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Abstract—The number of large-scale Photovoltaic (PV) and
wind farms is rapidly growing in Australia and all around
the world. When these resources participate in the wholesale
electricity market, their uncertain nature of generation results
in revenue loss due to the penalty incurred by deviating from
day-ahead and real-time commitments. In an attempt to avoid
financial losses, they typically bid in the market conservatively.
This, in turn, might lead to wasting clean energy and lowering
overall profit for the producers. To address these issues, various
energy storage devices are considered as a potential solution
by academic and industrial researchers alike. In this study,
an optimal battery sizing methodology is proposed to improve
renewable generation predictability using “Seasonal-Trend de-
composition based on LOESS1 (STL)” decomposition technique,
self-similarity estimation, and enhancing it through filtering.
The ultimate goal is to determine the optimal battery size that
enhances predictability of renewable generation regardless of the
prediction technique and time horizon, which necessarily im-
proves the accuracy of predicted values. The goal is achieved by
the proposed method through designing a forecasting-technique-
agnostic algorithm. For optimal battery sizing, an optimisation
formulation is proposed including battery degradation through
its useful lifetime. Moreover, prediction studies are carried
out to prove predictability enhancement using four prediction
techniques and three prediction horizons. The simulation results
show the effectiveness of the proposed method in improving self-
similarity index (i.e., Hurst exponent) in the PV production time
series and economic viability of the proposed methodology in a
particular application.

Index Terms—Predictability, STL decomposition, self-
similarity, optimisation, battery sizing.

I. INTRODUCTION

THE future power system expected to host many utility-
scale Photovoltaic (PV) and wind farms, which inevitably

demands substantial amount of generation flexibility and stor-
age to compensate their fluctuations, sporadic ramp rates, and
lack of inertia. When large-scale renewable generation plants
participate in the wholesale electricity market, they are faced
with penalty for any deviation from day-ahead and real-time
commitment, similar to the conventional generators [1]. Since
renewable generation prediction is highly unreliable, they are
more likely to be penalised for not fulfilling their commitments
[1]. To reduce the risks, renewable plant operators conserva-
tively bids in the market, which consequently reduces their
overall profit and wastes a substantial amount of clean energy.

To avoid this, energy storage is considered to compensate
forecast uncertainty and alleviate fluctuations in the output
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power of renewable power plants [1]–[16]. The methods
introduced in [1]–[10] used specific forecasting and statistical
scenario generation techniques to create different realisation
of prediction error. Then, the time series of prediction error
is used in different ways to determine the appropriate/optimal
battery sizes that can reduce uncertainty of renewable gen-
eration prediction. In [1], [2], [4], [5], [8], dynamic battery
sizing methods are offered for different trading intervals in
the wholesale market based on the statistical behaviour of the
forecast error and autocorrelation of the error. These methods
are suitable for power system with a separate storage market,
where renewable generation can purchase battery capacity
dynamically to compensate their deviation from predicted
values. In [3], battery sizing and operation algorithms are
proposed to maximise distribution companies’ profit in the face
of day-ahead load/distributed renewable generation uncertainty
by following the same concept presented in [1], [2], using the
prediction error obtained by a specific forecast method. Other
statistical battery sizing methods are proposed in [6], [7], [9],
[10], where time series of long-term ([6], [9], [10]) and daily
([7]) forecast error are generated to find an appropriate size of
the battery to reduce the error. In [11], different realisations of
uncertainty are generated based on a specific forecast method
for a set of given battery sizes in an iterative algorithm, which
is not scalable nor optimal. The battery sizes obtained by the
proposed methods in [1]–[10] might not be optimal for two
reasons: first the battery size can vary significantly from one
forecasting technique to another, and secondly a single forecast
method does not show consistent performance over different
prediction horizon and across various parts of a time series
[4], [17].

Besides the methods proposed to compensate forecast error,
various techniques are developed in [12]–[16] to mitigate fluc-
tuations and smooth output power of the renewable resources.
While these methods can improve predictability to some
extent, they are not designed to do so, which limits the level
of improvement, as it will be shown later in this paper. The
battery sizing based on the filtering techniques has two other
downsides: first filtering-based approaches in the literature
have been applied to the original signal with possibly seasonal
and trend components, which makes it difficult to guarantee
predictability improvement. Secondly, these approaches re-
quire battery to be charged externally, e.g., in [14], which adds
to the battery operation cost. In [12], [13], [15], the proposed
battery sizing algorithms should be repeated for daily profiles
without accounting for the initial state-of-charge (SOC) at
the beginning of each day. Also, developing battery sizing
methodology based on specific operational strategies and grid
codes, e.g., [11], [12], undermines the usability of the proposed
methods in other applications. Most of the literature in the field
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(i.e., smoothing and compensating renewable prediction error)
ignored battery capacity degradation over its useful lifetime in
the optimal sizing formulation, e.g., [1], [2], [4]–[10], which
can play an important role in determining the optimal battery
capacity. It is worth mentioning that there are numerous papers
on battery sizing for various applications, as summarised in
[18]. However, only prior research studies on smoothing and
forecast uncertainty compensation are referred in this paper as
they are relevant in concept.

