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Abstract

As one of the most promising large-scale energy storage technologies, vanadium redox flow battery (VRFB) has been installed glob-
ally and integrated with microgrids (MGs), renewable power plants and residential applications. To ensure the safety and durability
of VRFBs and the economic operation of energy systems, a battery management system (BMS) and an energy management system
(EMS) are inevitable parts of a VRFB-based power system. In particular, BMSs are essential to conducting efficient monitoring,
control and diagnosis/prognosis functions with the help of a feasible and comprehensive battery model. Considering the application
of a VRFB is normally integrated within a grid-level system, an EMS is required to operate the entire system in coordination with
the BMS optimally. Several papers have reviewed the design and modelling of VRFB recently. However, the BMS and EMS in
VREFB applications have received limited attention in the literature. This review article introduces the principles, applications, and
merits of VRFBs and presents a critical review of the state-of-art VRFB modelling techniques related to BMS and EMS operation.
More importantly, the state-of-the-art BMS for VRFBs is reviewed by taking the unique design of the VRFB systems into account,
and recommendations are given for future development. Finally, several VRFB EMSs are discussed to illustrate their importance
in improving the stability and reliability of grid-level power systems.

Keywords: Renewable energy, vanadium redox flow battery, battery modelling, battery management system, energy management
system.
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1. Introduction

Due to the rapid growth of renewable energy sources (RES)
in recent years in response to policies and actions against cli-
mate change, the amount of energy produced by RES has
grown exponentially [1]. While RES offer competitive advan-
tages over alternative energy sources, such as low production
cost, abundance, sustainability and environmental friendliness.
However, they are weather dependent; thus not always avail-
able, and it is difficult to accurately predict their output at dif-
ferent timescales [2]. Moreover, electricity grids have become
vulnerable due to the intermittent generation and undispatcha-
bility of RES, which decreases their stability and reliability in
electricity distribution [3]]. Thus, an electricity grid with a large
share of RES requires more flexible resources to compensate
for variability at different timescales.

One popular and promising solution to overcome the above-
mentioned problems is using large-scale energy storage systems
to act as a buffer between actual supply and demand [4]. Ac-
cording to the Wood Mackenzie report released in April 2021
[[1], the global energy storage market is anticipated to grow 27
times by 2030, with a significant role in supporting the global
energy transition to green and sustainable energy. Depending
on the application, various energy storage technologies can be
deployed, e.g., flywheels for short-term applications and hydro-
gen for seasonal variability applications. Therefore, integrated
RES and large-scale energy storage systems are necessary to
operate and maximise the efficiency of an electricity grid with
high amounts of RES [5]]. Among various types of energy stor-
age systems, large-scale electrochemical batteries, e.g., lithium-
ion and flow batteries, are finding their way into the power sys-
tem, thanks to their relatively high energy density, flexibility,
and scalability [6]. Different battery technologies are proven
suitable for various power system applications, mainly includ-
ing lithium-ion batteries, lead-acid batteries, redox flow batter-
ies, sodium sulphur batteries, etc. Among these batteries, the
vanadium redox flow battery (VRFB) is considered to be an ef-
fective solution in stabilising the output power of intermittent
RES and maintaining the reliability of power grids by large-
scale, long-term energy storage capability [5].

The VRFB was first developed in the 1980s and has been
commercialised in the past 10 years [7]. The VRFB is
more flexible in capacity expansion and design compared with
lithium-ion and lead-acid batteries by increasing the volume of
electrolytes and the electrode size. Moreover, VRFBs offer a
longer lifespan, simpler structure, deep cycling, and low degra-
dation. In terms of structure, VRFBs are made of several re-
placeable components, which result in a low operational and
maintenance cost after setting up. All the above-mentioned ad-
vantages make the VRFB a practical and competitive solution
for coupling with intermittent RES in microgrids (MGs) and
renewable power plants [8]. In the last decade, several trials
around the globe have demonstrated the capabilities of VRFBs
as reliable and efficient energy storage systems (ESSs) within
power grids with single or multiple RESs [9, 10} [11}[12]. More-
over, large-scale VRFBs have been installed worldwide with
capacities from a few 100 kWh to several MWh [13]. For in-

