ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON ENERGY MARKETS, POLICY AND REGULATION 1

Cost-effective Community Battery Sizing and
Operation within a Local Market Framework

Nam Trong Dinh, Student Member, IEEE, Sahand Karimi-Arpanahi, Student Member, IEEE, S. Ali
Pourmousavi, Senior Member, IEEE, Mingyu Guo, and Jon A. R. Liisberg

Abstract—Extreme peak power demand is a major factor be-
hind high electricity prices, despite occurring only for a few hours
annually. This peak demand drives the need for costly upgrades
for the network asset, which is ultimately passed on to the
end-users through higher electricity network tariffs. To alleviate
this issue, we propose a solution for cost-effective peak demand
reduction in a local neighbourhood using prosumer-centric flex-
ibility and community battery storage (CBS). Accordingly, we
present a CBS sizing framework for peak demand reduction
considering receding horizon operation and a bilevel program
in which a profit-making entity (leader) operates the CBS and
dynamically sets mark-up prices. Through the dynamic mark-
up and real-time wholesale market prices, the CBS operator can
harness the demand-side flexibility provided by the load-shifting
behaviour of the local prosumers (followers). To this end, we
develop a realistic price-responsive model that adjusts prosumers’
behaviour with respect to fluctuations of dynamic prices while
considering prosumers’ discomfort caused by load shifting. The
simulation results based on real-world data show that adopting
the proposed framework and the price-responsive model not only
increases the CBS owner’s profit but also reduces peak demand
and prosumers’ electricity bills by 38% and 24 %, respectively.

Index Terms—Peak demand, Community battery, battery siz-
ing, bilevel optimisation, price-responsive model.

NOMENCLATURE

Indices and Sets

n/N Indices/Set of local prosumers

T Set of time intervals in the sizing horizon
DY, D~ Convex hull of McCormick envelopes
HX® Set of time intervals in a rebound horizon
H; Set of time intervals in a receding horizon

i,k Indices for Benders iterations

t,j,m Indices for time intervals

Parameters

I5) Prosumer price elasticity

PN / MY Mark-up price upper/lower bound ($/kWh)

z Prosumer original consumption (kWh)
SoC/SoC  Battery state-of-charge upper/lower bound (%)
o' e Parameters for Benders decomposition

At Length of time interval (h)

Az Adjusted demand (kWh)

n,R,T Battery calendar loss parameters

Tr Battery round-trip efficiency (%)

A Prosumer’s original payment ($)

ANW/XPNW - Operator/Prosumer network usage charge($/kWh)
peak Peak demand charge ($/kW)

ART Real-time (RT) price ($/kWh)

ART Lowest RT price in a receding horizon ($/kWh)

2\ Penalty coefficient for slack variable
T/x Prosumer consumption upper/lower bound (kWh)
EoL Battery end-of-life (%)

ExpL Electricity export limit (kW)

a,b,c,k,& Battery cyclic loss parameters

B Network supply charge ($)

B,,T,,0, Weighted sum of sub-problems results
Finit Battery initial SoC (kWh)

Fpprice Battery per-unit cost ($/kWh)

G Generated rooftop solar PV energy (kWh)
T° Minimum hours to fully charge the battery (h)
T Battery expected lifetime (h)

Variables

T Prosumer consumption (kWh)

Q@ Proxy of sub-problem objective function
AMU Mark-up price ($/kWh)

T,0 Dual variables for Benders decomposition

¢ Peak demand threshold (kW)

Beom Prosumers compensation cost ($)

B®¢/B  Cost of battery cyclic/calendar degradation ($)
B™ /Bsib - Master/Sub-problem objective function

C Prosumer comfort function

E Energy level in battery (kWh)

L Battery capacity (kWh)

GY/G* Used / Spilt solar energy (kWh)

nt/n” Local market positive/negative net demand (kWh)
n Slack variable

P Battery dispatch level (kW)

Pt /pPds  Battery charging/discharging power (kW)
pere Operator profit ($)

QM /Q%°  Battery cyclic/calendar degradation (%)

urre Prosumer utility

xt /o~ Prosumer positive/negative net demand (kWh)
2,27 Aucxiliary variables for McCormick envelopes

I. INTRODUCTION
A. Motivation and literature review

HE rapid uptake of rooftop solar photovoltaic (PV)

systems in recent years has made Australia the world
leader in solar installation per capita. However, despite the
oversupply during midday, solar energy is unavailable during
the evening peak hours. This poses significant difficulties for
distribution network service providers (DNSPs) (analogous to
distribution system operators), who must frequently reinforce
the networks to ensure system security and meet the high peak
demand during early evening hours [1]. Then, such network
upgrade expenses are passed on to network customers, e.g.,
as the peak demand tariff [2]. This peak demand charge,
determined based on the maximum electricity consumption
during a billing period, is typically imposed on commercial
and industrial consumers as an incentive to flatten their con-
sumption profiles. Due to the constant growth in residential
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peak demand in recent years [3], many DNSPs in Australia
have also mandated a peak demand tariff for new households
connected to its distribution network [4]. Therefore, prosumers
may still see their electricity bill increasing despite the high
uptake of renewable energy sources.

One possible solution is to use residential batteries to
shift excess rooftop PV generation to peak demand hours
[5]. However, residential batteries are too expensive for most
prosumers. Community battery storage (CBS) systems offer
an attractive alternative, providing a lucrative middle ground
solution to address the problem [6]. A fundamental benefit
of using CBS is the management of peak power demand by
taking advantage of excess rooftop PV generation during the
day to meet peak hours in the evening [5]. The reduction in
peak demand reduces the peak demand charge; hence, the
electricity bill. However, this requires a CBS system with
sufficient capacity to manage the maximum power below a
peak demand threshold. Therefore, finding a trade-off between
the maximum peak demand threshold and CBS capacity is
essential to ensure cost-effective operation.

A growing number of studies have been published on the
use of battery systems for peak demand reduction, from single-
household level [7], [8] to large-scale buildings [9], [10]. In
[7], the authors proposed a battery sizing model for peak load
shaving by keeping demand below a predefined threshold.
The authors in [8] formulated a multi-objective optimisation
problem, aiming to minimise both the energy usage cost and
the peak load with a focus only on the energy usage cost,
not the peak demand charge. Similar work is reported in [9],
where the authors proposed a battery algorithm to minimise the
peak load demand. In [10], different rule-based strategies for
battery systems were implemented to examine their efficiency
in reducing peak demand. Overall, despite the unanimous
consensus among these studies on the importance of reducing
peak demand, they did not provide a cost-benefit analysis for
their models from the viewpoints of different stakeholders. A
cost-benefit study is essential because the CBS owner (whether
an aggregator or a utility company) will not attempt to reduce
the peak load unless it is economically sensible. For this
reason, the authors in [11] proposed an online algorithm for
battery systems that minimises both the energy usage charge
and peak demand charge. However, they considered a fixed
battery size and did not evaluate the trade-off between the
maximum peak demand threshold and the battery capacity. In
summary, this group of studies focused only on one aspect of
the problem, i.e., ensuring a sufficient battery size or reducing
the maximum peak demand threshold.

