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Abstract

Modern power systems are experiencing the challenge of high uncertainty with the increasing
penetration of renewable energy resources and the electrification of heating systems. In this
paradigm shift, understanding electricity users’ demand is of utmost value to the retailers, aggre-
gators, and policymakers. However, behind-the-meter (BTM) equipment and appliances at the
household level are unknown to the other stakeholders mainly due to privacy concerns and tight
regulations. In this paper, we seek to identify residential consumers based on their BTM equip-
ment, mainly rooftop photovoltaic (PV) systems and electric heating, using imported/purchased
energy data from utility meters. To solve this problem with an interpretable, fast, secure, and
maintainable solution, we propose an integrated method called Interpretable Refined Motifs And
binary Classification (IRMAC). The proposed method comprises a novel shape-based pattern
extraction technique, called Refined Motif (RM) discovery, and a single-neuron classifier. The
first part extracts a sub-pattern from the long time series considering the frequency of occur-
rences, average dissimilarity, and time dynamics while emphasising specific times with anno-
tated distances. The second part identifies users’ types with linear complexity while preserving
the transparency of the algorithms. With the real data from Australia and Denmark, the proposed
method is tested and verified in identifying PV owners and electrical heating system users. The
performance of the IRMAC is studied and compared with various state-of-the-art methods. The
proposed method reached an accuracy of 96% in identifying rooftop PV users and 94.4% in iden-
tifying electric heating users, which is comparable to the best solution based on deep learning,
while the speed of the inference model is a thousand times faster. Last but not least, the pro-
posed method is a transparent algorithm, which can tackle the concerns regarding the agnostic
decision-making process when policies prohibit some machine learning methods.
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1. Introduction

1.1. Background

Advances in distributed renewable energy generation and electrification led to a rapid growth
of uncertainty in modern power system operation and planning. For example, consumers’ net
demand is heavily affected by rooftop PV generation uncertainty, which makes it cumbersome
to estimate electricity demand. As a result, knowing residential consumers with rooftop PVs and
electric heating systems at the feeder level can play an important role in infrastructure planning,
day-to-day grid operation, network upgrade, and demand-side management. However, informa-
tion on whether residential users own these types of equipment is unavailable for many reasons,
e.g., policy and privacy concerns [1]. In some countries, e.g., the USA [2], there is a state-owned
database to keep records of the home solar systems, which retailers can access. Also, in jurisdic-
tions with Feed-in-Tariff mechanisms, users with rooftop PV systems are known to the retailer
[3]. However, such databases are either incomplete (e.g, in the case of the USA where more
than 21% of PV owners are not listed) or do not exist in some jurisdictions where users installed
unqualifying generators that is defined as a photovoltaic system with capacity over 10kVA for a
single phase connection or over 30kVA for a three phase connection [2, 3]. Additionally, other
entities like aggregators may not have access to the database of registered solar users owing by
one retailer because of regulations [4]. On the other hand, such database does not exist for the
users with electric heating systems. Furthermore, identifying users from static databases and
records may not be helpful to all stakeholders. For instance, a demand response operator or an
aggregator appreciates a dynamic users identification approach, where faulty, shaded, or under-
performed PV systems are also identified.

The most accessible and reliable data for all stakeholders to identify types of consumers is
the users’ purchased electricity data collected by their utility meters, known as imported elec-
tricity because of two reasons: 1) Some utilities in the world, e.g., Watts in Denmark, who is
our industry partner, only have access to imported data from the grid for their consumers, and
2) Users with only conventional applications like electric heating systems do not have exported
electricity data. However, identifying users types based on their hourly or half-hourly imported
electricity from the grid is a non-trivial problem, partially because of the substantial amount of
time series data from a large number of consumers. The complexity grows exponentially when
the queried time range increases and more consumers are required to be analysed. In addition to
the computational difficulty, electricity demand patterns tend to change over the year, influenced
by weather conditions (e.g., sunny or cloudy days and daylight hours length) and consumers’
behaviour [5]. Furthermore, there are patterns in the imported electricity data that do not con-
tain the required features, e.g., nighttime hours for solar or summer hours for electric heating.
Those irrelevant patterns deteriorate the performance of intuitive methods, e.g., load duration,
counting zeros, and average profiles; thus, they are ineffective in solving this problem, as we
will show in Section 3. Last but not least, deep learning methods and other over-parametrized
machine learning (ML) models show improved generalisation on complex datasets [6, 7]. How-
ever, those methods are arguably inappropriate or unacceptable to be used in power systems as
their decision-making processes are not fully transparent [8, 1]. In 2021, European Commission
presented the EU Artificial Intelligence Act, which states the transparency of ML methods needs
to be carefully assessed and justified before using on critical infrastructures like power systems,
as it could put the life and health of citizens at risk [9, 1]. As a result, interpretability has be-
come a mandatory consideration for applications of safety-critical systems. Consequently, a fast,
accurate, scalable and interpretable solution is needed for this classification problem.
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1.2. Related works
Classification problems with long time series have been discussed in the literature for decades.

