover almost all the rented period except for
hour 13. Therefore, the aggregator can provide flexibility at all hours by choosing
different subsets B of CHSs for different contracted summerhouses.

Figure 9: Illustrative representation of efficient subset B.

5.2.3. Clustering efficient subsets B and determining Bf
LE for each cluster

The next step in the algorithm proposed in Section 4.3 is clustering the efficient subsets
B. As mentioned in Section 4.3, at each cluster, K0 values should be in the same range,
and the number of contract hours in the subset B should be the same. According to the
results of Section 5.2.2, four clusters are defined, as shown in Fig. 10. At each cluster
f ∈ F , all obtained efficient subsets B are recorded in Bf

Se.
The next step is to determine the least-efficient subset B at each cluster f , i.e., Bf

LE.
These are the subsets with lowest K0 index value of subset B in each cluster, which are
presented in Table 4.

Table 4: Least-efficient subsets B in each cluster.

Cluster (f) 1 2 3 4

Bf
LE D2,0

2,0(19) D2,0
3,0(19) D1,2

5,3(14) D1,2
4,2(15)
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Figure 10: Illustrative representation of efficient subsets B and the resultant clusters.

5.2.4. Obtaining efficient subsets A for Bf
LE in each cluster

Efficient subsets A in each cluster are the subsets whose union with subsets B at the
same cluster leads to efficient CHSs. To find these efficient subsets A in each cluster,
all combinations of CHSs in {A,Bf

LE} format, where A = {C |A1|,|A2|
X1,X2 (h1)

∣∣ Z − |Bf
LE| =

|A1| + |A2|, 1 ≤ h1 ≤ 12} are examined. The subsets A leading to K0 greater than the
threshold are chosen as efficient subsets A and recorded in the set Af

Se. Simulation results
show that in each cluster, there can be many efficient subsets A. To avoid complexity
in presentation and provide an easy guideline for finding efficient subsets A, we suggest
using an index to identify them in an easier way. The average of contract hours numbers
(ACHN) at each subset A is used as an index to identify these subsets. In this case, a
maximum ACHN can be defined for each cluster f that all subsets A with ACHNs smaller
than this maximum value be efficient. The distribution of ACHNs of all combinations of
subsets A at all clusters is presented in Fig. 11. Reviewing the simulation results shows
the overlapping area of efficient and inefficient CHSs is large, highlighted in Fig. 11a on
the left, which makes it difficult to distinguish between the ACHN intervals of efficient
and inefficient subsets. To overcome this issue, subsets A in the overlapping area were
studied, where we noticed that most of subsets A are the ones that include hour 12 as the
contract hour. So, the simulations are repeated after removing these subsets A. In the
new simulation results, it can be seen that the overlapping area decreases significantly,
highlighted in Fig. 11a on the right. Now, we define the maximum acceptable value for
ACHN of efficient subsets A at each cluster f , i.e., ACHNmax

f , as the average ACHN of
efficient and inefficient subsets A in the overlapping area. Using this definition, ACHNmax

f

in clusters 1, 2, 3, and 4 are equal to 5.9, 7.53, 5.25, and 6.96, respectively. Then, we
can define sets Af

Se = {A | ACHN(A) ≤ ACHNmax
f and 12 /∈ {A}}. Although some

inefficient ACHNs might be identified as efficient ACHNs in this case, they are rare and
their efficiencies are very close to predetermined threshold. It should be noted that while
most subsets A with contract hour 12 are inefficient, there are a few efficient subsets A
in cluster 2 with contract hour 12 in the form of C3,2

0,{5,6,7}(12), C3,2
1,4(12) and C2,3

0,2(12).

Finally, efficient CHSs are obtained as {{A,B} | A ∈ Af
Se, B ∈ Bf

Se, ∀f ∈ F}.
Based on the simulation results in Sections 5.2.1-5.2.4, it can be said that efficient CHSs

for occupation pattern (a) of the summerhouse should have the following properties:

• The maximum number of contract hours for achieving the comfort level threshold
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Figure 11: Distribution of ACHNs with and without CHSs with flexibility commitment at hour
12 in clusters a) 1, b) 2, c) 3, and d) 4.