While battery sizing studies considering peak demand
charge were developed in [12], [13], the authors assumed a
perfect forecast for one month ahead, which is unrealistic
given the high level of uncertainty for the long forecast
horizon. In [14], the model considered a shorter horizon by
constructing a daily operation framework to minimise the peak
demand charge. Nonetheless, the results may not accurately
reflect the true electricity cost since the peak demand charge
is based on the maximum power consumption over a billing
period, which typically spans one month or one year [2]. The
prolonged billing period of the peak demand charge, together

with the high investment cost on battery capacity, used to
mitigate the charge, necessitates a thorough planning model
when choosing an optimal CBS size.

In addition to using CBS for peak load shaving, several
studies have focused on leveraging demand-side flexibility that
comes as a feature of smart grid developments [15]. With the
assistance of a home energy management system (HEMS),
modern prosumers can shift their consumption to off-peak
intervals by adjusting their demand based on electricity prices.
To anticipate the reaction of prosumers in a highly dynamic
electricity pricing environment, many price-responsive models
for prosumers have been proposed [16]. In [17]-[19], the
authors considered a nonlinear demand response program such
that prosumers gain satisfaction for consuming electricity.
However, consuming more electricity should not necessarily
result in greater satisfaction depending on the time of day. In
contrast, the works in [20], [21] considered discomfort for load
curtailment, but treated each time interval separately. Since
most of residential electricity usage comes from shiftable
loads [22], it is crucial to consider the time-coupling effect of
load rebound when constructing the price-responsive model.
In [14], [23], the authors considered the discomfort caused
by the load shifting. However, the effect of the load rebound
effect was not considered. The work in [24] proposed a model
for the rebound effect of shiftable loads, but the prosumers’
discomfort was neglected. In [22], the authors considered both
the discomfort and the effect of load shifting. Despite this,
the program was designed for a predefined flat rate or time-
of-use (ToU) tariff structure, and not suitable for modelling
prosumers’ consumption under the dynamic fluctuations of
real-time (RT) wholesale market prices. Although all exist-
ing studies incorporated price-response parameters into their
models, the coefficients lacked statistical significance and were
arbitrarily selected to fit those studies.

B. Objectives and contributions

To accurately model prosumers’ behaviour under a time-
varying pricing scheme, this paper proposes a price-responsive
model for prosumers’ consumption considering their discom-
fort with load shifting. In contrast to the existing work
focusing on a predefined flat rate or ToU tariff, this model
is suitable for modelling prosumers’ behaviour under the RT
price fluctuations. In addition, it can be customised according
to the characteristics of the individual prosumer and different
times of the day using the concept of price elasticity. The CBS
operator uses this model to anticipate the consumption curves
of the local prosumers and optimise energy arbitrage and
CBS discharging accordingly to minimise the energy usage
charge and peak demand charge. To solve the aforementioned
challenge of the prolonged billing period of peak demand
charge and battery investment for long horizons, we consider a
receding horizon operation (RHO) model for CBS, where only
the dispatch decision in the first interval is binding, while the
rest are to ensure that the operating model is not myopic [25]—
[27]. The optimisation must then be solved consecutively for
the next receding horizons. For this reason, it is not possible to
obtain the optimal CBS capacity and peak demand threshold
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in a single-shot optimisation. Instead, different feasible values
must be examined in an iterative manner to obtain the optimal
solution. Although considering RHO in a planning problem
can increase the computational burden, the significant capital
expenditure and the long duration of a battery project necessi-
tate correct modelling within the sizing framework. In [22],
an exhaustive search was done to find the optimal battery
size. Since we are looking for the ideal trade-off between
the CBS capacity and peak demand threshold, the coupling
between the two variables can greatly increase the number of
combinations, making the exhaustive search infeasible or very
time consuming. An algorithm based on Benders decomposi-
tion was proposed in [27] to reduce the number of iterations
required to reach the global optimal battery capacity. However,
in addition to peak charge, the prosumers’ behaviour and
battery degradation were neglected during sizing. In contrast,
our model leverages Benders decomposition to decompose
the RHO model into the planning and operational stage by
considering CBS capacity and peak demand threshold as
complicating variables while addressing the aforementioned
shortcomings. Moreover, in the operational stage, we solve a
bilevel program to model the strategic behaviour between the
CBS owner and local prosumers. The main contributions of
this paper are summarised below:

o Offering a prosumer price-responsive model that consid-
ers RT price fluctuations, financial compensation for the
discomfort caused by load shifting, and the rebound effect
of shiftable loads.

o Proposing an RHO framework for cost-effectively sizing
CBS and finding the optimal peak demand threshold in a
local neighbourhood, where both the CBS owner and the
local prosumers would financially benefit.

The rest of the paper is structured as follows. We outline the
proposed local neighbourhood structure with CBS in section
IT and explain the key features of the model in section III,
both conceptually and mathematically. Then, we propose the
methods for solving the operational and planning problem in
sections IV and V, respectively. The results of a comprehensive
simulation study are reported and discussed in section VI
Finally, we conclude the paper in section VIIL.

II. LOCAL NEIGHBOURHOOD STRUCTURE WITH CBS

In this local neighbourhood, the CBS owner together with
the local prosumers form a local electricity market, in which
the CBS owner can be regarded as the local market operator. It
is assumed that the local market operator will interact with the
utility grid to balance local generation and demand mismatch.
For instance, when participating in the Australian National
Electricity Market (NEM), the local market operator pays RT
wholesale prices to procure electricity from the grid as a
‘Customer’ [28]. Since the Australian NEM is a spot market
in which the dispatch values are obtained for the next interval
ahead, only the wholesale price in the first interval of the
receding horizon must be binding, while prices in subsequent
intervals can vary as time proceeds. Hence, it is necessary to
consider RHO in the operation of the local market. Since price
forecasting is outside the scope of this paper, we assume that

the RT prices are perfectly known. In addition, we assume
that the CBS operator cannot gain any financial benefit from
exporting energy from the CBS to the power grid.

