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Abstract—Demand flexibility will be an inevitable part of the
future power system operation to compensate stochastic varia-
tions of ever-increasing renewable generation. One way to achieve
demand flexibility is to provide time-varying prices to customers
at the edge of the grid. However, appropriate models are needed
to estimate the potential flexibility of different types of consumers
for day-ahead and real-time ancillary services (AS) provision.
The proposed method should account for rebound effect and
variability of the customers’ reaction to the price signals. In
this study, an efficient algorithm is developed for consumers’
flexibility estimation by the transmission system operator (TSO)
based on offline data. No aggregator or real-time communication
is involved in the process of flexibility estimation, although real-
time communication channels are needed to broadcast price
signals to the end-users. Also, the consumers’ elasticity and
technical differences between various types of loads are taken
into account in the formulation. The problem is formulated as
a mixed-integer linear programming (MILP) problem, which is
then converted to a chance-constrained programming to account
for the stochastic behaviour of the consumers. Simulation results
show the applicability of the proposed method for the provision
of AS from consumers at the TSO level.

Index Terms—Rational end-users, transmission system oper-
ator, flexibility resources, ancillary services, chance-constrained
programming

NOMENCLATURE

A. Sets:

T Set of time, indexed by t, t ∈ [1, . . . , τ].
J Set of end-users’ categories, indexed by j.
α Type of regulation, i.e., up- or down-regulation.

B. Parameters:

λλλbase Baseline electricity price [DKK cent/kWh].
∆λ∆λ∆λαt Time-varying electricity price (called delta price) for

regulation type α at time t [DKK cent/kWh].
∆λ∆λ∆λαj ,∆λ∆λ∆λ

α

j Minimum and maximum delta prices for regula-
tion type α of end-users’ category j [DKK cent].

Lbase
t,j Baseline end-users’ demand of category j at time t

[kW].
Lmin
t,j ,L

max
t,j Minimum and maximum electricity consumption
of end-users’ category j at time t [kW].

aαt,j Actual willingness of end-users’ category j to provide
flexibility type α at time t [p.u.].

aαj Maximum willingness of end-users’ category j to
provide flexibility type α [p.u.].
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rαj Ramp-rate of end-users’ category j for regulation type
α [kW/h].

nαj Maximum number of activation times for end-users’
category j to provide flexibility type α.

dαj ,d
α

j Minimum and maximum continuous flexibility dura-
tion of end-users’ category j when activated to provide
flexibility type α [h].

βββth Theoretical confidence level imposed in the chance-
constrained programming.

βββac Actual confidence level achieved in the chance-
constrained programming.

Rj Maximum rebound delay for end-users’category j [h].

C. Variables:

Lαt,j Flexibility of end-users’ category j at time t for
regulation type α [kW].

uαt,j Binary variables, indicating flexibility status of end-
users’ category j at time t for regulation type α.

yαt,j ,z
α
t,j Starting and stopping binary variables of end-users’

category j at time t indicating flexibility type α.

I. INTRODUCTION

In recent decades, a significant amount of renewable en-
ergy sources (RES) has been integrated into power systems,
supported by the increasing global awareness towards climate
change and the tremendous cost reduction in the new technolo-
gies [1]. While offering unquestionable environmental benefits
and sustainability in energy production, large penetration of
RES introduces new concerns and challenges in power systems
planning and operation because of an unprecedented level of
stochasticity, non-linearity, and dynamics [2]. Consequently, it
causes higher risk of frequency deviation, voltage excursion,
and network congestion in real-time operation. Furthermore,
it requires larger amount of ancillary services (AS) to com-
pensate demand and generation imbalances in real-time. AS
consist of a variety of operations, beyond the electricity gen-
eration and transmission. These operations guarantee service
quality, continuity and security from distribution (e.g., voltage
regulation) to transmission level (e.g., frequency regulation
and congestion management). Since RES are located at differ-
ent levels of the grid, challenges are extended to all aspects
of AS provision. This further demands a holistic change in
AS provision in the future power system with high RES
penetration.

An attempt of that nature is the so-called demand response
(DR) programs. Different types of DR programs have been
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developed and tested in the last decade or so [3]. These include
the application of time-of-use (ToU) rates, incentives, real-
time prices (RTP) and direct load control (DLC). ToU schemes
define different rates at different time of the day (i.e., usually
two-tiered peak and off peak [4]) but that do not change based
on the condition of power system. Incentives are designed to
be added on top of a flat electricity retail price. The consumer
is always rewarded to alter its consumption to support the
DR scheme voluntarily. However, they are used in relation
to two-way communication schemes [5]–[7]. Finally, RTP are
generated to reflect the real-time condition of the grid [8].
RTP is different from incentives, as in RTP consumers only
receive a time-varying price. On the other hand, in incentive-
based schemes, consumers still receive a flat retail price and,
on top of that, they can agree on an incentive to alter their
consumption. This solution preserves consumers’ autonomy
as it is based on one-way communication structure. Prices are
broadcast to consumers which autonomously decide how to
respond to them through decentralised controllers. Also, no
control signal is submitted to the consumers, and the same
price signal can be broadcast to a various pool of consumers
(i.e., at their HEMSs), as its formulation is not device-based.

Such price schemes have been used in the Olympic Penin-
sula Demonstration project, where the procurement of demand
flexibility in response to 5-minute price signals was success-
fully tested [9]. Although RTP might potentially increase price
volatility, it is possible to address such a concern by properly
designing the price, e.g., imposing a fixed price cap [10]. The
RTP can also be agreed in a market-based approach, such as
in transactive energy (TE) [11]. TE allows the consumers to
be actively involved in the formation of the price, which in
turn reduces uncertainty in consumers’ response. However, this
type of methods requires regular feedback from the consumers
for flexibility estimation, requiring costly and cyber security-
prone two-way communication infrastructure.

Another type of DR programs is centralised and decen-
tralised DLC schemes [12]. In centralised DLC mechanisms,
an external entity directly controls consumers’ load through
a two-way communication link [13]. Although such solutions
substantially reduce uncertainty in the consumers’ response
[14], they compromise consumers’ privacy and autonomy
[11]. In fact, consumers have to allow an external entity
to decide about the way they consume electricity. In [15]
and [16], it is shown that consumers might be reluctant in
losing control of their consumption, and that automation of the
consumption is accepted only if consumers can autonomously
manage it. To gain higher acceptance from consumers towards
DLC mechanisms, long-term contracts [17] have also been
formulated. The main challenge of such approaches is that
consumers need to plan their future consumption ahead of
time, which most of the consumers are not accustomed to do
so [6]. Therefore, only part of the available flexibility might
be exploited in such programs. An alternative to centralised
DLC schemes is decentralised DLC, which uses one-way
communication [18]. It is implemented by simply broadcasting
a control signal from a centre, where the ultimate decision
is made by the local controller at the consumer’s side. This
arrangement addresses privacy and comfort issues in the DLC

schemes (i.e., each distributed controller individually satisfies
the consumer’ constraints [19]). However, the control signal
generated by the central controller is based on models for
specific types of loads. Therefore, different specialised control
signals should be issued for every type of loads in order to
exploit the existing potential flexibility [20], [21]. In addition,
the control signals are generated by assuming a linear model
for the device, which might not represent the true dynamics
of the underlying appliance, thus it might be error-prone.
Nevertheless, it is true that the error might decrease as the
number of aggregated devices grows.