The traditional classification methodologies can be categorised into two groups: shape-based
and structure-based [10, 11]. The former approaches rely on analysing similarities of patterns
of the raw numeric time series, while the latter converts the raw data with Symbolic Aggre-
gate Approximation (SAX) or the Discrete Fourier Transform (DFT) to create statistical models.
Besides the shape-based and structure-based methods, some research studies classified electric-
ity consumers by analysing their electricity consumption time series with ML techniques, e.g.,
[12, 13, 14, 15, 16]. While ML techniques can generally handle extremely complex systems
and infer from incomplete data, their application in power system operation as a safety-critical
system casts doubt. ML-based models cannot be easily interpreted, their behaviour cannot be
anticipated, they are vulnerable to false data injection attacks, and many of them neglect the
domain knowledge and physical models [17, 18, 19], except for some recent efforts to add phys-
ical models to neural networks [20, 21, 22]. Furthermore, the enormous number of parameters
in most ML techniques, e.g., Deep Neural Network (DNN), make them suffer from the curse
of dimensionality and long training time [23, 24]. On the contrary, the shape-based methods
project the data into a much lower relevant representational space to eliminate the curse of di-
mensionality [23]. The authors in [25] discussed how shape-based methods can be used in energy
consumption data analysis for reliable and interpretable applications. Shape-based approaches
are believed to be more accurate and interpretable but are computationally expensive [10, 26].
One solution to balance the advantages and drawbacks of the above techniques is called motif
extraction, which can compress the time series data while preserving the shape information for
classification purposes in an interpretable manner.

Motifs, defined as approximately repeated sub-patterns in a long time series, were first pro-
posed in 2003 [27]. Since then, motifs have been used as representative patterns for long time
series data in various data mining applications, e.g., classification, clustering, and rule discovery
[28, 29]. However, efficient ways to extract motifs were needed as the brute-force solution was
computationally untenable [30]. In 2016, an all-pair-similarity search technique, called Matrix
Profile (MP), was proposed and then widely used as it could significantly decrease the spatial
and temporal complexity of the motif discovery problem [31]. The core idea of MP is to record
the most similar sub-patterns pair with the smallest z-normalised Euclidean distance (ED) and
exploit the overlap between subsequent patterns using Fast Fourier Transform (FFT) [31]. MP
then evolved into a Nearest-Neighbour-based approach and became the most dominant motif
discovery approach in the literature, while the definition of motif was changed into the closest
pair of subsequences [30, 31, 32, 33]. Another critical improvement occurred in 2018, when the
Scalable Time series Ordered-search Matrix Profile (STOMP) algorithm was proposed, which
further significantly decreased the temporal complexity of motif discovery by enabling parallel
computing and GPU acceleration [34]. Since then, motif-based classification techniques have
been widely used in finance, bioinformatics, and economics, due to their robustness, low com-
putational power requirement and interpretability. Notably, researchers aimed at proposing a
general solution for users with no prior domain knowledge in [35, 31], while this general solu-
tion and classic motifs are arguably limited in real-world experiments when domain-dependent
knowledge is expected to adjust the mismatch between extracted motifs and user’s expectations
[36].

Compared to the research fields above, few studies have investigated the application of motif-
based classification methods in power systems [25, 37, 38]. In these studies, classic motif-based
discovery methods were applied to smart meter energy consumption data to identify regular
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behaviours, rules extraction, and solar PV panel installation identification. All three papers used
SAX to represent the time series data as a discrete code sequence, from which the repeated
code segments were extracted as motifs. However, as discussed above, similar to motifs, SAX
is a representation technique for dimensionality reduction [39, 40, 41, 10]. The issue with this
approach is the loss of shape information critical in binary classification problems such as the
one in this paper. Furthermore, SAX is vulnerable to identifying small amplitude changes on
sub-patterns and missing important information in a given segment [41].

1.3. Objectives and contributions

As motifs-based applications have become feasible only in the last couple of years, there are
some knowledge gaps in state-of-the-art motif discovery methods. First, current motif discovery
methods always extract the most significant features and hence are unsuitable as a general tool
in different applications [32, 30, 33]. Second, extracting exact repeated patterns with domain
knowledge still remains an unsolved problem. Last but not least, there is a lack of discussion
on how to effectively use the extracted motifs and preserve the high flexibility for classification
purposes in the literature.

To fill the knowledge gap, we propose a highly flexible motif discovery method, which en-
ables users to bring in domain knowledge to identify the most occurring sub-patterns. To the best
of our knowledge, this is the first motif discovery method that can extract motifs containing the
requested features that might not be the most significant to the shape whilst considering the time
dynamics and preserving the interpretability. With the extracted motifs as inputs, we construct
a linear single-neuron model to classify users by their motifs. This methodology is later used
in a comprehensive simulation study to solve the rooftop PV owners’ identification problem in
this paper, with high performance on accuracy and speed. To show the robustness of the pro-
posed method, a second problem is solved by identifying electric heater users in a real dataset.
The methodological contribution of the paper includes a novel sub-pattern extraction technique
and a hierarchical structure for residential PV users’ identification. The former is called Refined
Motif discovery which detects the most repeated pattern by the proposed Similarity Profile that
computes similarity indices of each sub-pattern with pairwise annotated Dynamic Time Warp-
ing (DTW) distances. The latter is computing the Refined Motif discovery at the users’ end in
parallel while implementing the classification method in the cloud. With the help of smart me-
ters, applying the proposed method in the modern power system has seven advantages: memory
efficiency, low communication band-with requirement, high computation speed, cost efficiency,
robustness to abnormal data, low privacy concerns, and easy maintenance, which are discussed
in detail in Section 2. In summary, the significance of this paper is outlined as follows:

• A novel motif discovery method to extract the most occurring sub-patterns considering
domain knowledge, temporal dynamics, and the average similarity. The RM discovery
process is application oriented, meaning it measures the sub-patterns similarity based on
the application instead of extracting the most significant features.