In this local market, the RT wholesale prices are passed
on to local prosumers without any constraints on buying and
selling. Therefore, prosumers can buy and sell electricity at
the same RT prices. This is similar to that of Amber Electric,
a newly founded electricity retailer in Australia [29]. We have
also considered an export limit on rooftop PV systems, as
introduced by most states in Australia, to maintain the integrity
of the network and avoid over-voltages and congestion [30]. To
make a profit, Amber Electric charges a monthly subscription
fee of AUDS$15 while prosumers purchase electricity at RT
prices. In addition, prosumers are responsible for paying
network charges, including the energy usage tariff and the
peak demand tariff [2]. In their model, although prosumers can
avoid energy usage charges by shifting their load to midday,
they are still susceptible to a high electricity bill if they do
not decrease their peak power consumption. In our model,
however, the local market operator pays for the peak demand
tariff for the local energy community and utilises the CBS
system to manage and control the maximum peak load. In
return, the local market operator will introduce mark-up (MU)
prices on top of the RT prices, which can either be positive or
negative depending on the local net load at every interval.
For example, during periods of high demand, the operator
may offer positive MU prices. In contrast, the MU prices
may be negative when there is a reverse power flow from
the community to the power grid. While introducing MU
prices might indicate that local prosumers have to bear an
additional cost when participating in the local market, we
demonstrate that an overwhelming majority of prosumers pay
less in a year due to the elimination of the peak demand
tariff. The savings achieved from avoiding the peak demand
charge can offset the added cost of MU prices, resulting in a
lower overall cost for most prosumers. For those prosumers
who experience increased electricity bills under this model,
the local market operator offers compensation based on a Bill
Guarantee scheme for expenses incurred [31]. Lastly, the local
market operator can use the MU prices to activate prosumers’
flexibility in a way that would decrease the peak demand. This
helps to reduce prosumers’ consumption during peak hours
while allowing the operator to maintain a high profit. In this
paper, we consider flexibility to be an aggregated flexibility of
all loads. This consideration ensures that prosumers’ privacy
is respected, as it eliminates the need for the local market
operator to dive into individual load details.

The structure of the local market operation can be sum-
marised as follows. First, the operator forecasts the RT prices
and the baseline net energy profiles in the local community
for one day ahead. Then, the operator optimises the MU
prices and passes the MU and RT prices, collectively referred
to as ‘local prices’, to the local prosumers. Each prosumer
then uniquely reacts to the price signals based on their
price-responsive model, consisting of electricity payment and
discomfort caused by load shifting. Lastly, given the adjusted
consumption of the prosumers, the operator can optimally run
the CBS to maximise profit. Since this paper considers the
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Fig. 1: Schematic diagram of the local electricity market

RHO approach, this process is repeated consecutively for the
next receding horizon, where each receding horizon has a one-
day lookahead. Taking into account the hierarchical nature of
decision making and the separate objectives of the operator
and the prosumers, the model is an instance of the Stackelberg
game, in which the prosumers can be considered rational by
administering a HEMS. The bilevel local market structure
based on the Stackelberg game is shown in Fig. 1.

III. PROBLEM DEFINITION

In this section, we elaborate on the application of RHO
when operating the local market and introduce the models for
prosumers’ price responsiveness and battery degradation.

A. Receding horizon operation (RHO)

We denote the set of local prosumers by N =
{1,2,...,|N|}, where n is the index of prosumers. In RHO,
instead of solving over the entire sizing horizon, i.e., T =
{1,2,...,|T|}, the optimisation problem needs to be solved
sequentially for each lookahead horizon, ie., H; = {j,j +
1,...,j+|H;|—1}, where H; C T'. Therefore, we denote the
first interval of each receding horizon, H;, by ¢t = j. Although
it is possible that I; = T, the work in [27] showed that a one-
day lookahead would be sufficient to operate battery systems in
distribution networks. Considering the daily patterns of rooftop
PV systems and residential demand, and the inaccuracy in
demand and PV generation forecast for longer periods, a one-
day lookahead is chosen as the length of the receding horizon.

While the model assumes perfect forecasts, the dynamic
nature of the RHO problem can cause the optimal value of the
decision variables, such as prosumers’ consumption and CBS
(dis)charging power, at a specific time interval to vary from
one receding horizon to another. Note that in each receding
horizon H; starting at j, we only commit the solutions in
the first interval and then repeat the optimisation in j + 1.
Moreover, due to the inter-temporal constraints of the problem,

some of the solutions from the previous horizons need to be
considered in the subsequent horizons as initial state inputs.
For example, the previous battery state-of-charge (SoC), bat-
tery capacity degradation and prosumers’ realised demand are
required in each new receding horizon. The previous battery
information is required to calculate the battery SoC evolution
through time in consecutive receding horizons. The previous
prosumers’ demand is used for the rebound effect constraints.
In most studies that consider the rebound effect, e.g., [22],
[32], the rebound could occur for as long as a day, which
is unrealistic for most household appliances. Hence, in this
paper, we consider a rebound horizon, HX®, shorter than the
receding horizon for which we solve the optimisation, where
H?B CH j-

B. Prosumers’ price-responsive (utility) model

Prosumers’ price-responsive (utility) functions concerning
both the cost of electricity and prosumer (dis)comfort are
widely adopted in the literature [16], [22]. While their models
successfully capture the price responsiveness for each inter-
val, they fail to represent the inter-temporal characteristic of
shiftable loads. For example, consider a horizon with two in-
tervals where A\XT; = $0.5/kWh and ART, = $0.1/kWh. Let’s
assume that AR, is reduced from $0.5/kWh to $0.3/kWh.
Although existing studies would interpret this price reduction
as the signal to increase the consumption of prosumers in
t = 1, this is not in the best financial interest of prosumers
as they can gain greater benefits if they can shift their load
from ¢t = 1 (reducing consumption) to ¢ = 2, as long as
AR, > AT, Therefore, in this paper, the utility function
in each time interval will look for one receding horizon
ahead (i.e., one day ahead) and pick the lowest expected
RT price, ARl , := min{A{'|t € Hj} as a price reference
when calculating the value of the utility function. We also
consider the price elasticity concept for modelling prosumers’
behaviour. As pointed out in many research studies, e.g., [33],
[34], electricity is a commodity with relatively low price
elasticity, |8, < 1, with the lowest price responsiveness
after midnight. As a result, in our model, we consider dif-
ferent price elasticities based on the time period, with the
highest price elasticity happening in peak hours and the lowest
elasticity coefficient during off-peak hours. In addition, unlike
the models in [17]-[19], we avoid the unrealistic assumption
that prosumers will gain positive comfort by increasing their
consumption. This restriction implies that the prosumers’
decision to shift their load is purely driven by economic
purposes, ensuring the effectiveness of the local price changes
in modifying the prosumers’ behaviour. Assume the utility
function for prosumer n as:

Utility = > [MT (Gt — zn) + Clane)] (1a)
tEHj
Tn *i’n n ~ —
C (1) = Amin, (HW) [#n =0 ™, (1b)

where z,, + and Z,, ; represent the prosumers’ original expected
consumption and the adjusted consumption after considering



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON ENERGY MARKETS, POLICY AND REGULATION 5

2

= 0.30{7 ‘

E 1

5 -0.35 1

g :

2 ~0.40 !

o |

. & ‘

0.25 , —-0.45 |
710 15 20 25 3.0 1.0 15 20 25 30
Electricity usage (kWh) Electricity usage (kWh)

(a) Prosumers’ comfort at differ-
ent electricity usage value

(b) Prosumer utility when the RT
price is $0.15/kWh
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load shifting, respectively. The first term in (la) represents
the payment for net electricity generation, and the second
term represents the prosumers’ comfort as described by the
quadratic function in (1b). It can be seen that the prosumers’
comfort function depends on various factors, namely price ref-
erence, expected consumption and time-varying price elasticity
coefficient. Note that the prosumers’ comfort is the opposite
of discomfort. The term [x,, ;—Z,¢]~ in (1b) denotes that the
model only considers negative values from the subtraction due
to the comfort restriction mentioned above. In this formulation,
we aim to maximise the utility function with the highest
payment for electricity export and prosumers’ comfort. Fig.
2a shows prosumer comfort with varying price elasticity
coefficients when #,, = 2 kWh and AR} , = $0.1/kWh.
It can be seen that prosumers cannot gain any comfort by
increasing consumption from their expected demand but will
receive negative values in the comfort function for reducing
their usage. Therefore, shifting loads to different intervals only
decreases the prosumer’s utility. Figure 2b depicts the utility
of prosumers when ART = $0.15/kWh. Since this price is
higher than the lowest expected price in the current receding
horizon, Af" > ARL |, the prosumer may avoid consuming
electricity in this interval and shift their loads to lower-price
periods. Meanwhile, shifting the load to other intervals would
increase the cost at those intervals. Furthermore, the decision
to shift the load only applies to highly elastic prosumers in
this case, as indicated by the green and red lines in Fig. 2b.
This interplay between the multi-period electricity cost, the
prosumer’s discomfort and the rebound effect of shiftable load
highlights the need for an effective pricing scheme to obtain
the required flexibility. Hence, for the local prices, the operator
will introduce MU prices on top of the RT prices to indirectly
regulate prosumers’ behaviour.

C. Battery degradation model

Since the CBS system is an essential component of the
proposed business’ economic viability, it is necessary to con-
struct a comprehensive battery degradation model. This paper
considers the cyclic and calendar battery degradation inspired
by the experimental model in [35] as follows:

' e P
= Z (aT? + 0T +¢) - T+ EZP At,  (2a)

m=1

Q' =100 e R (2b)

As seen in (2a), the cyclic degradation model is nonlinear
due to the multiplication of the exponential function and
the decision variables. However, since ze® is convex for all
x > 0, we may approximate it with a piece-wise linear
(PWL) function [36]. While the coefficients in the model from
[35] show that the battery will reach its end-of-life (EoL)
after seven years if it operates at least one cycle per day at
T = 20°C, we have scaled the coefficients in (2b) to make
the CBS system last ten years before reaching EoL at 70%
of the original capacity. This threshold is chosen based on
the warranty term of many commercial batteries, e.g., Tesla
Powerwall [37].

IV. LOCAL MARKET OPERATION

In this section, we formulate the bilevel optimisation for the
operation of the local market and propose a solution to solve
the problem analytically.

A. Bilevel optimisation problem

The proposed Stackelberg game can be formulated as a
bilevel program in which the leader is the local market operator
responsible for setting the MU prices. The followers are the
prosumers who can shift their loads. The optimisation model
of the bilevel program for receding horizon j is as follows:
Upper Level Problem:

r.%%ﬁipj‘,’l’e — Z Z [()\?T + )\]tvm)(m:zr,t _ x;,t)] B )\peakC

teH; neEN
= B4 BE) =Y AT =Y ANVPRAL (Ba)
teH; teH; teH;
s.t.
MU < MU MY gy e (3b)
> (zne—GY,) + PAt=n —n; Ve Hj, (3¢)
nenN
nf < (At Vte Hj, (3d)
o1 d . ¢
E, = Bt _ T > PRAt+ > PRAt Vte Hj,  (e)
m=j m=j
P, =P - PY vitcH,, (3f)
Ecap Ecap
— e Sh< vt € Hy, (2
SoC E*P (1-Q° —Q") < E, Vvt € Hj, (3h)
SoC B (1-QY°—Q™) > E, Vte Hj, (3i)
EcapEprice cyc _ eye
Bgyc _ (Qt t—l) Yt € Hj, (3-])

1 —EoL
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Lower Level Problem:
%32( Upr,(; Z [(AﬁT )‘MU)(xn t x;t)
teH;
~ AWl + C(zng)] YREN,  (n)

S.t.
gn,t < Tn,t < En,t Vn € N, Vit € HJ, (30)

> wni= Y &ni+Awn; VneN, Gp)
te H® teH®

G+ G, =G Yn€N, VteHy, (39)
r,, <ExpL-At Vn €N, Vte Hj, 3r)
Ty —Ghy =), —x,, VneN,VteH;, (3s)
xnt,xnt, ntvanths >0 VTLEN, thHj, (31)
where ‘Ilpo {xn fvsz—tv 'rLt’GTULf’ }7 wore = {/\MU
Ecap Et» Pt: PtCh, Ptdlsvnt 7nt 7BC)’C Bgal7 §YC7 cal (}UlI,PTO

The upper-level problem is formulated in (3a)— (3m) As seen
in (3a), the objective function of the operator contains six
terms, namely local market profit, peak demand charge for the
whole neighbourhood, cost of battery operation through cyclic
and calendar degradation, cost of procuring electricity from
the utility grid and network usage charge for CBS charging.
The first constraint in (3b) defines the limit for the MU
prices set by the operator in each interval. Note that AMY can
be positive or negative, indicating an increase or a decrease
in RT prices, respectively. Constraints in (3c)—(3d) restrict
the net demand of the local neighbourhood from exceeding
the peak demand threshold. We define the CBS operation
in (3e)-(3i).Note that due to the cost associated with P
in (3a), the optimisation will never find simultaneous battery
charging and discharging an optimal solution [38]. Hence, the
complementarity constraints for P" and PY are unnecessary.
Due to the sequential operation of the RHO and the binding
decision on the first interval, we set the battery’s initial SoC
in j to be the actual SoC of the previous receding horizon as
follows:

Einit _ Ej—17 (4)
where the initial SoC of the sizing horizon (i.e., when j = 1)
is fixed to 0. Constraints in (3h)—(3i) represent the boundaries
of the CBS SoC such that the maximum capacity is reduced
over time due to capacity degradation. Lastly, (3j) and (3k),
respectively, calculate the cost of cyclic and calendar degra-
dation in interval ¢ with respect to the EoL of the battery.