While the authors acknowledge the benefits and disadvan-
tages of various RTP and DLC methods, the RTP scheme is
assumed in this study and the proposed flexibility estimation
algorithm is developed based on the RTP concept. From the
perspective of the transmission system operator (TSO), RTP
must be properly formulated to address the desired aggregated
change in consumption that solves the operational problems.
Therefore, understanding how end-users respond to different
price signals in an aggregated manner can help the TSO
to estimate the potential of demand flexibility and design
price signals accordingly [22]. In other words, by utilising
appropriate models, the system operator can evaluate the
impact of different prices on consumers’ flexibility to deter-
mine the right price to obtain a certain amount of flexibility
[23]. Unfortunately, literature scarcely reported load flexibility
estimation from the system operator’s point of view. In [24], a
daily load response model for different end-users’ categories is
proposed based on the day-ahead spot market prices. However,
the stochastic responsiveness of different end-users’ categories
and consumers’ preferences have not been studied. Moreover,
only few papers investigated the flexibility potential of various
industrial loads [25], despite the fact that 80% of electricity
usage is consumed in this sector in some countries [26].
Therefore, there is a gap in knowledge to properly estimate
aggregated flexibility of the consumers while accounting for
stochasticity in their elasticity and preferences without real-
time communication links.

In this paper, an optimisation problem is formulated to
estimate the aggregate flexibility of rational end-users (REUs)
with different elasticity and preferences at the TSO level in
response to time-varying prices. The proposed tool can be used
to quantify the amount of demand flexibility that is available
for balancing. Estimating the amount of load flexibility in
response to different prices can be useful for an aggregator
to build blocks of load capacity bids for different time in-
tervals (e.g., hourly, in CAISO). Although how to generate
the time-varying prices is out of the scope of this study, the
proposed method can also be used to evaluate the impact of
different prices on demand flexibility. Moreover, balancing
requirements might change due to the prediction errors in
the load demand and renewable generation and unexpected
outages. Therefore, having an estimate of the available load
flexibility can be very useful during the real-time operation
of the power system. Within this context, our method can
be used to provide such an estimate both in advance or in
real-time. Furthermore, having more flexible resources (from
generation and demand) enhances competition in the balancing
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market, resulting in price reduction that ultimately reduces
electricity prices for the end-users. In order to reduce the
negative impact of the consumers’ stochastic behaviour on the
estimated flexibility, the original formulation is converted to
a chance-constrained (CC) programming, where the risk level
of the solutions can be guaranteed. The main contributions of
the paper can be summarised as follows:

● Quantifying the aggregated up- and down- flexibility from
various types of consumers’ categories at the TSO level
to address AS requirements;

● Formulating a chance-constrained optimisation to account
for the stochasticity in the consumers’ willingness in such
an application;

● Developing a statistical model of aggregated consumers’
willingness (i.e., elasticity and preferences) for different
categories of consumers and incorporating it in the opti-
misation problem.

The rest of the paper is organised as follows: Section
II presents the theoretical foundation for the formulation in
terms of time-varying prices and REUs. It is followed by a
deterministic optimisation formulation of the aggregated load
flexibility in Section III. Then, the formulation is converted
to a CC programming problem to address stochasticity of the
end-users’ behaviour in Section IV. In Section V, a case study
is proposed and a series of simulations are carried out to show
the effectiveness of the proposed model. Simulation results are
discussed and the paper is finally concluded in Section VI.

II. MODELLING CONCEPTS

Quantifying demand flexibility at the TSO level with lim-
ited aggregated historical data inevitably involves complex
parameters and conditions, which must be simplified for
appropriate modelling. To keep the proposed method practical
and computationally tractable, two important assumptions are
made based on the current trend in smart grid technologies,
as explained below.

A. Time-varying prices

Time-varying prices are assumed to exist to activate con-
sumers’ flexibility in this study. In the smart grid era, the
application of advanced metering infrastructure will further
support the time-varying pricing mechanism in practice. With-
out loss of generality and similar to the Olympic Peninsula
Demonstration, it is assumed that time-varying prices are
superimposed on the existing retail electricity price. We refer
to the existing flat retail price as the ”baseline price”, λbase,
while the time-varying price component is called ”delta price”
in the rest of the paper. The latter is denoted by ∆λ∆λ∆λαt , rep-
resenting the time-varying price for flexibility type α at time
t. Depending on the grid condition, upward regulation (i.e.,
α = u) or downward regulation (i.e., α = d) may be required.
In the existing terminology, regulation is defined from the
generators’ perspective, e.g., in California ISO [27], where
a load increase is equivalent to a decrease in generation (i.e.,
down-regulation) and vice versa. Therefore, down-regulation
is achieved from negative delta prices, ∆λdt or equivalently
∆λ∆λ∆λαt ∶ (∆λ∆λ∆λαt < 0). On the other hand, load reduction is

equivalent to an increase in generation (i.e., up-regulation),
which is achieved by positive delta prices, ∆λut or equivalently
∆λ∆λ∆λαt ∶ (∆λ∆λ∆λαt > 0). Since the source of real-time operation
issues can be linked to many entities (e.g., load, generation
plants, transmission and distribution networks, interconnected
areas, and so on), it would be unfair to the consumers to
pay more because of the issues that were probably initiated
by other stakeholders [23]. To alleviate such a problem, zero
accumulated delta prices should be enforced at the end of each
day:

τ

∑
t=1

∆λ∆λ∆λut +∆λ∆λ∆λdt = 0 (1)

Summing the delta prices to zero over a day of operation
is preferred in this paper instead of the alternative approach,
which is the sum of the demand-weighted prices. The main
reason is that it is difficult to predict the aggregated response
of each consumers’ category in the hours ahead, which leads
to higher uncertainty in the demand-weighted prices. By
providing delta-prices whose sum is zero, some periods of
low prices are ensured to exist from which the consumers
can benefit (i.e., by responding to the time-varying price).
In the simulation study, it is assumed that the delta prices
are known in advance by the TSO. In the electricity markets
where energy and AS are procured simultaneously in the day-
ahead market, e.g., California ISO [28], such AS prices are
available. Furthermore, the proposed tool could be readily
used for real-time operation in a rolling horizon fashion to
incorporate potential updates of the prices and load flexibility
provided in previous hours.