• A systematic solution of finding RM at the users’ end and sending the RMs to the cloud,
where a linear classifier identifies the users’ type. The process is transparent and has
several advantages for utilities and end-users.

• A comprehensive performance comparison among the proposed method, domain knowledge-
based methods, ML-based and other motif based methods considering accuracy, speed,
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and transparency. Two datasets for identifying rooftop PV and electric heating systems are
tested and assessed.

This paper is organised as follows: Section 2 explains the proposed methodology including motif
discovery, classification, and implementation. The simulation studies are reported in Section 3,
and the results are analysed in detail. The paper is concluded in Section 4 and future works are
outlined.

2. The proposed methodology

The processing steps of the proposed methodology is summarised in the schematic of Figure
1. First, an accurate and fast sub-pattern extracting method is developed to reduce the dimen-
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Figure 1: A schematic showing the processing steps of the proposed classification method with 6 sample users

sion of the electricity time series. In this method, a different similarity measure is proposed by
combining power system domain knowledge with temporal dynamics of the time series to ex-
tract features. In addition, unlike the Nearest-Neighbour-based methods looking for the closest
patterns as motifs, this technique discovers the most repeated patterns during the time inter-
vals of interest, which is called Refined Motif (RM) hereafter. For instance, in the rooftop PV
identification problem, each user’s most repeated sub-pattern is extracted from one year of data
considering daytime features, as in Figure 1. Second, with the features discovered by the RM
method, a linear-complex classification model is proposed to identify users’ types, which in-
cludes weight parameters and a threshold to provide classification results, e.g., the solar user or
non-solar user, as shown in Figure 1. Section 2.1 and Section 2.2 will introduce the two middle
steps in detail. Section 2.3 addresses a systematic solution of computing RM discovery at users’
end and implement the classification process at applications’ end.

2.1. Refined Motif (RF) Discovery Method

One issue in the previous motif discovery methods is the lack of temporal dynamics rep-
resentation. Although DTW has long been proven to outperform the ED measure in terms of
accuracy and detecting temporal dynamics, i.e., time shifting and time stretch [11], the ED was
the preferred similarity measure in motif discovery research, e.g., [30, 31, 32, 33, 34], due to
lower complexity. The ED and DTW measures are given in Equation (1) and Equations (2)-(3),
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respectively, where two sub-patterns X and Y with the same length, m, are compared by ED and
DTW:

ED(X,Y) =

√√ m∑
i=1

(Xi − Yi)2 (1)

DTW finds the minimum warping path and its associated distance of the two sub-patterns with
Equations (2)-(3):

DTW(X,Y) =
√
ΘXm,Ym (2)

where Xm and Ym are the mth point in X and Y , ΘXm,Ym is the cumulative distance of X and Y from
1 to m. The distance between ith point in X and jth point in Y can be calculated as

ΘXi,Y j = (Xi − Y j)2 +min{ΘXi−1,Y j−1 ,ΘXi−1,Y j ,ΘXi,Y j−1 } (3)

In this case, the complexity of ED is O(m), while it is quadratic, O(m2), for DTW. Conse-
quently, for a long time series with total length n and sub-pattern length m with one data point
sliding step, the motif discovery complexity is O(n2m) and O(n2m2) for ED and DTW, respec-
tively. Furthermore, z-normalised ED between two time series sub-patterns can be calculated by
their dot product, hereby using the Fast Fourier Transform (FFT) divide and conquer to reduce the
complexity from O(n2m) to O(n2 log m) (best case O(n2)), which is called the MASS algorithm
[31]. Although some efforts have been done on computationally-improved DTW algorithms, e.g.
Dynamic Timewarp Barycenter Averaging and Fast Dynamic Time Warping (FDTW) [42], they
sacrifice the accuracy for a higher computational speed, hence are less accurate than DTW and
slower than ED. In addition, one research paper argued that the most cited FDTW method in the
literature is slower than the original DTW [43]. Some studies compute DTW-based motifs by
omitting some computations with lower bounding and abandoning techniques, which compro-
mise the information on similarities of every sub-patterns pairs [44, 43, 45, 46].

In this paper, we use the DTW measure instead of the ED measure for two reasons. First,
the nature of specific problems, such as PV owners’ identification, necessitates more complex
distance measures. For instance, seasonality will affect the PV generation magnitude and dura-
tion, such that two clear-sky days in summer and winter may be seen as two different patterns
using simple distance measures due to the patterns’ stretches. Second and most importantly, the
computational speed of the proposed method is similar to ED-based motif discovery with the
help of domain knowledge, while neither bounding nor abandoning techniques are applied as the
average similarity of each sub-pattern is considered.