In the lower-level problem in (3n)-(3t), the objective func-
tion is slightly modified from (la) to include the MU prices,
AMU_ We also introduced the network usage charge when
prosumers import electricity, as shown in the second term.
Constraint (30) denotes that prosumers can vary their con-
sumption with respect to their available flexibility. However,
the rebound effect of shiftable loads must be maintained within
the rebound horizon, H}®, as ensured in (3p), where Az, ;
depicts consumption deviation from the first interval of the
sizing horizon, j = 1, up to receding horizon j — 1 as follow:

7j—1

Amn,j = Z (i'n,m - mn,m)- (5)

m=1

Constraint (3q) splits the solar generation into ‘used’ and
‘spilt’ energy due to the export limit enforced by (3r). Lastly,
we represent the prosumer’s net demand in (3s).

B. Casting the bilevel model into a single-level problem

Analytically, the bilevel problem can be converted into
a single-level Mathematical Program with Equilibrium Con-
straint (MPEC) by applying the strong duality theorem [36].
Conversion to MPEC ensures that the solutions obtained are
the Stackelberg equilibrium [39]. However, since the comfort
function in (1b) is quadratic, a bilinear term will emerge in the
model from the dual of the lower-level problem, making the
problem intractable. To address the issue, we first linearise the
nonlinear terms using PWL approximation. Then, we apply the
strong duality theorem to convert the lower-level problem in
(3n)—(3t) into a set of constraints for the upper-level problem.
Interested readers can refer to Appendix A and Appendix B for
the formulation of the PWL approximation and strong duality
theorem on the lower-level problem, respectively.

V. SOLUTION FOR OPTIMAL CBS CAPACITY AND PEAK
DEMAND THRESHOLD

As mentioned in subsection III-A, the RHO must be solved
sequentially, restricting the ability to find the optimal CBS
capacity and peak demand threshold in a single optimisation
for the length of data. Thus, we need to examine different value
combinations of CBS capacity and peak demand threshold
iteratively, emphasising the importance of finding the opti-
mal solutions in fewer iterations. Benders decomposition was
proposed in [27] to increase the computational efficiency of
the battery sizing problem by reducing the number of itera-
tions required to reach the optimal battery capacity. However,
implementing the decomposition technique requires linearity,
which is not the case in our model due to the nonlinearity
of the bilevel program. This is due to the multiplication of
MY and (z; wi—T, ) in (3a) and (3n) although note that (3n)
has been replaced with constraints derived from the strong
duality theorem. A common method to resolve nonlinearity
in the bilevel program is to transform the MPEC to a mixed-
integer linear programming (MILP) problem by discretising
one of the variables, i.e., discretising /\ItvIU in our model
[36]. However, the introduction of binary variables once again
restricts the use of Benders decomposition. In this paper, we
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utilise McCormick envelopes to relax the bilinear terms during
the planning stage [40]. Once the optimal planning variables
for the two mentioned strategies are obtained, we re-run the
local market model with the MILP reformulation to calculate
the ground truth cost of the system.

A. McCormick envelopes

Using McCormick envelopes, we can replace the bilinear
terms, AM'U(z;}, — 2, ,), in (3a) with two new variables z,
and z,, and eight new inequality constraints [40]. Specifi-
cally, each added variable is bounded below by two convex
envelopes and bounded above by two concave envelopes of
the bilinear terms. The resulting regions bounded by those

envelopes are the convex hull of these two sets:

Dy ={(z},, Y, 2},) € R3(3b),0 <z}, < Ty,

n B2 ) n t
Z;;t = )‘ltVIUxi,t}a (6a)

Dit_{( nt7 MUa nt)€R3|(3b) 0<(E <EXPLAt,
2y = )\]tVIUa;;}t}. (6b)

Remark. Since McCormick envelopes are exact if any of the
inequalities in (6) and (3b) are binding [41], the solutions
for the local market operation during the planning stage (i.e.,
including the McCormick envelopes) often match the exact
solutions obtained by the MILP model in the operational stage,
which is executed to calculate the ground truth cost and ensure
the accuracy of relaxation. Specifically, during the night with
no solar energy, we can usually see that A\MY v
to maximise the operator’s profit.

increases to \,

B. Benders decomposition

Since the local market model is linear after the McCormick
relaxation, we can implement Benders decomposition. In (3),
the complicating variables are the battery capacity EP and
the peak demand threshold ¢, which must be determined once
for the whole sizing horizon. Therefore, we can divide the
problem into a planning stage, where we determine the values
for E? and (; and an operational stage, where we sequentially
solve the RHO while keeping E°P? and ( as constants. In this
case, the planning stage is the Benders’ master problem.

1) Master problem: For each iteration 7, the master problem
is formulated as follows:

mas(i) _ (i) _ ypeak ~(i) _ pcal(d)
Ecﬂp('ir)[}g%a(i) @ A C Bt:TC7 (73.)
S.t.
al® < Q' (7b)
OZ(Z) <T° [ ng) + T(gk) (Ecap(i) N Ecap(k))
+01(CO (W) WkeRi-1, (9

where « represents the proxy of the sub-problem objective
values. Since we only have the data for one year, we scale
the sub-problems’ results by 7°°. The parameters Tgk) and
@gk) are calculated as the weighted sum of the dual variables

associated with equality constraints for E°? and (, respec-
tively, in all receding horizon sub-problems. Similarly, ng)
illustrates the weighted sum of the sub-problems’ objective
values. Constraint (7b) introduces an upper bound for « for the
first iteration (i.e., ¢ = 1). For subsequent iterations, Benders
cuts are generated via (7c).

2) Sequential sub-problems: The sub-problems represent
the operational stage of the local market under RHO setting.
Thus, the planning variables are fixed via equality constraints
to obtain their associated dual variables. Note that instead of
solving the sub-problems in parallel, we need to solve them
sequentially due to the coupling nature of RHO [27].