B. Rational end-users (REUs)

Since manual consumers’ reaction to the price signal is not
practical nor effective, energy management systems (EMS) are
required to successfully implement price-based DR programs
in practice. Once the time-varying price is received by the
EMS, they run an individual optimisation and/or control prob-
lem locally to minimise the incurred electricity cost accounting
for the customers’ preferences [8], [29]–[31]. As an important
smart grid technology, the EMS market value reached US$4
billion in 2017 [32]. With the current market trend, it is likely
that most of the future electricity consumers will have EMS
at their premises. This, in turn, will enhance the elasticity
of demand to time-varying prices, which is a key feature
in successful DR implementation. In addition, application of
EMSs improves the predictability of consumers’ response to
price signals while avoiding communication of any sensitive
information over communication channels in real-time.

In this paper, we deal with EMS-equipped end-users, which
are called REUs, to receive the time-varying electricity prices
through one-way communication channels. The diversity of the
REUs’ behaviour towards the delta prices is modelled below.

1) REUs’ responsiveness to the price signal: In order to
appropriately model the diversity of consumers’ flexibility,
the willingness of each REU to deviate from its baseline
demand, i.e., Lbase

t,j , is modelled as a stochastic phenomenon.
Generally, the price-responsiveness of a consumer depends
on various factors, e.g., weather conditions, electricity price,
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time and type of day, and season, etc. [33]. As an example,
in [34], it is shown that the response of the load demand
has been faster in the cold weather. In this paper, however,
only electricity price, type of consumers and time of the day
are considered in the REUs’ responsiveness modelling, i.e.,
aαt,j , to keep the problem tractable. Other factors, such as
the weather condition and type of day, could be included in
the current model by adjusting the willingness parameter aαt,j ,
e.g., as a function of the ambient temperature and type of day.
Weather conditions are neglected because various types of end-
users react differently to the weather conditions. Therefore,
proper data is needed to estimate the relationship, which
is not available to the public at the moment. The value of
aαt,j varies within the range of [ − 1,1], where 0 indicates
no intention to change consumption and 1 (-1) represents a
100%-increase (decrease) in consumption in response to the
delta price. From literature, [24] approached the consumers’
price-responsiveness in a similar manner to investigate the
behaviour of a pool of end-users. Consumers’ willingness,
however, was considered constant over time and price in that
study. Halvgaard et al. in [35] adopted a linear model of price
and consumption to formulate the price response behaviour.
In [36], Aalami et al. focused on nonlinear functions, which
better describe the price response behaviour compared to the
linear models. Following the work of Aalami, we adopted a
power function to model the consumers’ willingness, as shown
in Fig. 1. Similar to [24] and [37], where the authors assumed
a price threshold for achieving DR, a dead-band is considered
to address the fact that consumers become responsive beyond
a certain price. Therefore, for a delta price smaller than the
dead-band price, i.e., ∆λ∆λ∆λαj in the specific regulation direction,
no response is expected from the pool and the flexibility is
zero:

t

a
t,
j

Fig. 1. Willingness parameter aαt,j for time-varying electricity price ∆λ∆λ∆λαt .
Positive prices lead to up-regulation (i.e., α ≡ u), while negative prices induce
down-regulation (i.e., α ≡ d). The parameters ∆λ∆λ∆λαj and ∆λ∆λ∆λαj determine the
dead-band and the saturation prices for each end-users’ category j.

aαt,j = 0 ∣∆λ∆λ∆λαt ∣ < ∆λ∆λ∆λαj (2)

When the delta price increases beyond the dead-band,
the pool of consumers starts reacting, which is modelled as

follows:

aαt,j = aαj (
∆λ∆λ∆λαt −∆λ∆λ∆λαj

∆λ∆λ∆λ
α

j −∆λ∆λ∆λαj
)
γγγ

∆λ∆λ∆λαj ≤ ∣∆λ∆λ∆λαt ∣ ≤ ∆λ∆λ∆λ
α

j (3)

Furthermore, we assume that, beyond a certain price, i.e.,
∆λ∆λ∆λ

α

j , the pool cannot provide additional flexibility because of
the rebound effect and the un-curtailable load, as discussed in
[8]. Therefore, aαt,j becomes constant:

aαt,j = aαj ∣∆λ∆λ∆λαt ∣ ≥ ∆λ∆λ∆λ
α

j (4)

To account for the stochasticity and the diversity among
consumers even from the same category of end-users, the six
parameters defining the dead-band and saturation, shown in
Fig. 1, are treated as normally-distributed random variables.
In Subsection V-A, the statistical properties and a simulation
framework will be introduced to generate a pool of consumers
for each end-users’ category.

III. UP- AND DOWN-FLEXIBILITY: DETERMINISTIC CASE

The ultimate goal of this study is to estimate the amount of
demand flexibility that can be provided by different categories
of end-users, under a time-varying pricing scheme in the
presence of stochasticity in consumers’ willingness. By having
the stochastic model of the consumers’ reaction to the price
signal and the assumptions made in the previous section, it is
possible to formulate an optimisation problem for the REUs to
estimate their flexibility. The formulation is developed based
on the conservative assumption that a perfect rebound exists
due to practical reasons and end-users’ comfort. In fact, more
than 90% of the flexibility resources at the residential premises
is provided by appliances with shiftable load (e.g., heating,
ventilation, and air conditioning systems, clothes dryers, and
so on) [38]. Therefore, the rebound effect will be an inevitable
aspect of demand flexibility modelling, although it adversely
affects the overall flexibility. As consumers might not be
willing to increase their overall daily consumption, which
might result in higher electricity bills, a perfect load shifting is
preferred in the model that must be completed within a certain
time period. While this condition might further decrease the
overall flexibility of the load demand, it provides a more
realistic model of consumers’ behaviour, which consequently
improves the accuracy of the estimated flexibility. Since the
TSO does not have direct access to the individual loads, and
consumers only react to the delta prices submitted by the TSO,
flexibility should be estimated from consumers’ perspective.
Therefore, the model is formulated as a minimisation of
the daily cost of electricity consumption for each end-users’
category, as shown below:

min
Lαt,j

τ

∑
t=1

(λλλbase +∆λ∆λ∆λut +∆λ∆λ∆λdt )
J

∑
j=1

(LLLbase
t,j +Ldt,j −Lut,j)

(5a)

s.t. − rαj ≤ Lαt+1,j −Lαt,j ≤ rαj ∀t, j, α (5b)