Because a PV system generates energy in a daily repetition, the sub-pattern size m should
equal the number of samples in the daytime. Also, PV systems generation profiles present a
daily cycle. Therefore, we change the pattern search sliding window length from 1 to m. The
wider sliding window requires the pattern similarity measurement to be robust to pattern shifting
due to the seasonal changes in the sunrise and sunset times. As a cumulative distance measure,
DTW works perfectly under time shifting. At the same time, a wider sliding window means only
n/m steps are required instead of n to assess the entire time series, which significantly reduces
computational time to 1/m2 of the signal step sliding where the computation is pairwise. As
a result, the time complexity of the DTW-based motif discovery scales down from O(n2m2) to
O(n2), similar to the MASS algorithm. More importantly, it makes every sub-pattern start and
end at the same time, which ensures that the motifs extracted from different users are comparable.
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Another issue in the existing motif discovery methods is that one can search only for the most
significant feature inside the sub-pattern. As a result, extracting motifs from one year of imported
electricity data potentially leads to finding the most repeated consumption pattern that dominates
the 24-hour daily cycle. This is because the PV generation is only available during daytime,
the patterns of which may be undermined by the stronger 24-hour load patterns. We show in
Section 3 that conventional motif discovery methods cannot extract meaningful sub-patterns in
such cases. In this regard, we propose an annotated DTW to measure the distance between sub-
patterns by emphasising specific temporal patterns during the daylight hours, as (4)-(5), where
X and Y are two sub-patterns with length m, Θ′Xi,Y j

is the cumulative distance of point i on X and
j on Y , and W is a proposed weight matrix for customising the extracted features by assigning
different weight to temporal data:

d(X,Y) = DTW(X,Y) =
√
Θ′Xm,Ym

(4)

Θ′Xi,Y j
= Wi, j(Xi − Y j)2 +min{Θ′Xi−1,Y j−1

,Θ′Xi−1,Y j
,Θ′Xi,Y j−1

} (5)

Wi, j = max
{
|w⃗i|, |w⃗ j|

}
(6)

w⃗t =

1, t ∈ daytime
0, t ∈ nighttime

(7)

To use annotated DTW for PV pattern identification, we need to emphasise the daytime
patterns. As a result, the weighted matrix Wi, j in Equation (5) is set as binary in Equations (6)
and (7), where wt is a binary mask vector with 1 in the daytime and 0 in the nighttime. This
can further reduce our motif discovery complexity from O(n2) to O(n2m′/m), where m′ is the
length of daytime. For solar users’ identification, we set 9am to 4pm as daytime considering the
overlapped period under the four seasons. For electric heating users’ identification, no mask was
applied in the experiment due to the lack of comprehensive information, but theoretically, the
weighted matrix can be set based on their heater usage probability distribution. This annotated
DTW method is used to calculate the distance between two patterns of the day X and day Y in
the given queries.

Another key improvement in the proposed RM method is the capability to find the most
repeated sub-patterns in the long time series instead of the approximated one. MP-based methods
save the similarity value of a sub-pattern to its nearest neighbour and extract the sub-patterns with
the largest similarity value as the motif, namely the most similar sub-pattern pairs in the long time
series. To find the most repeated sub-patterns, however, we propose a Similarity Profile (SP),
shown in Fig 2, which counts the number of similar patterns in the time series to the current sub-
pattern (query pattern) as well as the average distance. Notably, a minimum of three days of data
is needed when the distance is measured between pattern pairs, i.e., N ≥ 3, since discovering
what day is more repeated in two days worth of data is meaningless. When two sub-patterns are
repeated the same number of times, we use the normalised average similarity value to choose
the dominant sub-pattern. A pattern is assumed similar when its annotated DTW distance to the
query pattern is smaller than a predefined threshold, T . The process can be presented by:

ci, j =

1, di, j ≤ T
0, di, j > T

(8)
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Figure 2: The proposed Similarity Profile (SP)

where ci, j is the similarity index, which is 1 when day i and day j have a small annotated DTW,
di, j, smaller than the T . The threshold can be set dynamically, e.g., using the median of all
annotated DTW distances in the table, or simply a fixed educated/expert guess. We prefer the
fixed threshold approach for RM discovery in this paper to preserve the low complexity and a
uniform standard for similarity measurements.

After populating the table for all N days, we can find the average annotated DTW for each
day, d̂i, by

d̂i =

∑N
j=1 di, j

N − 1
(9)

Also, we can calculate the total similarity indices, i.e., ĉi, for the day i as

ĉi =

N∑
j=1

ci, j (10)

Finally, the SP for each day, SPi, can be obtained by considering the impact of total similarity
indices and average annotated DTW for the day i as

SPi = ĉi −
d̂i

max(di, j)
(11)

In Equation (11), the total similarity indices ĉi are integers representing the number of similar
patterns with current day i. The average annotated DTW distance d̂i is normalised by max(di, j)
to be the secondary impact factor for SP, which will differentiate the days with the same simi-
larity indices. Therefore, the proposed SP can provide both similarity indices (integral part) and
average similarity (fractional part) of every daily pattern, and the largest value suggests the best
motif. Algorithm 1 presents a step-by-step summary of the proposed motif discovery method.