Proposition 1. For a given planning solution (E°®(®) (1)
obtained from the master problem in iteration i, the peak
demand threshold constraint in (3d) is not always guaranteed.
That is, there exists t such that nf > (At.

Proof. Since Eq. (3d) is not considered in the master problem,
both of the planning variables (E<**(*) ¢()) might be zero in a
certain iteration. Because z,, ; cannot be reduced below Ty 1o
which can only take non-zero values, we will have nt > 0.
As a result, (3d) is violated. O]

Due to Proposition 1 and the utilisation of Benders decom-
position and McCormick envelopes, the local market model in
(3), which represents one sub-problem, is modified as follows:

sub _

max B = 3 3 M (e — )] + 2l — 2

teH; neEN

— Z B¢ )\}}Tnj + A;’NWPtht + )\ilnil), (8a)
tEH;

s.t. (3b)—(3¢), (3e)—(3)), (31), (6), (8b)
Strong duality theorem for (3n)—(3t), (8¢c)
nyt —nt < (At Vte Hj, (8d)
EP — Ecap( i) . T; )7 (86)
¢=¢9: e, (80

where n® is the new ‘slack’ variable to prevent the sub-
problem from being infeasible due to the peak demand con-
straint in (3d). Thus, we modify (3d) as in (8d) and introduce
a penalty coefficient \§' in (8a). We also replace the bilinear
terms in (8c) with z:{ cand 2z,

We use Algorithm 1 to find the optimal planning variables
using Benders decomposition. Although the RHO only imple-
ments the dispatch decision in the first interval, the objective
value in (8a) and the dual variables in (8¢) and (8f) are
representatives of the whole receding horizon H;. This means
that before passing these parameters to the master problem,
we need to assign weights to them as follows:

o Lo o T( 7| 9(
B — J T — J J
=2 |Hy| 7 ° JZ H,| Z; H;| ©)

j=1
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C. Operator’s profit calculation

As previously mentioned, upon obtaining the optimal plan-
ning variables from Benders decomposition, we will re-run
the local market model as a MILP problem and calculate the
operator’s profit considering only the first interval of each
receding horizon as follows:

17|
pope — Z Z /\RT )\MU (xz,t:j _x:z,t:j) _Brclom] _ B
j=1neN
17| _
_Z ()\RT nt - + AONWPtCh ) _ )\peakg _ EcapEprlce’ (10)
where ¢ = j denotes the first interval of each receding

horizon Hj, and B*" depicts the fixed daily supply charge
in [2]. The term B;™ € R, represents the compensation
costs of the prosumers due to the Bill Guarantee scheme
mentioned in section II, in which the operator compensates
a few prosumers that have an increased cost under this model.
The compensation can be determined by the operator via a
constraint as follows:
7|

RT MU +
Z[()‘ +)\ )( nt =3 mn,t:j)] +B7C’L()m ZAn
j=1

Vn € N, (11

Remark. The operator can ensure Bill Guarantee for each
prosumer by setting A, equal to the expected bill of the
prosumer from another electricity retailer. In this paper, we
assume that prosumers can choose from a retailer that only
passes RT prices to prosumers. However, they must pay for
peak demand charges and a daily fixed charge, similar to the
electricity plan offered by Amber Electric [29].

Algorithm 1: Benders decomposition algorithm

initialization: set o"? — +o00; set € > 0; set ¢ = 1; set
UB® — +00; set LB — —00;

repeat

Solve master problem (7);

[Ecap(i)) ¢, Oé(i)] = arg max Bmas(i).

for j=1:|T| do
Solve sub-problem (8);
[Et=j,Piej,Zn 1=; ,Tgl), 9; |=arg max B;
Calculate the coupling variables in (2), (4) and

(5) and pass them to the next RHO;

sub(¢ )

end
Calculate B(gk), Tgk), @2’“) using (9);

UB(® = (i) — ypeak (i) _ B:j‘(TZ)
LB(i) _ B(E.i)Te _ /\peakg(i) __Bfazl(zfl’
1=1+1;

until [UB® — LBY| < ¢;
output: F%P* (*

VI. SIMULATION STUDY

In this section, we demonstrate the benefits of our proposed
framework for all stakeholders (i.e., prosumers and the local

TABLE I: Price elasticity coefficient values

Off-peak Shoulder Peak

Price elasticity | [—0.15, —0.25] | [-0.4, —0.6] | [—0.85, —0.95]

TABLE II: Battery data and simulation parameters

Battery data Simulation inputs

T 90% | At 0.5 hours
SoC, SoC 0%, 100% | AMY, X" —10,10 ¢/kWh
EoL 0% | ., Tn 0.58n.¢, 1.5dn.,
T° 2 hours | ExpL 5 kW
T° 10 years | |Hj| 48 (24 hours)
Fpprice AUD$900/kWh | |H}®| 12 (6 hours)

market operator). We run the models on real-world data and
compare the results with existing business models.

A. Simulation setup

1) Prosumers profile: From the Solar Home dataset [42],
we randomly selected 125 prosumers (households) in NSW
with half-hourly gross solar energy and electricity consump-
tion in 2012. Since the average rooftop solar PV capacity has
grown significantly in recent years [43], we scaled up the
solar energy profiles of all prosumers four times uniformly.
Although all prosumers in our dataset have rooftop solar PV
systems, a recent report [44] shows that slightly more than
30% of Australian households are equipped with rooftop solar
PV. Therefore, we removed solar energy from 84 (67%) pro-
sumers to make a realistic case. The average rooftop solar PV
capacity of the remaining prosumers is 7.65 kWp. We selected
the first week of each season (28 days) for our simulation
study to save computation time while considering seasonality
and variability in prosumers’ behaviour and PV generation.
As noted in subsection III-B, the prosumers’ price elasticity
varies depending on the time of day. Therefore, we adopted
three-time bands and randomly assigned the coefficient values
to each prosumer using a uniform distribution. Table I shows
the ranges for price elasticity for each prosumer, where the
time window is specified by the DNSP in NSW [2].

2) Electricity prices and charges: Although the prosumers’
profiles are from 2012, we chose NSW RT prices from June
2021 to July 2022 (commensurate to the month range of
the prosumers’ profile) for our study to represent current
RT prices [28]. According to [2], network tariffs are defined
differently for different customers in the distribution network.
Specifically, we assume prosumers are subject to the tariff code
EA116 while the operator is exposed to the tariff code EA380
in NSW [2].

3) Battery data and simulation parameters: In this study,
we reference our battery cost from [45]. We summarised the
battery and other simulation parameters in Table II. The op-
timisation problems are solved using Gurobi® 9.0 for Python
on an Intel Core i7 at 2.00 GHz CPU with 8 threads.