98% is 7 hours.

• The contract hours during rented hours are recommended in {D2,0
Y 1,0(h2)

∣∣ Y 1 ≥
2, h2 ≥ 19} or {D1,2

Y 1,Y 2(h2)
∣∣ Y 1 ≥ 3, Y 2 ≥ 2, h2 ≥ 15} format.

• Most recommended subsets A of efficient CHSs are the ones that do not include
hour 12 as a contract hour and their ACHN value are less than ACHNmax

f ∀f ∈ F
given in Fig. 11.

5.3. Evaluating the proposed method for choosing the maximum number of contract hours

In Section 4.3, a method was suggested to find the maximum number of contract
hours. In this section, the effectiveness of this method is evaluated. To this end, the
proposed approach is repeated for the case that the number of contract hours is eight.
Fig. 12 illustrates some of the most efficient 8-hour CHSs. It can be seen that none of
the 8-hour CHSs can reach efficiencies greater than 97%. If we want to use these types
of CHS, we have to accept the risk of a higher rate of violation of the water temperature
limits.

5.4. Obtaining the maximum number of contract hours for other occupation patterns

The same approach, as discussed in Section 5.2 for occupation pattern (a), can be
employed to find the group of efficient CHSs in other occupation patterns. Here, we only
present the results of the maximum number of contract hours. Following the method pro-
posed in Section 4.3, the maximum number of contract hours, i.e., Z̄, for each occupation
pattern is reported in Table 5.

22



13 14 15 16 17 18 19 20 21

h2

96

96.2

96.4

96.6

96.8

97

K
0
 (

%
)

{C
4,0

0,0
(1), D

2,2

2,2
(h2)} {C

5,0

0,0
(1), D

3,0

2,0
(h2)} {C

5,0

0,0
(1), D

3,0

3,0
(h2)}

{C
5,0

0,0
(1), D

3,0

4,0
(h2)} {C

6,0

0,0
(1), D

2,0

1,0
(h2)} {C

6,0

0,0
(1), D

2,0

2,0
(h2)}

{C
6,0

0,0
(1), D

2,0

3,0
(h2)} {C

6,0

0,0
(1), D

2,0

4,0
(h2)} {C

6,0

0,0
(1), D

2,0

5,0
(h2)}

{C
6,0

0,0
(1), D

2,0

6,0
(h2)}

Figure 12: Most efficient 8-hour CHSs.

As shown in Table 5, in occupation patterns (b) and (d), the opportunity to provide
flexibility decreases because the summerhouse is rented during the flexibility service pro-
vision hours and water temperature constraints are tight. As a result, the maximum
number of contract hours would be 3 and 2 hours, respectively. The difference between
occupation patterns (a) and (f) is in the water temperature limitations when the house
is vacant. Although the temperature limitations are relaxed in occupation pattern (f),
the maximum number of contract hours is fewer than the ones in occupation pattern (a).
This happens because in occupation pattern (f), the SPHS is OFF in previous days, hence
the initial water temperature is lower than other patterns. Therefore, the SPHS should
be ON for a longer period of time to reach the desired temperature at 12 a.m., which
leads to less flexibility in the SPHS operation. Occupation pattern (c) gives the highest
number for contract hours among all occupation patterns. This is due to the fact that
the house is not rented for 24 hours after hour 12 a.m., which gives the highest flexibility
in operation in the last 12 hours of the day.

Table 5: Maximum number of contract hours for different occupation patterns.

Occupation class ACF Occupation class BD
a c f b d

Z̄ 7 13 4 3 2

5.5. Cost-benefit analysis of flexibility contracts

The main driver for end-users to become involved in flexibility contracts is financial.
However, involving in other power grids services deviates the operation of SPHS from
its optimal operation point and increases the costs. In this section, the additional cost
of providing flexibility services is investigated. To estimate the cost, 10 efficient CHSs
with the maximum number of contract hours, as shown in Table 5, are generated for each
occupation pattern. Then, average optimal operation cost of each occupation pattern is
calculated and subtracted from the baseline operation cost, i.e., when there is no flexibility
contract. The results are divided by the number of contract hours to obtain the cost
incurred to the summerhouse per each contract hour in each booking pattern. Simulation