To show the effectiveness of the fixed threshold approach, one example is presented here
for a user from our dataset, introduced in Section 3. This user was a non-solar user until some
time during the data collection period when the user installed a rooftop PV system. This is a
challenging classification problem when the annual recorded data is used to identify the type of
user. We used annotated DTW and SP, once with a fixed threshold and then with a dynamic
threshold, to extract the RM for this user. The fixed threshold of 0.8 can be set with the help of
domain knowledge by considering the sub-pattern length and scale. The dynamic threshold is
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Algorithm 1 RM discovery with SP

Require: variable pattern has length n = N ·m, with N daily pattern pattern[1:N] and each daily
pattern has length m. Pre-defined threshold T

1: SP← [0, 0...0]︸   ︷︷   ︸
N

▷ initialise SP

2: ĉ← [0, 0...0]︸   ︷︷   ︸
N

▷ initialise similarity indices

3: d̂ ← [0, 0...0]︸   ︷︷   ︸
N

▷ initialise average distance

4: dmax ← −∞ ▷ initialise maximum distance
5: for i = 1, 2, 3 . . .N do
6: for j = 1, 2, 3 . . .N do
7: d ← DTW(pattern[i], pattern[ j]) ▷ equations (4)-(7)
8: d̂[i] ← d̂[i] + d ▷ accumulate distance
9: if d > dmax then ▷ update maximum distance

10: dmax ← d
11: end if
12: if d ≤ T then ▷ check threshold
13: ĉ[i] ← ĉ[i] + 1
14: end if
15: end for
16: d̂[i] ←

d̂[i]

N−1 ▷ average distance
17: end for
18: if dmax > 0 then
19: SP← ĉ − d̂

dmax

20: else
21: SP← ĉ
22: end if
23: RM ← patterns[i] where SP[i] == max(SP)
24: return RM ▷ RM is the Refined Motif of time series variable pattern

the median of annotated DTW values. In Figures 3a and 4a, we show the daily patterns of this
user using fixed and dynamic thresholds, respectively, where the RM and similar patterns are
coloured in red and orange, respectively. Also, the annotated DTW distance matrix of each daily
profile is mapped into a 3-D space through Multi-dimensional scaling (MDS) in Figure 3b and
4b for the fixed and dynamic thresholds, respectively. It can be seen from Figure 3a that the RM
and similar patterns obtained by the fixed threshold match our understanding of the PV operation
by following the well-known duck curve and have small distances to the RM in 3D space in
Figure 3b. On the other hand, in Figure 4, the RM identified by the dynamic threshold is heavily
influenced by the patterns from before the rooftop solar installation. The similar patterns obtained
by dynamic threshold do not share the similar shape in Figure 4a and have large distances to the
RM in Figure 4b. As a result, we will mislabel this user as a non-solar user when using the
dynamic threshold.
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(a) Daily patterns with fixed threshold

(b) Multi-dimensional scaling (MDS) plot with fixed threshold

Figure 3: RM (red) with the similar patterns (orange) and dissimilar patterns (blue) under fixed threshold
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(a) Daily pattern with dynamic threshold

(b) Multi-dimensional scaling (MDS) plot with dynamic threshold

Figure 4: RM (red) with the similar patterns (orange) and dissimilar patterns (blue) under dynamic threshold

2.2. Motif-based Linear Classification Method

To use the extracted RMs as classifiers, a simple Neural Network (NN) model is used to
classify the users while preserving the interpretability of the Interpretable Refined Motifs in
Binary Classification (IRMAC) solution. The proposed classifier contains a single neuron with a
linear function in the hidden layer as in Equation (12), cascaded with a sigmoid function in the
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output layer in Equation (13), where I is the input data with k users’ motifs of length m, and a⃗1,
b1, a2, b2 are the weights and biases of the linear function and the sigmoid function, U⃗sn is the
output vector from the linear function with length k, and vector U⃗sig with length k is the sigmoid
classification outputs for k users:

U⃗sn = I · a⃗1 + b1 (12)

U⃗sig =
1

1 + e−(U⃗sn·a2+b2)
(13)

Hence, by Equations (12) and (13), the classification problem can then be represented as

U⃗sig =
1

1 + e−(I·⃗a1×a2+a2×b1+b2)
(14)

Since the sigmoid function is an increasing function, and a2, b1, and b2 are constant scalars
and biases that do not affect the comparison relationships among users, Equation (14) can be
further simplified to I · a⃗1, which has linear complexity, O(k), where k is the number of users.
In addition, this weight vector has values that align with our domain knowledge (hence inter-
pretability), which will be further discussed in Section 3.

2.3. Further Advantages of the Proposed Method
The proposed classification method can be implemented as in Figure 5. The imported energy
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Applications' End
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Figure 5: Block diagram for the proposed IRMAC method

time series will be cleansed in the pre-processing stage before applying annotated DTW to obtain
the SP. The extracted motif of each user is the input to the single neuron classifier. The trained
model is a linear function used for new user classification.

Furthermore, the proposed method can be implemented hierarchically where the end-users
at the edge of the grid can extract motifs at their end. As a result, seven key advantages can be
expected using the proposed method, as follows.

1. It is memory efficient since only the extracted motif needs to be stored instead of the long
time series of consumption data for each user.
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2. It needs low communication bandwidth as the end users communicate the motif to the
cloud system instead of the whole time series.

3. The fast processing speed can be achieved since motif discovery is conducted at the users’
ends in parallel, whereas the classification method is a linear function taking only motifs
as inputs.

4. The cost for the central entity, e.g., aggregator, can significantly decrease because of the
low storage and computation capacity requirement.

5. Moderate abnormal patterns of end users cannot influence the performance of the proposed
method since only motifs can be extracted and used for classification purposes.