B. Simulation results

1) Optimal CBS capacity and peak demand threshold: As
mentioned in section II, applying the MU prices is neces-
sary to motivate prosumers’ behaviour change during critical
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Fig. 3: Benders decomposition convergence rate for obtaining
optimal CBS capacity and peak demand threshold

peak hours. Therefore, to demonstrate their effectiveness in
reducing maximum peak demand, we run the optimisation
with and without the MU prices. The scenario without MU
prices represents the existing model, where only RT prices are
passed on to local prosumers [29], [46]. Figure 3 demonstrates
the convergence rate to obtain the optimal CBS capacity and
peak demand threshold when considering MU prices. It can
be seen that the algorithm requires 20 iterations to reach the e-
gap for the upper and lower bounds as specified in Algorithm
1. Each iteration takes approximately 1.5 hours to complete.
Similarly, the algorithm takes the same number of iterations to
converge for the case without MU prices. After obtaining the
planning solutions from the Benders decomposition algorithm,
we analyse the economic viability of the operator as discussed
in subsection V-C. A summary of the results is given in Table
III. The findings indicate that the peak demand threshold in our
proposed local market model (With MU) is 9% lower than that
of the existing methods (W/o MU) [29], [46]. Additionally,
this result is achieved with a 41% smaller battery, highlighting
the efficiency of implementing MU prices. The smaller battery
also results in a shorter payback period (34% reduction),
calculated based on (10). This is done using the optimal CBS
capacity and the peak demand threshold obtained in the MILP
problem in which AMY is discretised. To analyse the optimality
of the solution obtained from the McCormick envelopes (With
MU), we performed a local search around this solution. We
found an optimal solution with a CBS capacity of 145 kWh
and a peak demand threshold of 174 kW. The profit from
this solution is just 1.9% higher than that achieved using the
McCormick envelopes. However, it outperforms the W/o MU
result by a significant 21%. Lastly, as mentioned in subsection
II-C, we expect the CBS lifetime to be ten years if it cycles
once per day. However, we observed that the CBS system
could charge/discharge more than one cycle on some days.
Despite this, we see that the expected lifetime is still close to
ten years in both models.

TABLE III: Optimal planning variables and economic analysis

Models Battery Peak Payback Expected
capacity  threshold period lifetime

W/o MU | 220 kWh 195 kW 53 years 9.8 years
With MU | 130 kWh 177 kW 3.5 years 9.5 years

2) Local electricity profiles: Fig. 4 shows the local energy
and pricing profiles of the MILP model with MU prices. The
results are chosen from a weekday in January, which contains
the highest peak demand in the given dataset. As shown in
Fig. 4a, the local net demand is capped at the peak demand
threshold, ( = 177 kW. This threshold is well below the
original net demand of 286.5 kW, showing a decrease of
109.5 kW (38%). Furthermore, our proposed model results
in an 85.6% reduction (289.7 kWh) in the cumulative reverse
energy flow between hours 8:00 to 14:00. Note that we already
consider the solar energy spilt in the original net demand due
to the export limit, which was 138.7 kWh in total for the
day. However, this aggregated spilt solar energy is reduced by
20.9 kWh (or 15%) in our local market optimisation model, as
shown in Fig. 4b. This reduction can be attributed to the boost
in self-consumption (resulting from load shifting) of local
prosumers. In Fig. 4b, we can see that most of the exported
electricity from prosumers is used to charge the CBS. Then,
the CBS is used to keep the local net demand below the peak
threshold by discharging from 20:00 to 23:00.

Regarding the electricity prices in Fig. 4c, we can see that
the operator increases the local prices to the upper bound dur-
ing the night to maximise its profit. However, with the excess
solar generation during midday, the local prices are usually
lower than the RT prices to encourage higher consumption
by prosumers. Hence, the dynamic changes of local prices
unlock higher flexibility of prosumers’ consumption, leading
to lower reverse power flow and peak demand in the network.
As the MU prices increase to the upper bound, the results from
McCormick envelopes become exact (optimal), as discussed in
the Remark in subsection V-A. In particular, we observe that
the constraints in (6) and (3b) are binding for approximately
78% of the simulation intervals. Additionally, the accuracy of
McCormick envelopes is heavily influenced by the tightness of
the feasible region [41], which is adequately constrained in (6)
and (3b). For this reason, we expect that the values obtained
in Table III closely approximate the globally optimal result.

3) Impact of load rebound: This can be observed in the
variation of the MU prices in Fig. 4c. In particular, when
solar energy decreases significantly at around 16:00, leading
to positive net demand, local prices are still below RT prices
to incentivise prosumers to increase their consumption and
avoid consuming electricity during the evening peak demand
hours. The MU price also plunges at 23:30 as a signal to
prosumers to shift their load to this interval. The impact of
the short rebound window is highlighted in Fig. 5, where
we look at the expected and realised local consumption at
12:00 on the same day as in Fig. 4. Specifically, the figure
shows the local consumption observed at five consecutive
receding horizons prior to the realised consumption interval.
It can be seen that the expected local consumption varies,
even though the model considers perfect forecasts for the price
and solar PV generation. This is because, while our approach
considers one-day lookahead for each receding horizon, the
rebound horizon is much shorter (it is a six-hour window).
Consequently, in the receding horizons starting far before
noon, such as 09:30 and 10:00, the prosumers’ utility model
finds that it is unnecessary to perform load shifting given the
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Fig. 6: Average electricity payment per prosumer per day

electricity prices in the next six hours. As a result, the expected
consumption for noon remains unchanged from the original
consumption. However, as the model approaches noon, it
considers the generation and consumption forecasts for the
late afternoon when electricity prices are expected to increase,
i.e., higher RT prices and network usage charges. Therefore,
expected consumption at noon increases to facilitate a decrease
later in the afternoon. Consequently, the variations in expected
consumption highlight the impact of quick load rebound and
the need to update the expected CBS (dis)charging power at
different receding horizons.