0 ≤ Ldt,j ≤ udt,j(Lmax
t,j −Lbase

t,j )adt,j ∀t, j (5c)

0 ≤ Lut,j ≤ uut,j(Lbase
t,j −Lmin

t,j )aut,j ∀t, j (5d)
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(t−1)Rj+Rj
∑

t′=(t−1)Rj+1

(Ldt′,j −Lut′,j) = 0 (5e)

∀t ∶ [t ∈ T, (tRj ≤ τ)], j
udt,j + uut,j ≤ 1 ∀t, j (5f)

yαt,j − zαt,j = uαt,j − uαt−1,j ∀t, j, α (5g)

yαt,j + zαt,j ≤ 1 ∀t, j, α (5h)
τ

∑
t=1

yαt,j ≤ nαj ∀j, α (5i)

t+dαj
∑
t′=t

uαt′,j ≥ dαj y
α
t,j (5j)

∀t ∶ [t ∈ T, (t + dαj < τ)], j, α
t+dαj
∑
t′=t

zαt′,j ≥ yαt,j (5k)

∀t ∶ [t ∈ T, (t + d
α

j < τ)], j, α

The objective function in Eq. (5a) calculates the cost of each
end-users’ category for purchasing electricity within the time
period τ (i.e, τ = 24 hours). The constraints are formulated as
follows: Eq. (5b) is related to the up- and down-ramp limits of
the flexible loads, which are represented for each end-users’
category j by the ramp-rate parameter rαj ; Eq. (5c) and (5d)
impose lower and upper bounds on the amount of flexibility
that can be provided by each end-users’ category. Note that
the minimum and maximum load for each category j at time t,
i.e., Lmin

t,j and Lmax
t,j , represent the lowest and highest possible

consumption that each end-users’ category can sustain at time
t. In other words, they define the demand flexibility that can
be achieved from each end-users’ category in a specific time.
Eq. (5e) implements the energy conservation rule for each end-
users’ category, as explained at the beginning of this section.
In this constraint, the parameter Rj consists of the maximum
rebound delay by which the load shifting must be completed
for each end-users’ category j. Eq. (5f) ensures that only one
type of flexibility (i.e., up- or down-regulation) is provided by
a specific end-users’category j at time t; Eq. (5g) and (5h)
represent the flexibility activation and deactivation for each
end-users’category j at time t; Eq. (5i) enforces a limit on
the number of times that a certain end-users’category can be
activated in a day. In Eq. (5i), it is assumed that only a certain
number of processes can be shifted within the day; Eq. (5j)
and Eq. (5k) refer to the minimum and maximum duration
for which the load response can be sustained. Obviously,
many of the parameters depend on the end-users’category,
and hence the above optimisation will be solved for a certain
number of consumers in each end-users’category, representing
the characterisations and the statistical variability in that end-
users’category.

IV. UP- AND DOWN-FLEXIBILITY: CHANCE-CONSTRAINED
PROGRAMMING

Due to the importance of AS in the power system operation
and the stochastic nature of the REUs, it is valuable for the
TSO to quantify the risk in demand flexibility and include

it in the decision-making process. To do so, the determin-
istic optimisation formulation from the previous section is
converted to a chance-constrained (CC) programming. This
way, it is plausible to deal with the level of risk associated
with the provision of a certain amount of demand flexibility.
The CC formulation ensures that the probability of meeting a
certain constraint is above a preferred confidence level [39] by
restricting the feasible solution space. The CC programming
has been used in the past to solve different power system
problems. For instance, it has been applied to optimal storage
sizing in [40], and to generate optimal price signals for DR
programs from the householders in [41]. Also, in [42], such
a method has been used in an optimal power flow model of
a 30-bus system to schedule generation and reserve, where
controllable loads have been considered as thermal energy
storage units.

From our model formulation, it can be seen that each end-
users’ category acts independently to minimise its operation
cost. In Eq. (3), aαt,j is defined as a function of the electricity
price, consumers’ preferences, end-users’ category, and time of
the day. Even though this parameter does not explicitly depend
on its previous values in time, the load price-response is
made time-dependent by way of constraints (5e)-(5k), which
directly limit the provision of flexibility from consumers over
time. For instance, Eq. (5k) prevents the loads from providing
flexibility beyond a certain period of time, in particular, d

α

j

hours. This way, the provision of flexibility by loads at one
hour depends of its previous values. Time dependency is also
enforced by limiting the maximum number of load flexibility
activations or by modelling the rebound effect, as explained
in Section III. On the other hand, as aαt,j does not depend
on its previous values in time, it is possible to evaluate each
constraint independently by using a disjoint CC method. From
the formulation of the deterministic model, the flexibility was
limited by:

Ldt,j ≤ udt,j(Lmax
t,j −Lbase

t,j )adt,j ∀t, j
Lut,j ≤ uut,j(Lbase

t,j −Lmin
t,j )aut,j ∀t, j (6)

In order to apply CC programming, aαt,j is treated as a
random variable and denoted by ãαt,j . It is a function of input
parameters ∆λ∆λ∆λαj ,∆λ∆λ∆λ

α

j , and aαj , as given in Eq. (3). As argued
in [43], [44], the input parameters are assumed to be normally
distributed because of their dependence on a large number of
individual human behaviour:

Ldt,j ≤ udt,j(Lmax
t,j −Lbase

t,j )ãdt,j ∀t, j
Lut,j ≤ uut,j(Lbase

t,j −Lmin
t,j )ãut,j ∀t, j (7)

The right-hand side of Eq. (7) can be re-written in a compact
form, as follows:

Adt,j ≡ udt,j(Lmax
t,j −Lbase

t,j )ãdt,j (8a)

Aut,j ≡ uut,j(Lbase
t,j −Lmin

t,j )ãut,j (8b)

Lαt,j ≤ Aαt,j ∀t, j (8c)
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In CC programming, each constraint needs to be satisfied for
a probability higher than a predefined theoretical confidence
level βββth, where th means that it is the theoretical value
imposed in the formulation.