In this paper, the battery sizing problem is tackled from
a different perspective: by optimally sizing battery storage to
improve predictability of the underlying time series without
considering a specific forecasting technique. Despite most of
the methods presented in [1]–[16], the proposed battery sizing
strategy in this paper does not require any type of forecasting
technique. Rather, it uses the time-series predictability concept
from self-similarity theory to reshape a time series in a
way that enhances its prediction. This will, in turn, result
in prediction improvement regardless of the forecast horizon
because of modifying the original time series without being
dependant on a specific forecast method, as shown in the
simulation results in Section III-E. To do so, the concept of
seasonal decomposition, self-similarity enhancement of a time
series, and a filtering technique are applied in the proposed
sizing algorithm. First, procedures are developed to identify
seasonality and trend in the PV production time series. It is
then followed by introducing Seasonal-Trend decomposition
based on LOESS2 (STL) as a sophisticated seasonal decom-
position technique [19]. The outcome of STL would be an
energy-neutral charge and discharge profile of the battery,
which dismisses external charging of the battery from the grid.
Then, a procedure is developed to verify the stationarity of the
irregular stochastic component through appropriate statistical
tests. Then, self-similarity estimation is conducted on the
stationary time series using Hurst exponent [20], which is
extensively used in other research areas such as stock markets
[21] and biomedical engineering [22] for predictability mea-
surement. Since there is no analytical quantitative relationship
between Hurst exponent and the prediction accuracy, we
developed a strategy to find optimal battery sizes that can
improve forecast accuracy in Subsection II-D, where a non-
linear optimisation problem is formulated. The battery capacity
degradation throughout its useful lifetime is also formulated
in the battery sizing problem. In [23], a nonlinear battery
degradation is integrated with the battery/ultra-capacitor siz-
ing formulation, and is solved by DIRECT search method.
Whereas, the linear degradation model of this paper preserves
linearity of the original optimisation problem, which can be
readily solved with gradient-based exact methods. Battery
degradation is also used in [24] in a Markov model-based
battery sizing study, where the transition probability between
states are modified to account for the battery capacity ageing.
The proposed method, however, does not guarantee optimality
of the solutions nor does offer an optimal formulation for such
application. Additionally, the battery charge and discharge
efficiencies are accurately modelled, despite studies such as
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[11]. The contributions of the paper can be summarised as
follow:
• Hypothesising, formulating and solving battery sizing

problem as a mechanism to improve predictability of
renewable generation through converted bi-level program-
ming to tractable nonlinear optimisation problem;

• Application of STL decomposition technique and Hurst
exponent of self-similarity theory in the context of power
system, which resulted in: 1) avoiding external battery
charging and consequently operation cost reduction, and
2) a forecasting-technique-agnostic method for battery
sizing in prediction uncertainty mitigation and smoothing
applications;

• Adding battery degradation over its useful lifetime in
the optimisation formulation as a linear constraint in the
battery SOC calculation.

To show the effectiveness of the developed methodology, it
is applied to the PV generation data, without loss of generality,
gathered from 3.275 MWp PV plant located at the University
of Queensland (UQ), Gatton campus, Australia. It is shown
that the Hurst exponent of the time series, and consequently
predictability, is improved with appropriate size of battery.
To further verify forecasting improvement and accuracy of
Hurst exponent estimation, four prediction methods are de-
veloped to perform a preliminary forecasting study. Finally,
a simple economic viability assessment, including battery
capacity degradation throughout its lifetime, is carried out
to show that there are economic incentives to use battery
for prediction improvement in order to avoid paying for the
balancing services in the wholesale market. The proposed
method is applicable to other variable renewable generation
(such as wind) without any alterations in the proposed method
as long as the underlying time series is (or can become) trend-
and seasonal-stationary and a self-similar process.

The rest of the paper is organised as follows: Section II
explains the proposed method step-by-step. Linear and non-
linear battery optimal sizing formulations are described in this
section. Simulation studies are carried out in Section III, and
the results are explained in detail. Finally, paper is concluded
in Section IV.

II. PROPOSED METHODOLOGY

Despite all the improvement in prediction techniques, re-
newable generation (such as PV) forecast contains large errors
particularly for longer horizons [25], [26]. This might lead to
revenue loss for the plant operators by conservatively bidding
in the market and being penalised for not meeting predicted
values. As a result, improving predictability of the renewable
generation using storage devices within a plant could be
technically and economically beneficial for every stakeholder.

Predictability is a measurable feature in a time series;
in fact, it can be defined independently without relying on
any specific type of prediction method. One category of
predictability measurement approaches is developed based on
the theory of long-term self-similarity or long-memory of a
time series, which has been expanded by the fractal analysis
of time series [27]. In this theory, predictability of a time series
is quantified by estimating Hurst exponent. As it is shown in
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[28], higher Hurst exponent results in lower prediction error
of the underlying time series. In this study, a new battery
sizing method is developed based on improving self-similarity
using Hurst exponent for a stationary time series, as shown in
Fig. 1. In the following subsections, every step of the proposed
method is explained in detail.

Checking 
Seasonality

Seasonal 
Decomposition

Trend 
Component

Irregular 
Component

Self-Similarity 
& Stationarity 
Assessment

Battery Sizing 

� 1. Self-similarity enhancement

� 2. Battery sizing formulation

� 3. Charge adjustment

kWh/kW 
sizes

Seasonal 
Component

Fig. 1. A step-by-step schematic of the proposed battery sizing methodology

A.Checking Seasonality Existence

The first step is to check the existence of seasonality in the
original data. This is necessary because self-similar processes
are only defined for stationary time series [27]. Therefore,
existence of seasonal and/or trend components in the time
series should be identified and effectively removed from the
time series beforehand. In this context, seasonality is defined
as a regular pattern of fluctuations in a time series that repeats
every s time periods, where s specifies the length of the time
in which pattern duplicates itself. More explanations about the
seasonality and decomposition is presented in Subsection II-B.
To check the existence of seasonality in a dataset, multiple
visual methods can be used [29]. In this study, autocorrelation
function (ACF) plot is preferred as it works well when the
seasonal period is unknown.