4) Prosumer electricity payment: Despite the high MU
prices in many intervals, prosumers’ electricity payment re-
mains low because of the reduced spilt solar energy and
the utilisation of demand-side flexibility. Fig. 6 shows the
average electricity payment per prosumer per day in four
seasons, where the green bars represent the payment using the
proposed price-responsive model. To show the effectiveness
of the proposed model, we compare it with two other models.
The first model, referred to as the ‘literature model’, represents
an existing price-responsive model in the literature, which
inadequately captures prosumers’ behaviour under the RT
price fluctuations [16], [22]. To represent this model, we
replace the AN[ ; in (1b) with AY" and allow prosumers to

‘gain’ comfort for increasing consumption as in [17]-[19] by

(b) Local market dispatch

(c) Comparison of RT and local prices

Local market operation of a weekday in January

replacing [z, 1 — &y, ]~ With (2t —&n¢). The results for the
literature model are represented by the grey bars. The second
model is a business model similar to that of Amber Electric.
The red stacked bars in Fig. 6 represent the payment when
prosumers are not price responsive and only pay with RT
prices. In addition, they have to pay for the peak demand
charge referenced from the tariff code EA116 in [2], and a
daily fixed charge of AUDS$0.5/day, as referenced from Amber
Electric [29]. In this study, we assumed a billing period of one
year and already considered the Bill Guarantee mentioned in
subsection V-C when calculating the annual average electricity
payment in the proposed and literature models. Note that the
reference for Bill Guarantee is by comparing with the payment
each prosumer made under the business model of Amber
Electric. If prosumers pay more under our proposed model or
the literature model, we compensate them accordingly. In our
proposed model, 14 prosumers (11%) required compensation.
This indicates that those 14 prosumers had the same electricity
bills as they would when participating in Amber’s model,
whereas the rest of the prosumers (111 prosumers) strictly paid
less when participating in the local market with our proposed
price-responsive model. Essentially, the losses incurred by
those 14 prosumers come from the MU prices imposed on
top of the RT prices. To ensure that all prosumers benefit
positively from the proposed scheme, the local market operator
can reduce the upper bound of the MU prices. This comes at
the expense of a lower profit for the CBS owner. As a result,
the best MU price cap will depend on the strategic priority of
the local market operator: maximising profit through a higher
MU price cap or attracting more prosumers by lowering this
cap. However, setting it too low may hinder the effectiveness
of MU prices in regulating prosumers’ behaviour. Therefore,
it is crucial to find a balance in determining the MU price
cap and it stands as a strong candidate for future research.
Under the chosen MU price cap, prosumers can decrease their
annual electricity bills by 24% on average. Whereas, under
the literature model, 39 prosumers (31%) were financially
compensated by the local market operator, mainly due to the
high payment in autumn. During this season, RT prices were
the highest and prosumers under the literature model were
less responsive to price fluctuations while also trying to gain
comfort from increasing consumption. Overall, the proposed
price-responsive model outperformed the existing models,
demonstrating the effectiveness of local market participation
and the importance of accurately characterising prosumers’
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behaviour under the RT price fluctuations.

VII. CONCLUSION

In this paper, we proposed a price-responsive model for
prosumers that adjusts their behaviour with respect to price
fluctuations and the discomfort caused by load shifting while
considering the time-constrained load rebound effect. More-
over, the formulation incorporates other practical features,
including the residential export limit and network charges, to
provide a realistic and comprehensive optimisation model. To
reduce electricity bills for the local electricity community, we
introduced a cost-effective framework for sizing and operating
the CBS. The framework operates under the RHO regime and
allows for efficient management and control of the maximum
peak demand, ensuring that it remains below an optimal
threshold and eliminating peak demand charges for local
prosumers. Using the price-responsive model, the CBS owner,
which also acts as a local market operator, can anticipate
prosumers’ behaviour and optimise the CBS (dis)charging
power and the MU prices to maximise profit. The simulation
results from real-world data of 125 prosumers show that both
the CBS owner and the local prosumers can financially benefit
from the proposed framework while also helping to reduce
the peak demand of the local community. Future work could
focus on adding local prosumers’ stochastic behaviour and the
provision of other services, such as ancillary services from
CBS.

APPENDIX A
PIECE-WISE LINEAR APPROXIMATION OF THE COMFORT
FUNCTION

As mentioned in subsection IV-B, we want to solve the
bilevel program analytically by applying the strong duality
theorem to the lower-level problem. As such, we need to
linearise the quadratic comfort function using piece-wise linear
approximation. Since the comfort function C(x,, ;) is concave
with respect to x,,; [47], we can reformulate the lower-level
problem in (3n)—(3t) as follows:

max Uy = 3 {(A?T M)y — ) = NN
teH,
+C(z, )+ Sw,n,txw,n,t] YneN, (12a)
wew
S.t.
Tog =T+ Y Twmtt Yy YnEN, VEEH;,  (12b)
weWw
f”vt — Lt
Tomt S —room ¢ Mgt (12¢)
[

YVwe W, Vn e N, Vte Hj,

D wni= > dni+ A on Yn €N, (12d)
teHR® teHs®
Gy 4Gy =Gyt 6,y YneN,VteH,, (12¢)

z,, <ExpL-At: 0,; Vné€ N, Vte Hj, (121)
Tni—Ghy = x:7t7x57t tdpr VnEN, Ve Hj, (12g)
Tng, ) @y, Ga Gy, >0 YneN, VteH;,  (12h)
Tont >0 YweW, VneN, Vte H (12i)
where WL° = {z, ¢, 2 2 1 T, Gy, G b w € W

denotes the segments in the piece-wise linear model of the
comfort function and S, ,, ; depicts the slope of each piece-
wise linear segment. We denote the dual variable for each
primal constraint on the right-hand side of the colon.

APPENDIX B
APPLYING STRONG DUALITY THEOREM ON THE
LOWER-LEVEL PROBLEM

With the linear reformulation of the lower-level problem, we
can apply the strong duality theorem to convert the lower-level
problem into a set of constraints of the upper-level problem

as follows:
5 O A = )+ St
weW

tcH;
— AN :ﬁ} =y {xn,ﬂn,t + Gntbn s +ExpL- At oy,

teHj
() (s
wew teH:®

Vn € N, (13a)
Constraints (12b)—(12i), (13b)
Ynt+On+0pe >0 2, VnEN, VtEH?B, (13¢)
Yt +Ont >0 xny VYneN, Ve H;\ Hy®, (13d)
Yot + wongt = Swnt i Twn,t (13e)

Ywe W,Vn e N, Vte Hj,

~Ong = =M= NN L gt Ve N, Ve H, (13f)
Snt+0ne >Nz, Vn€N,VteH,, (13g)
Ont —0ne>0: Gy, VneN,Vte Hj, (13h)
One>0: G, VneN, Vte Hj, (13i)
one >0 VYneN, Vte Hy, (13j)
Hont >0 YweW, Vne N, Vte H (13k)

where the constraint in (13a) represents the zero optimal dual-
ity gap between the primal and dual objective functions [48],
while constraints in (13¢)—(13k) represent the dual constraints
for each primal variable.
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