Pr(Lαt,j ≤ Aαt,j) ≥ βββth (9)

Adding mean µ(.) and standard deviation σ(.) of Aαt,j to
the formulation, we will have:

Pr(
Lαt,j − µAαt,j

σAαt,j
≤
Aαt,j − µAαt,j

σAαt,j
) ≥ βββth (10)

If aαt,j follows a normal distribution, then it is possible to
define the standard score as zα:

Pr(
Lαt,j − µAαt,j

σAαt,j
≤ zα) ≥ βββth (11a)

1 − Pr(
Lαt,j − µAαt,j

σAαt,j
≥ zα) ≥ βββth (11b)

where the cumulative distribution function (CDF), called Φ,
can be estimated as follows:

1 −Φ(
Lαt,j − µAαt,j

σAαt,j
) ≥ βββth (12)

Eq. (12) can be further rearranged:

Lαt,j ≤ µAαt,j + σAαt,jΦ
−1(1 −βββth) (13)

By defining Φ−1(1 − βββth) as Φ−1
βββth

, the constraints can be
written as:

Ldt,j ≤ µdaudt,j(Lmax
t,j −Lbase

t,j ) + σdaudt,j(Lmax
t,j −Lbase

t,j )Φ−1
βββth
(14a)

Lut,j ≤ µuauut,j(Lbase
t,j −Lmin

t,j ) + σuauut,j(Lbase
t,j −Lmin

t,j )Φ−1
βββth
(14b)

According to the value of the binary variable uαt,j , two
scenarios can be identified:

● Scenario I: uαt,j = 0, where:
Lαt,j = 0 (15)

In this scenario, the flexibility is zero.
● Scenario II: uαt,j = 1, where:
Ldt,j ≤ µda(Lmax

t,j −Lbase
t,j ) + σda(Lmax

t,j −Lbase
t,j )Φ−1

βββth
(16a)

Lut,j ≤ µua(Lbase
t,j −Lmin

t,j ) + σua(Lbase
t,j −Lmin

t,j )Φ−1
βββth

(16b)

According to Eq. (16a) and (16b), the amount of flexibility
is bounded by a certain value that takes into account the mean
and standard deviation of aαt,j and the quantile of a standard
normal variable. The latter will depend on the predefined theo-
retical confidence level, i.e., βββth, and the estimated flexibility
by this method will be guaranteed at that confidence level.
Therefore, it will help TSO to make an informed decision
considering its risk.

V. SIMULATION STUDY AND DISCUSSION

To show the effectiveness of the proposed model, a simula-
tion study is carried out using actual data, which are provided
by Elforbrugspanel in 2008. Data is collected by Energinet (the
Danish transmission system operator) and Dansk Energi (the
Danish advocacy group for energy companies) by monitoring
hourly electricity demand for a selected pool of consumers in
every Danish municipality [45]. The selected pool has been
defined to represent the national demand. 2106 meters have
been installed to study the residential, agricultural, industrial
and commercial electricity demand in this project. The ag-
gregated data of each end-users’ category has been reported
monthly to Elforbrugspanel. The main output of the project
has been the calculation of the average of the hourly individual
electricity demand for 29 end-users’ category.

The proposed formulation can possibly work with different
AS markets and time-frames in the order of minutes to hours,
as long as the required data with the right time resolution
is available. In our simulation studies, we consider balancing
services that are procured one day in advance and use data for
the hourly average consumption for 29 end-users’ categories,
a list of which is given in Table I. This way, the estimated
delta prices are submitted to the REUs’ EMS in a single
shot 24 hours ahead, and the problem is solved once for
all types of loads. In order to compound the aggregated
behaviour of the consumers, the actual consumption of each
category is weighted by the total number of consumers in
that category, which is obtained from [46]. The data used
in the simulations is also available in [47]. The simulation
starts by generating a pool of consumers of diverse flexibility
in subsection V-A. Then, the normality assumption of the
consumers’ willingness, aαt,j , is checked for the CC optimi-
sation problem. In subsection V-D, the deterministic and CC
optimisations are solved for different load categories with two
different confidence levels. In subsection V-D, the impact of
the confidence level on the results is analysed and the results
of CC optimisation are validated in subsection V-E. Finally,
in subsection V-F, the impact of different rebound effects on
the results is investigated.

A. Generating a pool of consumers’ willingness

In the first part of the simulation, a pool of consumers
is created with different preferences, i.e., aαt,j , followed by
checking the normality of their behaviour, as shown in the
flowchart of Fig. 2. Then, the CC optimisation problem is
solved with the given theoretical confidence level, βββth, to
quantify the aggregated load flexibility.

β
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Fig. 2. Conceptual flowchart of the simulation study.
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Prior to that, however, delta prices should be generated.
As mentioned in Section II, a certain delta price set will
be communicated from the system operator to the REUs to
create a change in their consumption. In Eq. (5a), the baseline
electricity price, λλλbase, is set to 225 DKK cent/kWh [48],
the hourly delta price set is randomly generated by following
a uniform distribution. The magnitude of delta prices (i.e.,
absolute value) is within the range of [20,75] cent DKK/kWh,
following the rule defined in Eq. (1) and Eq. (3). As one
can see, the delta price range is set to be well beyond the
dead-band and below the flexibility saturation in consumers’
willingness to avoid violating the upper and lower limits [8].
In fact, it is counterproductive for the TSO to submit an
insignificant price (i.e., lower than the dead-band price) to the
pool of consumers, as no reaction will be achieved. On the
other hand, it is economically inconvenient for the TSO and
consumers to submit an excessive price (i.e., higher than the
saturation price), as the same price response can be achieved
with a smaller price. Considering the limited accuracy of
the estimated prices due to the unpredictable nature of AS
requirements, the delta prices is unknown to a large extent.
Therefore, it is reasonable to treat it like a normally-distributed
random parameter. In this study, we simulate the aggregated
flexibility response for 5000 different daily profiles of delta
prices. This is to estimate the range of potential flexibility
in each hour of the day, accounting for the stochasticity in
delta prices and quantifying the risk for the system operator
in exploiting load demand flexibility. In the future, these delta
prices might be generated by another optimisation problem
[23].

In the simulations, we will refer to the absolute value of
the maximum willingness parameter ∣aαt,j ∣. This is because
we consider that the magnitude (i.e., absolute value) of the
maximum willingness parameter will be the same to provide
up- or down-regulation for each end-users’ category j. For
this reason, we just provide the absolute value of aαt,j to
calculate aαt,j . However, aut,j is supposed to be negative and
adt,j is positive, as shown in Fig.1. Therefore, we calculate
aut,j and adt,j from Eq. (3), using the same magnitude of ∣aαt,j ∣
but with opposite signs. The mean and standard deviation
of the input parameters used in the simulation study, i.e.,
∆λ∆λ∆λαj ,∆λ∆λ∆λ