Let the time series be denoted by zt,t ∈ T where obser-
vations made at equidistant time intervals T = {τ0 + h, τ0 +
2h, . . . , τ0 + t · h, . . . , τ0 +N · h}. The autocorrelation at lag
k can be calculated as follows [30]:

ρk =
E[(zt − µ)(zt+k − µ)]√

E[(zt − µ)2].E[(zt+k − µ)2]
(1)

where µ is the average of the entire set; and E is the expected
value operator. The ACF is then calculated for different k
using Eq. (1). The time period of seasonality, s, can be easily
identified from the ACF graph. The application of ACF is
based on the fact that a random process with an underlying
trend shows autocorrelation to some extent. In principle, if
ACF has a very long (or mathematically infinite) decay rate,
the time series represents a Gaussian process, which some-
times is called long-memory process [29]. It means that some
processes (such as PV generation time series), while seems
to be purely white noise, might exhibit statistical behaviour
of long-memory processes. We will use this property of time
series in Subsections II-C and II-D along with self-similarity of
stochastic processes to develop a battery sizing methodology.

B.Seasonal Decomposition

When seasonality existence is verified and its time pe-
riod s is identified, seasonality can be removed from the
samples. This process is called “Seasonal Decomposition.”
Typically, every seasonal decomposition algorithm categorises
underlying time series zt as a function of its trend, seasonal,
and irregular components. “Additive” and “multiplicative”
decomposition methods are two functional forms that relates
different components of the seasonality together. In this study,
additive model is preferred because the seasonal fluctuation is
comparably constant over time:

zt = Tt + St + It (2)

where Tt is the deterministic and non-seasonal trend compo-
nent; St is the deterministic seasonal component with known
period s; and It is the stochastic irregular component. Various
techniques are proposed for seasonal decomposition [31]. In
this study, STL decomposition technique is preferred because
of its versatility and robustness [31]. The STL technique is
explained in detail in [19], and summarised in Algorithm 1.
Except for zt, which is the underlying time series, appropriate
methods are offered in [19] to select input parameters in
Algorithm 1.

Algorithm 1 Additive STL Decomposition Technique
1: Input Parameters: zt, v, no, ni, sw, sd, tw, td, lw, ld
2: T (0)

v ← 0, ρ(0)
v ← 0

3: for i← 1, no do
4: for j ← 1, ni do
5: STEP 1: DE-TRENDING
6: γ

(j)
t ← zt − T (j)

t

7: STEP 2: CYCLE-SUBSERIES SMOOTHING
8: C(j)

v ← LOESS (sw, sd) on γ(j)
t

9: Extend smoothed values 1 sample to the right
and left

10: STEP 3: LOW-PASS FILTERING
11: L(j)

v ← Twice Moving-Average of length v
12: L(j)

v ← Moving-Average of length 3
13: L(j)

v ← LOESS (lw, ld)
14: STEP 4: DE-TRENDING
15: S(j)

v ← C(j)
v − L(j)

v

16: STEP 5: DE-SEASONALISATION
17: γ

(j)
v ← zt − S(j)

v

18: STEP 6: TREND SMOOTHING
19: T (j)

v ← LOESS (tw, td) on γ(j)
v

20: end for
21: R(i)

v ← zv − S(i)
v − T (i)

v

22: h← 6×median
(
|R(i)

v |
)

23: ρ
(i)
v ← B

(
|R(i)

v |
h

)
. B: bi-square weight function

24: end for

C.Self-Similarity and Stationarity Assessment

In the previous sub-section, it was mentioned that the first
two components are deterministic, which can be modelled (or
predicted) accurately [31]. The irregular component, however,
is difficult to model and predict because it contains most of
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uncertainty in the original time series. Therefore, any effort
to improve predictability of the time series should be focused
on the irregular stochastic component, i.e., It. In other words,
optimal battery sizing study only requires samples from the
irregular stochastic component.

In general, self-similarity is the key property to improve the
accuracy of prediction [28]. A stochastic process, denoted by
It,t ∈ T , is self-similar with self-similarity exponent of H if
for all c > 0, the processes of Ic.t,t ∈ T and cH .It,t ∈ T
have the same finite-dimensional distributions [20]. In other
words, if It,t ∈ T is a wide-sense stationary process, then its
self-similarity can be measured by Hurst exponent 0 < H <
1 [20], [28], [32]. For self-similar processes, Hurst exponent
varies between 0.5 < H < 1.

To verify the stationarity of a uni-variate time series, which
is the pre-requisite condition prior to Hurst exponent esti-
mation, Augmented Dickey-Fuller (ADF) and Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) tests can be utilised [28]. The
ADF examines the null hypothesis of a unit root [33], while
the KPSS test determines if a time series is stationary around
a mean or linear trend [34]. In the latter, the null hypothesis
of a uni-variate time series is trend-stationary against the
alternative hypothesis that the time series is non-stationary unit
root process. When ADF test rejects existence of a unit root
(i.e., rejecting null hypothesis) and KPSS test does not reject
the trend-stationarity of the time series (i.e., not rejecting null
hypothesis), they collectively imply that the underlying process
is stationary.

When it is proved that the underlying stochastic process is
stationary, self-similarity of the time series can be properly
evaluated by the Hurst exponent. The conventional Hurst
exponent estimation techniques evaluate time series as a whole
to provide a single exponent value characterising the global
behaviour of the time series. A comprehensive list of nine
methods for Hurst estimation is tested in [35], where the
“Aggregated Variance Method” found to be the most reliable
technique, although it does not guarantee the best perfor-
mance for any time series. In this paper, three methods, i.e.,
“Aggregated Variance Method”, “R/S Analysis” and “Average
Wavelet Coefficient”, are used to estimate Hurst exponent of
different time series of interest.