6. The proposed method lowers privacy concerns regarding data leakage and is robust to false
or missing data.

7. The proposed RM method is easily maintainable.

As a further explanation of the sixth advantage, please note that the high-resolution consump-
tion data is considered sensitive as one can easily identify the household occupancy, lifestyle, and
the usage of different appliances from that [47]. With the proposed method, however, only the
motif, i.e. one day’s partial data, for each user is communicated to the aggregator and recorded
in their databases. In case of data leakage, only one day’s worth of RM data, or less than one day
of data when only certain periods of the day is of interest, is exposed. This is not a significant
privacy threat because the extracted RMs do not contain the full information about the end-user’s
lifestyle and occupancy, and the users’ data identification model is not at the user’s end. Also,
the proposed method is more robust to false or missing data at the users’ ends than ML-based
methods since those abnormal behaviours occur irregularly and will not affect the most repeated
patterns, i.e. RMs. Additionally, the false data of one user cannot affect other users because
RM discovery for each end user is highly independent, which is not the case in some ML-based
methods, e.g., federated learning [24].

To better clarify what we mean by ‘maintainability’ in the last item above, consider a case
where new users’ data must be included. In this case, updating the model to include new users’
data only requires the motif from the new user rather than recomputing previous motifs for all
consumers and refining the models in federated-based learning models [16]. Therefore, we do
not need to repeat the entire motif discovery process for a user to update its motif. In summary,
the proposed method is fast, computationally efficient, secure from the end-users perspective,
scalable and interpretable.

3. Simulation Results

To show the applicability of the proposed IRMAC method, the experiments are conducted on
two benchmark datasets to solve two different binary classification problems: 1) finding rooftop
solar PV among residential consumers, and 2) finding residential consumers with electrical heat-
ing systems. In the first dataset, we have half-hourly PV generation and load demand data of 300
residential consumers from the East Coast of Australia [48]. The database contains one year’s
worth of gross solar PV generation, general electricity consumption, and electricity consumption
profile of a controlled appliance (likely a hot water system), which leads to an electricity usage
surge around midnight. We also know the capacity of the PV panels in each household. We have
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done a quality check on the dataset and divided it into imported energy from the grid for 300
solar and 300 non-solar users. The simulations were run on a Windows machine with an AMD®

Ryzen 5 6-core processor and RTX 2060 using Python 3.8.
Secondly, the imported energy data used in the electric heating system identification problem

is obtained from our industry partner [49]. The dataset contains 10,000 residential consumers
from across Denmark. After data pre-processing, we picked 1052 consumers in the same region.
The sample dataset had 893 users with no electric heating system and 159 users with electric
heating systems. It is an unbalanced dataset for modelling purposes. To analyse this unbalanced
data, the F-score is used as a performance measure, a widely accepted measure of balance be-
tween the precision and the recall in unbalanced datasets for binary classification [50]. We use
the flat F-score instead of Fβ-score in this paper since only a classification task is discussed.

We applied out-of-sample validation on the two datasets introduced above. For a fair com-
parison, all methods are built and tested based on the same training & testing sets. The specific
train & test set arrangement is discussed in Section 3.1 and 3.2, respectively.

Another performance measured in the simulation results is interpretability. With many papers
assessing interpretability differently, this paper tries to use the most applicable discourse, that is

A classification method is “interpretable” if the algorithms are transparent and fully
understandable to the people who employ it [51, 8, 17].

3.1. Solar PV Users Identification
Based on Occam’s razor theory, sophisticated methods make sense only when a problem

cannot be solved with a direct or intuitive solution. As a result, we compare the proposed RM
method with several intuitive and complex methods as follows:

1. Full ML:

(a) Two Classic Conventional ML Classification Methods:

• Support vector machines (SVM): We use the C-Support Vector Classification. It is
implemented with sklearn, where RBF (Gaussian) kernel is used following [52].
• K-Nearest Neighbors algorithm (k-NN): We set the number of neighbours to 2,

which is data dependent and chosen based on trial and error [53].

(b) Two DNN Methods:

• Multi-layer perceptron (MLP): A DNN with 5 layers sequential model containing
ReLUs and dropout.
• Time Series Convolutional Neural Network (1D-CNN): A state-of-the-art DNN

specifically designed for time series classification, which outperforms other ML so-
lutions [54]. The employed model contains two 1D Convolutional layers, dropout,
1D Max Pooling, one dense layer and a sigmoid output layer.

2. Intuitive:

(a) Counting Zeros (CZ): The general understanding is that a consumer with rooftop PV
does not import energy in the middle of the day most of the time; hence resulting in
numerous zero entries in the imported electricity time series. In this method, we examine
this intuitive idea to identify solar PV owners. From the box plot in Figure 7, we can see
that most of the non-solar users in the training set have less than 2,000 zero entries, while
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most solar users have more than 2,000 zeros. Therefore, we can use this value to classify
consumers in this approach.

(b) Average Daily Profile: To challenge the RM method, we replaced extracted motifs with
the average daily profiles of each user. Similar to IRMAC, we used a single neuron
classifier for the classification problem in this case.

3. Motif-based methods:

(a) STOMP Motifs: It is the most dominant motif discovery method in the literature, which
uses one interval step size pairwise ED with MP.

(b) DTW Motifs: Instead of ED, we employ the DTW to compute the nearest neighbour
pairs. Although some research studies increased motif discovery speed by omitting some
computations, we use the brute force approach for the most accurate result, as the offline
motif discovery process is not a major concern when accuracy is the major concern
[45, 44].

(c) IRMAC: This is our proposed method.