α

j , ∣a
α
j ∣, are reported in Table I. The parameters are

used to generate random numbers using a normal distribution.
Due to data scarcity for different end-users’ categories, input
parameters are assumed to be the same for all time instances
and up- and down-regulation. In order to determine the values
of ∣aαt,j ∣ for each end-users’ category, reference [49] is used,
where the amount of maximum flexibility is quantified for
several consumers’ sectors in Denmark. Such estimates are
compared to the consumption that we previously calculated
for each end-users’ category from the data set. For instance,
according to [49], cement manufacturing and iron foundries
are able to provide 16 MW load reduction. From the con-
sumption we previously calculated from the data set, the total
electricity consumption of these consumers’ categories is 30
MW. Therefore, a maximum willingness parameter of 0.5
(i.e., 50% of the total consumption) is estimated for these

categories (i.e., basic metal and construction). In different
studies, e.g., [58], [59], various sectors and countries have been
investigated in price elasticity, whose concept is discussed in
[60]. To include diversity in the willingness parameters for
those sectors whose estimate in [49] is provided only for
aggregated loads, this concept of price elasticity is used .
Because of the lack of information, the willingness parameters
of the remaining sectors are randomly chosen. Moreover, σaαj
is defined in a way that the values of ∣aαj ∣ are maintained
between 0 and 1. When the value generated by the distribution
function exceeds the higher or lower limits (1 for higher and
0 for lower limits), another random number is re-drawn from
the normal distribution. The choice of ∆λ∆λ∆λαj is approximately
selected based on the nature of different end-users’categories
[24]. For instance, we assumed that industries might behave
such that they prevail the continuity of their service, unless
very high delta prices are offered. Similarly, ∆λ∆λ∆λ

α

j values are
intuitively determined. For the case of ∆λ∆λ∆λαj , the value of σ
is chosen by considering a normal distribution of prices and
that each price has to be bigger than zero. 5000 samples
of ∣aαj ∣ are generated for each category of end-users and
time. The results of a sample end-users’ category are shown
in Fig. 3. The number of samples is chosen in a way to
statistically represent the variability of consumers’ willingness
in every end-users’ category. These values are later used in the
optimisation studies, both deterministic and CC problems, to
estimate the aggregated load flexibility.

Fig. 3. Range of aαt,j achieved for a sample end-users’ category for
different ∆λ∆λ∆λαt .

In the next step, we investigate the normality of aαt,j in
order to justify the application of CC programming. Eq. (3) is
defined as the ratio of two normal components, namely (∆λ∆λ∆λαt −
∆λ∆λ∆λαj ) and (∆λ∆λ∆λ

α

j −∆λ∆λ∆λαj ), which might lead to a non-normal
distribution. In Fig. 4, a statistical analysis using QQ plot and
histograms of aαj is carried out for a sample load category
j and up- and down-flexibility at a specific time. In the QQ
plots, the two vertical lines represent ±2 standard deviations
of the data, meaning that the values within those lines are 95%
of the data. Fig. 4 shows that the behaviour of up- and down-
willingness is approximately normal due to the dominating
variance of aαj in Eq. (3).
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TABLE I
AVERAGE VALUES µ(.) AND STANDARD DEVIATIONS σ(.) OF ∆λ∆λ∆λj ,∆λ∆λ∆λj [DKK CENT/KWH] AND ∣aαj ∣ [P.U.]; RAMP [KW], FLEXIBILITY ACTIVATIONS

[P.U.], FLEXIBILITY DURATION [H] AND REBOUND DELAY [H] PARAMETERS FOR DIFFERENT END-USERS’CATEGORIES.

End-users’category ∣aαj ∣ ∣∆λαt,j ∣ ∣∆λαt,j ∣ r̃αj nαj dαj d
α
j Rj

µ σ Reference µ σ µ σ Reference

Apartment without heating 0.4 0.10 [45], [49], [50] 5 1.1 105 11 3 7 1 6 8 [51]
House without heating 0.5 0.11 [45], [49], [50] 6 1.2 100 12 3 8 1 6 8 [51]

House with heating 0.6 0.10 [45], [49], [50] 6 1.0 105 15 5 20 1 2 3 [51]
Cottage 0.5 0.13 – 6 1.1 100 13 4 13 1 4 6 –

Gardening 0.6 0.10 – 10 1.0 110 10 3 17 1 3 6 –
Agriculture without heating 0.5 0.12 – 14 1.3 110 10 4 6 1 4 8 [52]

Agriculture with heating 0.7 0.08 – 14 1.3 110 11 5 20 1 2 3 [52]
Food 0.4 0.10 [45], [49], [53] 12 1.8 130 14 2 12 1 2 3 [51]

Basic metal 0.5 0.12 [45], [49], [53] 11 1.5 120 14 3 4 1 5 12 [51]
Wood 0.3 0.05 [45], [49], [53] 14 1.7 120 12 3 4 1 4 12 [51]
Textile 0.3 0.06 [45], [49], [53] 13 1.2 120 10 3 5 1 6 12 –
Paper 0.4 0.10 [45], [49], [53] 15 1.0 120 15 3 3 1 4 12 [51], [54]

Non-metallic 0.3 0.06 [45], [49] 12 1.1 120 10 3 5 1 8 12 –
Chemical 0.5 0.13 [45], [49], [53] 16 1.0 130 11 2 2 1 3 8 [51], [55]

Other industries 0.3 0.05 [45], [49], [53] 11 1.0 120 10 3 5 1 8 12 –
Construction 0.5 0.10 – 8 1.2 120 14 4 2 1 3 8 [51]

Retail 0.4 0.10 [45], [49] 8 1.2 120 14 6 4 1 3 4 [56]
Wholesale 0.4 0.10 [45], [49] 8 1.2 120 14 5 9 1 3 4 [56]

Bank 0.3 0.05 [45], [49] 17 2.0 150 10 6 8 1 2 3 –
Utility 0.3 0.06 – 14 1.4 110 10 3 3 1 2 3 [51]

Sewerage 0.3 0.05 – 17 2.0 150 12 3 3 1 2 3 [51]
Cultural 0.5 0.13 [45], [49] 10 1.2 140 10 6 11 1 3 4 –

Restaurant 0.6 0.10 [45], [49] 7 1.0 110 10 5 8 1 3 4 [51]
Health 0.3 0.06 – 17 2.0 150 11 3 4 1 4 6 –

Education 0.5 0.12 [45], [49] 10 1.2 140 16 5 20 1 2 3 –
Social 0.5 0.13 [45], [49] 10 1.2 140 15 4 12 1 3 4 –
Postal 0.6 0.10 [45], [49] 10 1.2 140 12 5 15 1 3 4 –
Public 0.6 0.11 [45], [49] 10 1.2 140 13 6 13 1 2 3 –

Public light 0.3 0.02 – 17 2.0 150 12 5 3 1 2 3 [57]
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Fig. 4. QQ plots and histograms for au
t,j and ad

t,j of a sample end-
users’ category j at a specific time t.