23



(a) (b) (c) (d) (f)

Occupation patterns

0

0.01

0.02

0.03

0.04

0.05

0.06

A
d

d
it

io
n

al
 c

o
st

 i
m

p
o

se
d

 

Figure 13: Expected cost of providing flexibility service in each contract hour for all occupation
patterns.

results are presented in Fig. 13. It can be seen that the cost per kW of flexibility service in
each pattern is different, which is due to differences in the maximum number of contract
hours in each pattern and the hours of the day i.e., on-peak, mid-peak or off-peak, in
which flexibility is requested. For instance, in occupation patterns (a) and (f), most of
the contract hours occur during off-peak and mid-peak hours, which leads to decrease in
their costs in case of utilizing their flexibility by the aggregator. However, most contract
hours in occupation pattern (c) are selected during the mid-peak and on-peak hours, which
increase the operation cost of the SPHS compared to other cases. This cost should be the
minimum payment to the summerhouse owner to encourage them to provide flexibility
services.

6. Conclusion

This paper proposes a methodology to procure maximum explicit flexibility of a swim-
ming pool heating system without uncertainty in response to the flexibility request. To
this end, a group of contract hour sets is obtained in which the heating system is ready
to provide flexibility to an aggregator. The aggregator and end-user can agree on one
specific contract hour set among all sets to provide flexibility during a contract period. In
order to find these contract hour sets, first, a SMILP formulation is proposed to find the
optimal daily scheduling of the swimming pool heating system considering operational
constraints, uncertainty in price, weather and initial state of the system during the con-
tract period, and uncertainty in utilizing the flexibility for a specific contract hour set.
Then, an evaluation metric is formulated to measure the efficiency of a set in satisfying
users’ comfort constraints using the results of the first step. Finally, an algorithm is
proposed to find the group of efficient contract hour sets with the maximum number of
contract hours using the proposed evaluation metric in the second step.
The proposed method was applied to a summerhouse equipped with a indoor swimming
pool heating system. Among all possible booking patterns, five booking patterns in which
the heat pump can provide flexibility was chosen and maximum number of contract hours
for each occupation pattern was found, which can vary from 2 to 13 hours depending
on the occupation patterns’ structure and the realistic range of initial values for water
temperature in each pattern. Moreover, a simple guideline for finding these contract
hour sets was suggested. The guideline helps the aggregator and end-user to generate a
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wide range of contract hour sets conveniently, as it gives more options to choose from.
The accuracy of the proposed approach in determining the maximum number of contract
hours was also evaluated. Finally, a cost-benefit analysis was performed to investigate
the minimum expected payment to end-users for covering the additional costs incurred
to the summerhouse owner by proving flexibility services. Future directions for this work
could be applying the method to other flexible devices or mix of devices in the buildings
and including more complicated thermal loads in the model.
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Appendix A. A brief review on backward scenario reduction method

We used the proposed backward scenario reduction method in [29] to decrease the
system uncertainty scenarios. here we apply the approach to price uncertainty scenarios.
however, it can be easily adapted to the ambient temperature and initial state scenarios
too.

Let define Cj = {Cj
1 , C

j
2 , ...C

j
N} as daily price scenario j ∈ J with probability of ρpj ,

where J is the set of all scenarios. The distance of each two scenarios Cj and C l is defined
as below:

DT (Cj, C l) =
1

N

√√√√ N∑
k=1

(Cj
k − C l

k)2 (A.1)

The process of reducing the price scenarios to np scenarios is explained as follows:

• Step 1: Compute the distance of all scenario pairs, i.e, DT (Cj, C l) ∀j, l ∈ J .

• Step 2: For each scenario j, the scenario l∗j which has the minimum distance with
j, is identified.

• Step 3: Compute PDj = ρpj ×DT (Cj, C l∗j ) ∀j ∈ J .

• Step 4: Find scenario d such that PDd = min{PDj ∀j ∈ J}.

• Step 5: J = J − {b}, ρpl∗b
= ρpl∗b

+ ρpb .

• Step 6: if |J | > np (|J | refers to cardinality of the set J), return to step 2, otherwise,
stop the process.
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