Both Full ML and CZ methods require the whole year of data of every consumer on the cloud
as shown in the Figure 6. On the other hand, Motif-based methods and Average Daily Profile
extract one day worth of data at users’ end. The data is than processed by the classifier introduced
in Section 2.2.

Imported Energy 
Time Series 

Full ML / CZ 
Methods

Identification 
Result

Solar

non-Solar

Jul 2012

Sep 2012

Nov 2012

Jan 2013

Mar 2013

May 2013

Jul 2013

Time

Applications' End on Cloud

Figure 6: A schematic showing the processing steps of the Full ML and CZ methods with 6 sample users
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Figure 7: Box plot for the “Counting Zeros (CZ)” method

For the dataset from the East Coast of Australia, only 91 days of summertime imported
electricity data is used to have the strongest solar generation pattern in the time series, reducing
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the motif discovery time in the motifs-based methods. With extracted motifs from SP as inputs,
we devote 448 motifs to the training set and the remaining 150 motifs to the testing set. The
calculated weight vector from the single neuron classifier is shown in Figure 8, which is obtained
from the initial value of the weight mask set based on the sunset and sunrise times, with a
90% accuracy for the testing set. The overall trend of the weight profile matches our domain
knowledge of solar PV generation characteristics. This weight profile can guide us in calibrating
the annotated DTW for SP by limiting the window to 10 am to 4 pm and using the same mask on
the weight vector for classification. These calibrations improved the IRMAC’s accuracy to 96%
on the testing dataset. Two solar users have been detected as non-solar users, i.e. False Negative
(FN), and four non-solar users have been detected as solar users, i.e. False Positive (FP).
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Figure 8: Weight vector obtained during single neuron classifier training

The different classification methods are compared in Table 1. In general, the Motif-based
and full ML techniques outperform the intuitive methods. The better performance of IRMAC
over the Average method indicates that the extracted motifs contain significant features of the PV
generation compared to the annual average values. Within the motif-based methods, STOMP and
DTW-based motifs are incapable of finding PV features for three reasons. First, early morning
and evening load patterns are dominant in a daily profile for most consumers; thus, the most
significant features are not from solar generation. Second, the classic STOMP motif discovery
uses a single-step sliding window to include all possible sub-patterns with overlaps, which mixes
the nighttime patterns with the distance counting. Therefore, the extracted motifs failed to be
classified by a linear function. Finally, both the STOMP and the DTW-based motifs look for the
pair of sub-patterns with the highest similarity, which tends to be affected by special situations
that scarcely happen, e.g., users go out for vacations or users have guests for two days.

By comparing the accuracy and F-score in Table 1, the 1D-CNN outperforms other methods.
However, it is an opaque method and hence not interpretable. Furthermore, it requires 335s
during training to get the reported accuracy, compared to 125s for MLP and 35s for IRMAC.
Also, 1D-CNN has a higher classification time, as in Table 1. Note that the offline training time
and motif discovery computation time are not reported in the table. This is because the models
are not required to be retrained regularly, and motif discovery is processed in parallel for each
user at their end; thus, the actual classification time in the IRMAC method is only the time needed
for the linear classification function. The motif discovery will be carried out once for each user,
and it takes about 20s from summertime data using the regular compiler. After that, we need
only to update the motif by incoming daily data, which requires 300ms for each user on average.
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Therefore, the motif discovery time should be separated from the actual classification problem,
which takes 1.03 ms to solve. To fairly compare the motif discovery time of IRMAC, DTW-
based motif and STOMP, we used the Numba compiler for the three methods. It took IRMAC
130ms for a single user’s motif discovery, compared to 40ms in STOMP and 180s in DTW-
based motif, which shows the complexity of the proposed RM discovery and STOMP matches
the theoretical values given in Section 2. As the Average and STOMP methods used the same
linear classification method proposed as in IRMAC, the three are reported with the same speed.

In conclusion, the proposed IRMAC method outperforms the other techniques considering
the computational time, accuracy, and transparency. The advantage of computational speed will
become increasingly important in real-world applications where many users’ data need to be pro-
cessed centrally. In addition, when considering iterative data exchange through communication
links in some ML-based approaches (like federated learning), the advantages of our proposed
method will be better shown.

Table 1: Performance of different methods in PV owner classification problem

Full ML Intuitive Motif-based
SVM KNN 1D-CNN MLP Average CZ STOMP DTW motif IRMAC

Accuracy 89.4% 72% 97.3% 94.6% 87% 94.6% 56% 61% 96%
F-score 0.897 0.71 0.973 0.945 0.86 0.944 0.56 0.64 0.96
Time, s 1.93 0.5 1.2 1.1 0.001 0.8 0.001 0.001 0.001

Algorithmic transparency ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓

To further study the proposed method, Figure 9 shows the histogram of the results from the
test dataset, where all results from the sigmoid function are coloured by their real user types.
While the IRMAC model classified the users with a value below 0.5 as non-solar users, we can
observe two FN on the far left and four FP on the right. Most of the results are located at the two
ends, showing IRMAC model is likely to give a confident result. However, among the falsely
detected users, two FNs and one FP are located at the far ends, which means the proposed method
has high confidence in classifying them correctly. It requires further analysis as follows.
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Figure 9: A histogram of the IRMAC method from the testing dataset