B. Selection of γ

In [35], the price responsiveness of consumers is modelled
as a linear function, which is equivalent to a value of γ equal
to 1 in Eq. (3). In spite of that, it is reasonable to assume that
consumers might be more inclined to alter their consumption
profile when they receive big delta prices, as also suggested in
[36]. The value of γ will be limited by the fact that consumers
have different sensitivities to prices and some of them might
always be responsive to achieve cost minimisation. In Fig. 5,
the distribution of aαt,j is analysed for different values of γ

(i.e., 1, 1.5 and 2). It is clear from the figure that a reasonable
choice of γ does not compromise the normality assumption.
In this paper, γ is equal to 1.5.
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Fig. 5. QQ plot and histogram for generic aαt,j of a sample end-users’
category j at a specific time t for values of γ equal to 1, 1.5 and 2.

C. Explanation of the consumers’ constraints parameters

In the simulations, Lmin
t,j and Lmax

t,j are calculated from
the available data set [45], by identifying the minimum and
maximum values of the historical electricity consumption for
each time t and end-users’ category j. This method is preferred
in this study as it is the only information that was available
at the time. Following a similar approach, Lbase

t,j is calculated
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from the data set by averaging the consumption of each end-
users’ category at time t. Parameters related to the consumers’
constraints (e.g., ramp, flexibility provision duration and flex-
ibility activation times) are estimated due to the current lack
of more detailed information and provided in Table I. The
ramp parameter rαj is determined from the consumption data
set, as rαj = r̃αj max

1≤t≤τ
(Lmax

t,j ), where r̃αj is a parameter that
depends on the type and characteristics of the loads of each
end-users’ category j. Considering hourly resolution of data
and proposed formulation, it is reasonable to assume that r̃αj
will not be very restrictive since loads can change relatively
fast. In fact, the majority of the loads have faster dynamics
than an hour, i.e., they can go from 0 to 100% consumption
in less than an hour. For the consumers’ categories with mainly
thermal loads (e.g., public [49]) and whose processes can be
shifted in time (e.g., paper [54]), a larger r̃αj is assumed. For
the industrial consumers, however,it will be more restrictive.
In order to determine the amount of activation times for
each end-users’ category nαj , it is assumed that the industrial
consumers have generally less shiftable processes compared to
the residential and commercial consumers. Therefore, nαj for
industrial consumers is considered smaller than for residential
consumers. By generally accounting on the flexibility from
ventilation, heating and air conditioning (HVAC), it is feasible
for the residential and commercial consumers to be activated
and deactivated several times during the day without technical
constraints. On the other hand, a waste water treatment facility
from the industrial sector might be the only shiftable process,
limiting the overall consumption flexibility. In determining dαj ,
it is assumed that end-users’ category can provide flexibility
for a minimum duration of 1 hour, as HVAC is present in
almost every end-users’ category. Regarding the choice of the
maximum flexibility duration values in Table I, the commercial
consumers are assumed to be mainly affected by the thermal
dynamics of HVAC [49]. For the industrial and residential
consumers, longer dynamics are expected, as their loads are
not only thermal and they might have different characteristics
(e.g., electric vehicle charging, laundry machine and so on).
In the simulation studies, the case of perfect daily rebound is
solved for each end-users’ category (i.e., Rj = 23 for each
j). Afterwards, a conservative case is considered by applying
strict rebound effects, given in Table I, in order to evaluate the
impact of the rebound on the overall flexibility. To determine
the parameter Rj for the case of strict rebound, it is assumed
that the end-users’ flexibility is mainly constrained by the
thermal dynamics of their loads. However, there are cases
like the paper industry where production processes can be
shifted to other times of the day [54]. For end-users’ categories
where processes can be shifted within the day, the rebound
constraint is relaxed. Also, for the agricultural consumers, Rj
is estimated by accounting for the processes involving animal
waste treatment, irrigation and curing tobacco [52].

D. Up- and down-flexibility estimation

In this section, the CC optimisation problem is solved for
different theoretical confidence levels using the aαt,j values
from Section V-A.

● Low-risk case

For a conservative simulation study, βββth = 0.95 is selected
as theoretical confidence level. It implies that, globally, the
constraints in Eq. (5c) and (5d) will be respected with a
probability that is equal or higher than 95%. In other words, it
guarantees that the estimated flexibility from the consumers,
given their stochastic behaviour, will be achieved 95% of the
time or higher.

Fig. 6. Flexibility achieved for different delta prices by CC optimisation for
βββth =0.95 considering daily rebound: baseline consumption, flexibility for
the reference delta price ∆λ∆λ∆λα∗t , and the delta price.

In Fig. 6, the achievable flexibility for different prices is
shown in relation to the baseline consumption for βββth = 0.95.
It emerges that the maximum flexibility is about 7% of the
hourly load demand. It is also noticeable that the flexibility
in the early morning is mainly for up-regulation, while the
down-regulation potential seems to be small, i.e., around 3%
of the hourly load demand. Although such a result may appear
counter-intuitive, it is due to the selected values of Lmin

t,j

and Lmax
t,j that are used in the simulation studies. They are

extracted from annual data by finding the minimum and max-
imum consumption values of each end-users’ category at each
hour of the day. Since the data set at hand does not include
the impact of consumers’ response to the prices, the maximum
load in early hours is very close to the average consumption,
which resulted in lower down-flexibility in the simulation
results. In the future, advanced methods can be developed
to calculate these parameters by collecting aggregated data
from REUs in response to the delta prices. The correlation
between delta prices and flexibility is −0.73, confirming a
strong negative correlation between the two parameters. The
correlation does not reach −1 because of the constraints
applied to the minimisation problem and the different amount
of flexibility available for up- and down-regulation. In order
to verify the correlation between flexibility and delta prices
visually, the flexibility obtained in response to a randomly-
selected daily delta prices, i.e., ∆λ∆λ∆λα∗t , is shown in Fig 6. It
can be noticed that the highest amount of down-regulation (i.e.,
increased consumption) is achieved at hour 23:00, with 3.6%
increase in demand, corresponding to the biggest negative delta
price. The highest amount of up-regulation is achieved at hour
19:00 with 5.8% decrease in total demand, coinciding with a
relatively large positive delta price.

● High-risk case
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The CC optimisation for 5000 delta prices is repeated for
βββth = 0.50. As expected, the up- and down-flexibility patterns
are identical to the “low-risk case.” However, their magnitude
increases substantially for all hours, as shown in Fig. 7. It can
be seen that the flexibility range raises by 76% compared to
the “low-risk case.” At hour 23:00, the demand is expected
to increase by about 7% in response to the given price, while
12.2% decrease in demand is observed at hour 19:00. The
simulation results show that the TSO might over-estimate the
flexibility potential if the associated risk is not considered in
the formulation. It will, in turn, result in unsuccessful demand
flexibility procurement in the real-time operation.