D.Battery Sizing

The optimal battery sizes for predictability improvement of
a given renewable generation profile is the trade-off between
the cost of the battery and the benefits obtained by the battery
operation. Assuming a negligible O&M cost for modern
battery technologies (such as Li-based batteries), the capital
cost of the devices can be estimated considering its ageing over
lifetime, as discussed in Subsection III-F. However, estimating
the benefits of the battery operation in this application is fairly
complicated. In fact, there are four different sources of benefits
that can be obtained from the battery operation, where the first
three sources of income are directly related to the amount of
predictability enhancement:
• Higher energy sold in the energy/capacity market due to

higher confidence in predicted values (i.e., maintaining
the headroom at a lower level);

• Avoiding/lowering penalty paid to the balancing market
because of reduction in forecast errors;

• Opportunities to earn money in the balancing market by
offering services such as down regulation; and

• Since battery will not be operating to improve predictabil-
ity at the full energy/power capacity most of the time,
it can be used to deliver other services (e.g., reactive
power/voltage support) to create new revenue streams,
which is known as stack application. Although it is not
directly related to the predictability improvement, it can
be considered as a source of income for the battery in
such applications to recover the incurred costs.

Estimating the direct benefits of the battery in this frame-
work is not trivial because it depends on the improvement in
the accuracy of the predicted values (for the first three sources
of benefits mentioned above). In one hand, the irregular
stochastic component, It, contains most of the uncertainties
in the original signal; hence, it is less predictable, as it is
shown in Subsection III-E. On the other hand, a quantitative
relationship between predictability of a time series with the
actual improvement in prediction does not exist to estimate
the true benefits of battery operation. To bypass this issue, we
developed a strategy that is shown in Fig. 2, where a filtering
technique is used to separate less predictable components,
i.e., Ît, from more predictable ones, i.e., It, in the irregular
stochastic signal, as explained in Subsection II-D1. Then, an
optimisation formulation is developed in Subsection II-D2 to
find the optimal battery size for the less predictable compo-
nents, Ît. To show the improvement of predicted values, a
comprehensive forecast study is carried out in Subsection III-E
with multiple prediction techniques and horizons. Finally, a
standard economic viability analysis is performed for different
battery sizes in Subsection III-F to assess the economic
consequences of the proposed solution.
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Lower accuracy
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ˆ
tI tI

tI
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Fig. 2. Battery sizing problem definition in this study

1)Self-Similarity Enhancement: To improve the predictabil-
ity (i.e., self-similarity) of the irregular stochastic component,
which leads to more accurate prediction of the underlying time
series, one option is to find the minimum size of the battery
that can cover the entire irregular component obtained from
the seasonal decomposition. This, however, might lead to over-
sized battery, as it will be shown in the simulation results.
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To avoid this, a part of the irregular stochastic time series
can be selected for battery sizing study, while improving self-
similarity of the smoothed signal. In this study, causal moving
average (CMA) filter with equal weights is used, where the
residual of the filter is utilised in the battery sizing study. This
way, smoothed output of the filter, It, is the part remaining to
be predicted, and the residual values, Ît, are covered by the
battery.

Ît = It − It (3)

In its simplest form, a CMA filter of length ω takes the
average of every ω consecutive samples of the waveform from
the past. The first-order CMA of length ω for It,t ∈ T can be
calculated as follows:

It =
1

ω

t∑
i=t−ω+1

It, ω ≤ t ≤ N (4)

where ω is the window length; and It is the smoothed signal.
It is known that the larger the moving average window, the
more the lag. To check on the impact of filtering delay on the
battery sizes [14], Savitzky-Golay (S-Golay) filter, known to
be lag free and preserving high frequency component, is also
tried [36], the outcome of which is briefly discussed in the
simulation results.

2)Battery Sizing Formulation: In order to find minimum
size of the battery to cover Ît, the following optimisation
problem should be solved over the entire training dataset:

min E + λ · SOC0 (5a)

s.t.

SOC · E · αt ≤ SOCt ≤ SOC · E · αt ∀t ∈ T , (5b)

SOC · E ≤ SOC0 ≤ SOC · E, (5c)

SOCt = SOC0 + η(.)
t∑

j=1

Î
(.)
j · h ∀t ∈ T , (5d)

E,SOC0 ≥ 0 (5e)

where E is the optimal capacity of the battery in kWh; SOC0

is the initial capacity of the battery and a decision variable
in kWh; λ is the penalty coefficient for initial battery SOC
to make it as small as possible (λ = 10−6); SOC and
SOC are normalised lower and upper SOC of the battery;
η(.) is the normalised charge and discharge efficiency of the
battery; and h is the sampling time in hour. Positive values of
Î

(.)
t represent charging while negative values show battery in

discharging mode. Having the initial battery SOC, i.e., SOC0,
in the optimisation formulation avoids the negative impact of
arbitrary SOC0 on the battery optimal size and initial cost. The
goal is to minimise the battery kWh size while minimising
the initial SOC of the battery as a penalty factor. In this
formulation, battery power is multiplied by ηd > 1 during
discharge mode to correctly represent battery inefficiency. αt is
the linear battery capacity degradation over its useful lifetime,
and calculated by:

αt = 1 + (EOL− 1) · Ct
Ctotal

(6)

where EOL is the end-of-life (EOL) of the battery in p.u. (0.65
in utility-scale storage application); Ct is the energy throughput

of the battery until time t in kWh; and Ctotal is the rated energy
throughput during its entire useful lifetime. The last two terms
can be calculated by:

Ct = η(.)
t∑

j=1

|Î(.)
j | · h (7a)

Ctotal = 2×DoDr ·
ηc
ηd
· E ·

Nr∑
j=0

(
1 +

EOL− 1

Nr
· j
)

(7b)

where DoDr is the rated depth-of-discharge; and Nr is the
rated battery cycles. The power size of the battery, i.e., Pmax

is the maximum absolute power of Ît time series, which can
be determined prior to optimisation:

Pmax = max |Ît| (8)

3)Charging Adjustment: The CMA residual, i.e., Ît, is
energy neutral over the entire samples. It follows the theory
of seasonal decomposition, where stochastic component will
have zero mean [37]. In addition, it is shown in different
literature that charging is less efficient than discharging in Li-
Ion batteries partially due to different efficiency of inverters
during charging and discharging modes [38]. Considering
battery charge (ηc) and discharge (ηd) efficiency as well as
the energy neutrality, it implies a systematic energy deficit
in the battery to fulfil discharge requirements. It will be
problematic in the battery sizing study (i.e., Eqs. (5a)-(5e))
because the energy deficit will be compensated by over-sizing
the battery in order to take advantage of its initial SOC. It
also raises technical issues regarding battery self-discharge
as it becomes more prominent in such cases. To resolve this
issue, charging adjustment factor (i.e., δPc) is defined to shift
the stochastic component upward to compensate the difference
between charge and discharge inefficiencies. Although δPc is
intentionally kept small to avoid jeopardising the stationarity
of the irregular pattern, it has a significant effect on the battery
kWh size, which will be shown in the simulation results.
Therefore, it is important to find optimal value of δPc by
solving an optimisation problem, as follows:

min δPc, E + λ · SOC0 (9a)
s.t :

min



E + λ · SOC0

s.t :

0 ≤ Î + δPc · Îdiff ≤ Pmax,

SOC · E · αt ≤ SOCt ≤ SOC · E · αt,

SOC · E ≤ SOCt ≤ SOC · E,
SOCt = SOC0

+ η(.)
t∑

j=1

(
Î

(.)
j + δPc · Îdiff

)
× h

E,SOC0 ≥ 0



,

(9b)

0 <δPc ≤ δPc (9c)
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where Îdiff is the difference between maximum and minimum
value over the entire samples in Ît. Equation. (9b) is the
original optimisation formulation in Eqs. (5a)-(5e), which is
modified to account for δPc. Despite the original optimisation
problem in Eqs. (5a)-(5e), the optimisation formulation in
Eq. (9b) is non-linear because δPc is changing by the upper
optimisation problem. The nature of the formulation suggests
a multi-objective bi-level programming [39]. However, it is
very difficult, if possible at all, to solve such a non-linear bi-
level problem. Therefore, the bi-level formulation is replaced
by an intuitive substitute, where the upper-level problem only
minimises δPc in the objective function while minimising the
lower-level problem as a constraint. Therefore, a single-level
non-linear optimisation can be solved.

To verify the accuracy of the non-linear optimisation results,
an exhaustive search is implemented to find the optimal value
of δPc. In the first step, N equidistant numbers are generated
within the given limits in Eq. (9c) for a given δPc. Then, the
optimisation problem in Eqs. (5a)-(5e) is solved for each δPc

value, and the minimum size of the battery is identified based
on the optimisation results. Afterwards, the upper and lower
limits of δPc is updated in Eq. (9c). The loop is continued until
the difference of the present and previous minimum battery
size becomes less than a given threshold. In the simulation
study, the results of exhaustive search are compared with those
obtained by solving non-linear optimisation problem.

III. SIMULATION STUDY

To show the applicability of the proposed approach, a
simulation study is carried out with actual minute-by-minute
PV generation data, collected from a 3.275 MWp PV plant
located at the UQ Gatton campus. Details about the plant
specification and operation can be found in [40] and [41].
The data used in this study are collected from 1st of June
2015 to 17th of January 2018. 90% of the daily profiles from
the beginning are selected for optimal battery sizing study,
i.e., training dataset, and the remaining 10% of data, i.e., test
dataset, is used to evaluate the effectiveness of the proposed
approach in terms of maximum and minimum SOC levels,
charge and discharge power, and prediction improvement.

A.Checking Seasonality

In this subsection, seasonality existence is examined based
on the procedure introduced in Subsection II-A. The ACF for
the training samples is plotted in Fig. 3 for up to 30 days
lag. Distinct cyclic behaviour can be identified from the ACF
graph. The same behaviour is observed for the testing dataset.
The distance between peaks, which represents periodicity s,
is almost a complete day (i.e., s = [1434, 1445] minutes). In
addition, the trend existence can be confirmed by the slow
decay rate of the peaks, as shown in Fig. 3.
B.Seasonal Decomposition

Since there is an obvious periodicity in the time series,
it should be decomposed into trend, seasonal, and irregular
stochastic components, as explained in Subsection II-B. The
STL algorithm is developed in MATLAB R© for this study. The
parameters of the STL decomposition are reported in Table I.
Seasonal decomposition is carried out for the entire data (i.e.,

Fig. 3. The ACF plot of the training dataset

training and testing datasets) as irregular stochastic component
is needed for the sizing and prediction studies.