First, we compare the FN and FP average motifs with the average motifs of solar and non-
solar users in Figure 10. We can see that the falsely detected solar users have irregular profiles
compared to their respective groups. For example, while solar users have a relatively flat and
close to zero motif shape during the daytime, the FN cases have significantly higher values during
the same time. It means that these two FN cases have either a tiny PV system or exceptionally
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high demand during the daytime. This is investigated further by looking at the gross solar energy
generation, demand, and solar system capacities of the two FN users. First, we noticed that the
two FN users have 1.0 kW PV systems. Furthermore, from the generation-consumption ratio
plot in Figure 11, we observe that the two FN users have the lowest daytime generation-demand
ratio. This indicates that our method cannot identify the solar users with high electricity demand
and low solar production.
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Figure 10: Average motifs of different users’ groups
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Figure 11: The ratio of total PV production to the total daytime consumption for solar users

To check on the performance of the proposed identification method, we separately tested the
IRMAC on wintertime data when the solar generation was comparatively low. The simulation
study showed an accuracy of 95.3% for winter data, which is almost the same as the accuracy
of 96% in the summertime. Among the misidentified users, there were four solar users with no
solar generation during the whole month of June (winter month in the Southern hemisphere),
although they had a normal solar generation in July and August. Hence they are solar users for
the whole wintertime but are non-solar users if we only use the data from June. This simulation
study proves that the proposed solution performs accurately in different seasons. Furthermore, it
shows the necessity of dynamically identifying solar users based on their imported data due to
faulty solar systems and changes in consumers’ behaviour over time.
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3.2. Electrical Heating System Identification

Since the dataset is imbalanced, stratified sampling is applied, i.e., we randomly selected 670
users with non-electric heating systems out of 893 and 120 users with electric heating systems
out of 159 to build our training set. The remaining users are assigned to the testing set. For
heating system classification, an intuitive method has been developed based on the fact that we
expect electrical heating system users to import more energy from the grid during winter. To
test this hypothesis, we first plot the load duration curves of each group of consumers during the
summer and winter seasons separately, as shown in Figure 12.
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(a) Electric heating system users in winter
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(b) Electric heating system users in summer
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(c) Non-electric heating system users in winter
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(d) Non-electric heating system users in summer

Figure 12: Load duration plots for two seasons and two groups of users

The higher imported energy can be observed for electrical heating system users compared
to non-electrical heating users. The difference between summer load duration and winter load
duration for each user is then measured by ED, and a threshold is set to identify the user’s type,
as shown in Figure 13. This method is called the Load Duration (LD) method. For comparison,
we use the same classification methods from the solar user’s identification problem (except for
the CZ that is replaced by the LD method). For obvious reasons, only winter data is used for the
motif-related methods. The accuracy and computation time of the different methods are reported
in Table 2. A comparison between Table 2 and Table 1 shows a lower F-score in the electric
heating identification problem using IRMAC, which may be due to the low-resolution data as
well as higher variations of electricity heating behaviours. Both tables show that the proposed
IRMAC method is almost as accurate as the most accurate method, but it requires significantly
less computation time on classification. Also, it proves that the proposed binary classification
method is robust and could apply to other problems.
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Figure 13: A histogram of ED for load duration

Table 2: Performance of different methods in the electric heating system identification problem

Full ML Intuitive Motif-based
SVM KNN 1D-CNN MLP Average LD STOMP DTW Motifs IRMAC

Accuracy 95% 93% 95% 95% 94% 92% 92% 90% 94.4%
F-score 0.79 0.72 0.8 0.767 0.73 0.73 0.642 0.622 0.749
Time, s 0.46 0.61 2.3 1.34 0.002 0.04 0.002 0.002 0.002

Algorithmic transparency ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓

4. Conclusion and Future Work

In this paper, we proposed a novel shape-based method to identify users with rooftop PV
and electric heating systems from imported electricity data. This method is proven to be reli-
able and can be applied to other applications. Comparing the proposed IRMAC method with
alternatives in Tables 1 and 2 shows that it is accurate, fast, interpretable, and robust. While
DNN-based methods, e.g., 1D-CNN and MLP, need large amounts of data to offer an unbiased
solution, the IRMAC method only requires 24 hours of the users’ RMs. Together with algorith-
mic transparency, these features are necessary for the wider acceptance of data-driven methods
by practitioners. Furthermore, it is easy to maintain and upscale the IRMAC method in real-
world applications since the motif of each user is extracted independently, and updating the data
does not need re-computing RM in the entire dataset. Due to these advantages, it is accept-
able to sacrifice a small amount of accuracy in exchange for higher interpretability, scalability,
maintainability, and computation speed.

We also notice that there are some limitations to the current work. First, the amount of data
that end users need to preserve for RM discovery might also raise security concerns on the users’
end. Second, this method cannot identify the equipment that is scarcely used or with trivial
influences on the electricity usage, as it relies on the patterns of the imported electricity.

In future work, we plan to enhance the IRMAC by developing an adaptable motif technique
to dynamically update motifs at the users’ end, as well as exploring the minimum data required
from the users’ end to reduce the fears of security breaches. This way, consumer classification
can be carried out on a daily basis, where faulty, shaded and under-performing PV systems can
also be identified for the benefit of smart grid applications. Furthermore, we intend to develop
an RM-based method for multi-label classification problems that have numerous applications in
power systems, e.g., identifying users with electric vehicles, solar PV and stationary batteries.
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