Fig. 7. Flexibility achieved for different delta prices by CC optimisation for
βββth =0.50 considering daily rebound: baseline consumption, flexibility for
the reference delta price ∆λ∆λ∆λα∗t , and the delta price.

E. Validation of CC formulation

In this sub-section, we investigate the quality of the CC
solutions for the case of daily rebound. As it was mentioned
earlier, the CC solutions are valid only if the actual confidence
level (i.e., βββac achieved in the Monte Carlo simulation study)
is bigger than or equal to the theoretical confidence level (i.e.,
βββth imposed on the formulation and associated simulation
study) of the CC programming. To do so, we need to impose
a theoretical confidence level and solve the CC formulation
for a given price set. From the results, the flexibility Lαt,j is
obtained. Afterwards, this value is used in Eq. (5c) and (5d)
to investigate how many times the constraints are violated. In
Eq. (5c) and (5d), aαt,j is the generated pool of consumers’
willingness discussed in subsection V-A. Since we are dealing
with thousands of constraints in this simulation, while our
intent is to provide a readable plot of the results, we calculate
the mean value of the actual confidence level of the various
constraints. This process is repeated for different values of
theoretical confidence level, i.e., βββth ∈ [0.1,0.98], and the
mean values of βββac are plotted in Fig. 8(a) in comparison to
the βββth imposed. From the figure, it can be seen that the
actual confidence level is always higher than the theoretical
counterpart. Therefore, it can be concluded that the constraints
are always satisfied for the given confidence level, and that the
normality assumption of aαt,j was correct. Moreover, Fig. 8(a)
shows that the CC programming behaves more conservatively
on the lower range of βββth, where the actual confidence level is
always greater than the theoretical one (e.g., for βββth = 0.50, the

actual confidence level is 0.54). This is because the constraints
are loosely confined for small βββth values, which result in more
availability of load demand to provide flexibility.

Also, in order to understand the value of using CC, we
include a study where we compare the different performances
of the deterministic and stochastic cases. Therefore, we solve
the stochastic and deterministic formulations, where in the
latter it is imposed a βββth of 0.95. Afterwards, we calculate
for each formulation what is the percentage of the constraints
that achieve a certain βββac. In Fig. 8(b), the results are provided
through probability density functions. For the actual βββac show
that, for the stochastic case (i.e., blue line), 92% of the
constraints have a βββac that is slightly above 0.95. In a few
instances, βββac = 1 is obtained because of the condition im-
posed in Eq. (5e) and the rebound effect. For the deterministic
case (i.e., black line), however, the actual confidence level lies
below 92% for 95% of the constraints and is lower than the
one obtained by the CC formulation. These results prove that
quantifying the risk and trying to maintain a specific level of
certainty is of paramount importance for the TSO in real-time
operation, which is provided by the CC formulation in this
study.

0.9 0.95 1

Actual 
ac

 [-]

0%

20%

40%

60%

80%

100%

P
e
rc

e
n
ta

g
e
 o

f 
c
o
n
s
tr

a
in

ts

(b)

th
=0.95

Deter.

0.2 0.4 0.6 0.8

 
th

 [-]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 
a

c
 [
-]

(a)

Actual 
ac

Theoretical 
th

Fig. 8. CC validation for the case of daily rebound: (a) Imposed βββth and
achieved βββac in CC method for price set ∆λ∆λ∆λ∗t ; (b) Probability of βββac for
deterministic and stochastic case for price set ∆λ∆λ∆λ∗t .

F. Effect of the rebound constraint

In the simulation studies so far, we investigated the CC
validation for the case of daily rebound. However, in reality,
different consumers’ categories can defer their loads for a
shorter range of time, leading to a strict rebound. In order to
quantify the effect of the rebound on the flexibility estimation,
Table II reports the difference in flexibility obtained by the
daily and strict rebound constraints. The values are calculated
as the average amount of up-regulation flexibility (i.e., the
amount of down-regulation will be the same, as we imposed
perfect rebound in Eq.(5e)) provided during the day for
the different price scenarios. It emerges that having a strict
rebound reduced the flexibility provision by 35%.

In Fig. 9, the CC validation is repeated for the case of strict
rebound.
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TABLE II
ANALYSIS OF THE FLEXIBILITY PROVIDED DURING THE DAY,
CONSIDERING DIFFERENT REBOUND EFFECTS AND βββth=0.95.

Study case Up- (down-) regulation (GW)

Daily rebound 0.374
Strict rebound 0.243

Difference -35%
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Fig. 9. CC validation for the case of strict rebound: (a) Imposed βββth and
achieved βββac in CC method for price set ∆λ∆λ∆λ∗t ; (b) Probability of βββac for
deterministic and stochastic case for price set ∆λ∆λ∆λ∗t .

From Fig. 9(a), it can be seen that the actual confidence
level is more conservative when dealing with a strict rebound
by reaching βββac of 0.96 for an imposed theoretical confidence
level of 0.95. Also, Fig. 9(b) confirms the relevance of adopt-
ing CC, where the deterministic approach leads to a confidence
level that is lower than 0.92 for 73% of the constraints. Such
a result violates the requirement of the TSO, which imposed
a βββth of 0.95.

VI. CONCLUSIONS

This paper offers a methodology to estimate the aggregated
load flexibility of consumers given a certain price response
function. It is formulated by considering the uncertainty in
the consumers’ willingness to react to the price signals.
The proposed approach only requires aggregated historical
consumption data to operate. In the proposed framework,
the load flexibility at the TSO level is quantified. Time-
varying prices are submitted by the system operator to the
end-users at the edge of the grid to alter their consumption
while minimising their operation cost locally. A nonlinear and
stochastic consumers’ price-response function is considered
in this study. In order to quantify the risk in the amount of
estimated demand flexibility, a CC formulation of the problem
is developed and its applicability is proven by the simulation
studies. This approach allows to estimate the flexibility that
can be achieved under a certain confidence level. Actual load
data from Elforbrugspanel in Denmark is used for simula-
tion studies. The simulation results show that the choice of
confidence level significantly affects the flexibility estimation.
For a conservative confidence level (i.e., 0.95), the method

estimates a consumption change that is up to 7% of the total
consumption. The quality of the CC solutions is also verified
in two different ways. It is shown that the application of CC
can provide a meaningful management of risk for the TSO,
which is fundamental for AS provision. We finally evaluate
the case of daily and strict rebound constraints, showing that
a strict rebound effect limited the overall flexibility provision
by 35%. The proposed approach can be used at the TSO level
to quantify demand flexibility for day-ahead or real-time AS
procurement. In our future work, we will investigate how to
enhance our model to account for other uncertainties (such as
uncertain delta prices) that the REU’s EMS will most likely
consider. Also, we will model aαt,j as a function of weather
and type of day.
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