TABLE I
STL PARAMETERS FOR SEASONAL DECOMPOSITION

Parameter v no ni sw sd tw td lw ld

Value 1440 2 3 2401 0 1441 1 2162 1

In Fig. 4, the three components extracted from the original
time series are plotted against the original data. The periodicity
of the seasonal component is clear from the zoomed-in part
of Fig. 4(b). It also can be seen that the stochastic residual is
shifted downward with an average around zero, as expected by
the theory. According to [31], the trend component of the STL
decomposition (shown in Fig. 4(a)) is nonlinear and nonpara-
metric. However, the uncertainty in this component is much
smaller than the irregular pattern; hence more predictable.

C.Self-Similarity and Stationarity Assessment

To prove the stationarity of the irregular signal, the ADF
and KPSS tests from Subsection II-C are performed on the
training and test samples separately. The null hypothesis in the
ADF test is rejected by p-value of 0.001 (for 95% confidence
interval), where the ADF stat value of -172.2 was significantly
lower than the critical value of -1.94. The KPSS test result
indicates that the test fails to reject the null hypothesis, where
p-value, test stat, and “test critical value” are 0.1, 0.018, and
0.463, respectively. Therefore, the stochastic component, in
this example, is a stationary time series. The Hurst exponent is
also estimated for the irregular stochastic component at about
0.666, 0.508, and 0.819 calculated by “Aggregated Variance
Method”, “R/S Analysis”, and “Average Wavelet Coefficient”
method, respectively. While the Hurst exponents are different
for various approaches, they are within 0.5 and 1 range, which
verifies the self-similarity of the underlying signal.

D.Battery Sizing

The parameters of the simulation studies are ηc = 0.9; ηd =
1

0.93 ; SOC = 0.2; and SOC = 1.0, and only training data is
used for battery sizing.
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Fig. 4. Seasonality decomposition of the PV time series: (a) original vs. trend,
(b) original vs. seasonal, and (c) original vs. irregular stochastic

1)Self-Similarity Enhancement: An CMA filter is offered
in Subsection II-D1 to improve self-similarity/predictability
of the irregular stochastic time series. Different arbitrary
length of averaging window is tried in this study, i.e., ω ∈
{216, 288, 360, 432} minutes. The Hurst exponents of the new
irregular stochastic time series (i.e., the smoothed signal in the
output of the CMA filter) are reported in Table. II, calculated
by three methods. It can be seen that the self-similarity of
the irregular time series has been improved substantially in
all cases compared to the unfiltered irregular component.
Moreover, it shows that longer CMA window results in larger
improvement in the Hurst exponent.

TABLE II
HURST EXPONENT OF FILTERED SIGNALS: NO CHARGING ADJUSTMENT

ω, minute 216 288 360 432

Aggregated Variance Method 0.732 0.742 0.752 0.760

R/S Analysis 0.521 0.569 0.603 0.627

Average Wavelet Coefficient 0.861 0.899 0.926 0.945

2)Battery Sizing without Charging Adjustment: To find the
optimal battery sizes without charging adjustment, optimisa-
tion problem in Eqs. (5a)-(5e) is solved for the residual time
series from previous sub-section. Gurobi R© solver [42] is used
in MATLAB R© to obtain optimal kWh sizes. The optimal
power of the battery is also calculated by Eq. (8).

Optimal battery sizes for smoothed time series are reported
in Table III. The power size of the battery is almost the same

TABLE III
BATTERY SIZES FOR DIFFERENT CMA FILTER: NO CHARGE ADJUSTMENT

ω, minute 216 288 360 432

Energy, MWh 468.38 526.03 573.44 612.33

Power, MW 2.58 2.63 2.63 2.58

for all cases. However, the bigger the CMA window, the larger
the battery capacity. The kWh size in all cases is unusually
large because of the issue explained in Subsection II-D3.
The required capacity to cover the entire irregular component
without filtering, i.e., It, is as high as 1,757,834.3 MWh,
which is technically and economically an impossible solution.
Therefore, there is a trade-off that should be made between the
predictability enhancement and battery size, which is offered
in this paper by using CMA filter.

3)Battery Sizing with Charging Adjustment: In this sec-
tion, non-linear optimisation problem, i.e., Eq. (9), is solved
to adjust charging profile while minimising battery capac-
ity. The optimisation problem is solved in MATLAB R© us-
ing fmincon non-linear optimisation solver and “sequential
quadratic programming” technique. The results of the battery
sizing along with the optimal δPc values are given in Table IV.
It can be seen that the MWh sizes of the battery reduced
substantially (at least 20.8 times) in comparison with the
optimal sizes without charging adjustment in Table III. It is
achieved by slightly shifting smoothed time series upward
(less than 26 kW) so that the accumulated charged energy is
slightly bigger than discharge. This is achieved while the Hurst
exponents of the shifted smoothed time series are identical to
those without charging adjustment (reported in Table II).

TABLE IV
BATTERY SIZES FOR DIFFERENT FILTERS: CHARGE-ADJUSTED PROFILE

ω, minute 216 288 360 432

Energy, MWh 22.46 24.80 26.88 28.87

Power, MW 2.60 2.65 2.66 2.60

Optimal δPc, kW 20.03 22.41 24.35 25.95

In order to verify the accuracy of the non-linear optimi-
sation, exhaustive search has also been implemented to find
optimal δPc, as shown in Fig. 5. The green markers are
the results of exhaustive search with N = 10, battery size
tolerance of 50 kW, and δPc ∈ [0, 0.02] p.u. The red squares in
Fig. 5 are the results obtained by the non-linear optimisation.
For the four ω values, it can be seen that the exhaustive search
results are converged to the optimal values obtained by the
non-linear optimisation. From the figure, the sensitivity of the
battery energy size to the δPc can be noticed, which shows
the importance of calculating optimal δPc. The exhaustive
search was about 12 times slower on average compared to the
non-linear optimisation problem. Employing the S-Golay filter
increased battery kWh sizes for about 1.7% while reducing
the Hurst exponent for 3.6∼4.8% with the same filter length.
Therefore, application of the CMA filter is more suitable for
the data of this study.

To ensure that the optimal battery sizes are legitimate for the
test data, battery SOC is calculated and charge and discharge
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power are compared against the optimal values. For the entire
test dataset, there were 3 charging and 1 discharging power
violations (among 128160 observations from 88 test days) for
ω1 filter, while no power violations have occurred in other
filters. The maximum charging and discharging violations in
ω1 were 24.7 kW and 61.9 kW, respectively. The upper and
lower SOC violation never occurred for the given filters.

Fig. 5. Comparing the results of exhaustive search and non-linear optimisation
on logarithmic axes: Exhaustive search converged in 9, 8, 10, and 10 iterations
for ω1, ω2, ω3, and ω4, respectively. Different colour intensity of the same
marker represents different iteration.

E.Prediction Study and Comparison

In order to verify the prediction accuracy improvement after
self-similarity enhancement, forecasting studies are carried
out using four different prediction techniques, namely naı̈ve,
random-walk, Markov Chain, and Artificial Neural Network
(ANN) models.
� In naı̈ve method, the mean of previously observed sam-

ples (200 samples in this study) are used for prediction
[17].

� Random-walk method uses the previous observations as
the forecast [17]. In some texts, it is called persistent
method.

� Markov Chain can be used as a stochastic method for
non-linear time series prediction [43]. When the state
vector is known, transition probability matrix (TPM) can
be formed using historical data, which later can be used
to predict the next value in line, as explained in [44]. In
this study, 50 days worth of data from the past is used to
create TPM, and the number of states was 200.

� ANN is a well-known machine learning tool that is
frequently used to model complicated and nonlinear rela-
tionships among any number of input and output parame-
ters. Various models of ANN have been used in numerous
forecasting studies in literature, e.g., [45]. In this study,
multi-layer perceptron feedforward ANN is used with 50
days of minute-by-minute data for training the network
using Levenberg-Marquardt algorithm. In this paper, the
ANN model is constructed by 100 inputs parameters (100
immediate datapoints before the prediction time), one
output (1-minute ahead predicted value), and 1 hidden
layer with 5 neurons.

Prediction studies are performed for test dataset in 1-step,
5-step, and 60-step ahead using the optimal battery sizes
obtained in previous subsection. 5- and 60-step ahead forecasts

TABLE V
RMSE OF PREDICTED VALUES IN VARIOUS FORECASTING METHODS:

1-MINUTE AHEAD

Ît + δPc
Prediction Method It

ω1 ω2 ω3 ω4

Naı̈ve
, kW

413.7
195.4 163.0 138.9 120.9

(465.7) (433.2) (402.5) (372.9)

Random Walk, kW 158.6
3.0 2.3 1.9 1.6

(5.3) (4.7) (4.3) (4.0)

Markov Chain, kW 159.6
8.8 7.7 7.1 6.5

(20.3) (19.7) (19.1) (18.4)

ANN, kW 166.3
1.1 0.8 0.6 0.5

(1.25) (1.0) (0.8) (0.7)

ω1 = 216 min.; ω2 = 288 min.; ω3 = 360 min.; ω4 = 432 min.

TABLE VI
RMSE OF PREDICTED VALUES IN VARIOUS FORECASTING METHODS:

5-MINUTE AHEAD

Ît + δPc
Prediction Method It

ω1 ω2 ω3 ω4

Naı̈ve, kW 420.4
199.4 166.3 141.7 123.4

(475.1) (442.0) (410.6) (380.4)

Random Walk, kW 352.9
14.2 11.1 9.2 7.8

(26.1) (23.4) (21.4) (19.7)

Markov Chain, kW 353.5
16.4 13.3 11.5 10.1

(32.7) (30.4) (28.4) (26.6)

ANN, kW 337.2
7.5 5.6 4.6 3.8

(30.6) (9.3) (6.6) (6.3)

TABLE VII
RMSE OF PREDICTED VALUES IN VARIOUS FORECASTING METHODS:

60-MINUTE AHEAD

Ît + δPc
Prediction Method It

ω1 ω2 ω3 ω4

Naı̈ve, kW 476.6
257.9 216.1 184.5 160.8

(621.0) (578.5) (537.9) (498.6)

Random Walk, kW 501.3
137.4 110.3 92.5 79.8

(295.1) (270.4) (249.4) (230.1)

Markov Chain, kW 501.3
137.4 110.5 92.8 80.1

(295.6) (271.1) (250.1) (230.7)

ANN, kW 617.0
130.0 102.3 91.3 65.7

(151.3) (126.9) (116.4) (111.3)

generated recursively: i.e., train the model using the existing
data from previous day, use that model to perform a one-step
ahead prediction, iterate one-step prediction using predicted
values until the desired prediction horizon is reached. The
average root-mean-squared error (RMSE) of the predicted
values are given in Tables V,VI, and VII for the three predic-
tion horizons. It can be seen that the accuracy of prediction
improved significantly and consistently across the range of
prediction horizons and techniques for the CMA filtered time
series compared to the unfiltered irregular signal. It proves
that the self-similarity enhancement was effective regardless
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of the forecasting technique and prediction horizon. It can also
be observed that the prediction accuracy consistently improved
from smaller ω values to the larger ones, which also correlates
with the associated Hurst exponent in Table II. For 1-step
ahead prediction horizon in Table V, the RMSE of prediction
for the unfiltered irregular component, i.e., It, is 2.1∼3.4,
53∼99, 18∼24, and 151∼333 times worse than the prediction
accuracy of the filtered time series using naı̈ve, random-walk,
Markov Chain, and ANN methods, respectively. The same
observations can be made for 5- and 60-minute prediction
horizons in Tables V-VII. The values in parentheses are the
RMSE of predicted values for the filtered original time series,
i.e., zt, which is 1.6∼4.1 times worse than the prediction
accuracy of the filtered decomposed signal using three forecast
techniques. It proves that the seasonal decomposition has a
significant impact on the outcome of filtering as a mechanism
to enhance predictability. The magnitude of improvement is
so significant that could justify the cost of the battery, as
will be discovered in the next section. Moreover, significant
improvement in prediction accuracy substantially reduces risks
for the renewable generators to bid in the market more
aggressively and gain more profit.

F.Economic Viability Assessment

A standard economic viability analysis is carried out to
show the economic benefit of the battery application. The
levelised cost of energy (LCOE) of the battery is estimated
based on the battery kW/kWh size and rated energy throughput
over the battery lifetime. The use of LCOE is standard and
represents the price needed to cover operational and capital
costs of the project while also earning an economic return.
The total capital cost of the battery is calculated by:

πωi = Eωi × πkWh +Pmax
ωi
× πkW (10)

where πkWh and πkW are the unit cost of the battery energy
and power capacity, respectively. The MWh throughput of
the battery before reaching the EOL, i.e., Cωi

total, at nominal
DoD can be obtained by Eq. (7b) for each battery size, i.e.,
Eωi , considering battery capacity degradation over its useful
lifetime. The LCOE can then be estimated by:

LCOEωi =
πωi

Cωi

total

(11)

Battery prices declined considerably in the last couple
of years. As reported in [46], πkWh and πkW were about
US$240/kWh and US$686/kW on average in 2016, respec-
tively. The projection of the Bloomberg Energy was for the
price to go down to πkWh =US$162/kWh by the end of 2017.
Rated battery cycle is quite different from one model of Li-
Ion to another. As an example, the LG R© Chem RESU battery
is claimed to bear more than 6000 cycles at 90% DoD [47].
For Tesla Powerwall 2, this number is estimated at 7000 if the
battery is operated at 100% DoD and no more than 14 kWh
per day energy throughput (rated capacity is 3.3kW/13.5kWh)
[48], [49]. In order to account for the uncertainty in price
and rated cycle life of the battery, four different scenarios are
defined for LCOE calculation, as follows:

� scenario I: DoDr = 0.9, Nr = 6000, πkWh = 240, and
πkW = 686

� scenario II: DoDr = 1.0, Nr = 7000, πkWh = 240, and
πkW = 686

� scenario III: DoDr = 0.9, Nr = 6000, πkWh = 162, and
πkW = 686

� scenario IV: DoDr = 1.0, Nr = 7000, πkWh = 162, and
πkW = 686

The LCOE values in different scenarios for various CMA
filters are shown in Fig. 6 along with the average imbalance
prices in four different markets, i.e., Australian energy mar-
ket operator (AEMO), NordPool in Europe, California ISO
(CAISO) and PJM in the USA, which were US$45.0/MWh
(exchange rate AU$1=US$0.77) in AEMO in 2017 [50],
US$36.6/MWh (exchange rate e1=US$1.23) NordPool [51],
US$30/MWh in CAISO in 2015 [52], and US$16.1/MWh in
PJM in 2017 [53].

Fig. 6. LCOE of Li-Ion battery compared to the average regulation prices in
different imbalance markets

It can be seen in Fig. 6 that the economic viability of the
battery varies from one market to another. While all battery
sizes in different scenarios make economic sense in AEMO,
none of the scenarios is economically viable in the PJM
imbalance market. Bear in mind that the opportunity loss due
to conservative bidding is neglected in this analysis, which can
further improve the economic viability of the battery in this
application. With the current trend in Li-Ion cost reduction
[46] and ever-increasing share of renewable in the electricity
generation portfolio, which might increase regulation prices
[54], higher economic advantage of the Li-Ion technology can
be expected in the near future.

IV. CONCLUSION

In this study, an optimal battery sizing procedure is proposed
based on the concept of predictability of a time series. The
proposed procedure employs ACF for seasonality verification,
STL for seasonal decomposition, ADF and KPSS tests to
check on the stationarity of the irregular stochastic component,
and an optimisation formulation to find optimal size of the
battery based on the CMA filter. Hurst exponent estimation
is used to quantify the predictability of the time series.
Simulation results show that the given PV generation profile
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has strong seasonality, which can be effectively removed for
the sake of self-similarity studies. In addition, it is shown
that larger battery sizes lead to higher Hurst exponent values,
which essentially results in better predictability of the time
series. It is verified by predicting minute-by-minute test dataset
of 88 days using four different forecasting techniques and
three prediction horizons. From the prediction simulation
results, it is clear that the predictability is improved across
different prediction techniques and time horizons. In addition,
the economic viability analysis shows economic incentives
to use battery in such application to avoid paying for the
imbalance services. Also, there is a trade-off between the cost
of battery and the benefit achieved by improving predictability
of the PV production, which has not been considered in the
problem formulation. The authors are currently working on
developing an optimisation formulation by integrating the cost
and benefit of battery, which requires finding a relationship
between Hurst exponent and actual prediction improvement,
and will be reported in our future works.
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