stance, a 200 kW/800 kWh VRFB was installed in a power sta-
tion in Japan for load-levelling, which was the first medium-
scale VRFB field trial [14]. The trial has shown the extraordi-
nary performance of the designed VRFB stacks without having
any performance degradation after 12,000 cycles and achieved
an overall efficiency of 80% [14]. In 2005, Sumitomo Electric
Industries (SEI) installed a 4 MW/6 MWh VRFB at the Toma-
mae wind farm in Hokkaido to smooth the turbine output power
and to increase wind farm reliable operation, where the battery
experienced 200,000 cycles [14} [15]. A review of medium- to
large-scale VRFB installations is provided in [14] that contains
information from 2001 to 2012 collected from Japan, the USA,
Denmark, China, Indonesia, India, and Netherlands [14]. With
the rapid acceptance of the technology by the power industry,
large-scale VRFBs are becoming more popular. China is lead-
ing on that front with the recent installation of 200 MW/800
MWh and 100 MW/ 500 MWh VRFBs in the city of Dalian and
Hubei province, respectively, [16,[17]]. Figure[|shows a global
map of medium- to large-scale VRFB installations worldwide
until May 2019. It is evident that the commercial sector realised
the potential of VRFBs in various power system applications,
including energy shifting, peak shaving, and power arbitrage
[14].

Nevertheless, compared to lithium-ion batteries, VRFBs
have lower energy density, lower round-trip efficiency, higher
toxicity of vanadium oxides and thermal precipitation within
the electrolyte [2| [19]. To address these issues, fundamental
research has been carried out on the battery working princi-
ples and internal chemical processes to enhance the materials,
design and operation of VRFB’s core components, e.g., elec-
trolyte, electrode, membrane material and stack design. Many
publications have demonstrated new research outcomes in the
material selection and design of VRFB, which aims to enhance
the overall efficiency, energy density and flexibility in opera-
tion. Interested readers are referred to [20, 21} 22|, 23l 24, 25]]
on the study of advanced membranes, [26]]-[27] on recent devel-
opment of commercial membranes, [28} 29, 30, 31] for studies
on new electrode materials, and [32, (33} 134] on new electrolyte
compositions. However, these studies focused on improving the
performance of VRFBs in the design and manufacturing stages.
Still, more advanced strategies and controllers are necessary
to adapt to the operational requirements of different applica-
tions while enhancing overall efficiency and reducing operation
and maintenance costs. Moreover, simulations and laboratory-
based experiments on VRFB cells are important to accurately
predict large-scale VRFB operation and allow in-depth analy-
sis of the improvements of different materials [7]]. Currently,
simulation models of VRFB are used to estimate and monitor
the system states and allow automated control during operation.
These controllers are designed to improve the long-term stabil-
ity and efficiency of VRFB systems, considering the hydraulic
system pressure drop through flow rate optimisation, charge
current optimisation, temperature management, and electrolyte
rebalancing techniques [35,361137,38]]. Equivalent circuit mod-
els (ECM), electrochemical models (EMs), hybrid models and
Al-based battery models are the four categories of models de-
veloped by researchers throughout the last decade or so.
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Figure 1: Global VRFB installations map from VANITEC - last updated on 30/04/2019 [18]

As with any battery technology, VRFBs require a suitable
battery management system (BMS) that takes into account
the properties of the battery and operates it in the most cost-
effective and reliable fashion [39]. A BMS normally con-
sists of various sensors, actuators, controllers, signal proces-
sors and smart operational algorithms to ensure the battery’s
safe operation and enhance the system’s efficiency and reli-
ability. Tremendous efforts have gone into developing BMS
for lithium-ion batteries. However, only a few papers and re-
ports have been published on a detailed BMS design and bat-
tery management scheme for VRFBs. As indicated in [40], de-
spite many studies and extensive reviews of papers on VRFBs
that have been published in recent years, the literature on en-
gineering aspects of VRFBs management and operation is lim-
ited. In [41]], an industry-scale VRFB (IS-VRFB) is proposed
to fulfil this research gap with a detailed description of the hard-
ware and software implementation of a VRFB-BMS. However,
this study does not provide information about the battery man-
agement operational algorithm. Additionally, considering the
VRFB application in MGs, RES plants etc., where the VRFB is
a part of a larger system, the uncertainty, intermittency and un-
predictability of a complex power system and their impacts on
the VRFBs operation and performance must be studied [42]. In
this case, energy management systems (EMSs) are developed
to handle the supply and demand requirements while consid-
ering the system constraints to achieve a sustainable and reli-
able operation of MGs and other power systems under set ob-
jectives [43]. Unlike the VRFB-BMS, which only considers
the battery, an EMS takes the whole power system into ac-

count to make the best decisions based on cost and benefits
while considering the physical limits of the system and equip-
ment and reliability. Different EMSs have been developed in
[44. [45] [46] [47, [48] [49] using different exact and metaheuristic
optimisation techniques for islanded and hybrid MGs, which
showed improvements to increase the stability and economic
benefits. However, the main focus of these studies is man-
aging the entire system; thus, they do not give enough atten-
tion to the VRFB requirements and physical limitations, e.g.,
thermal precipitation of vanadium species, vanadium ion im-
balance and hydrogen evolution, which deteriorate the perfor-
mance of VRFBs [30]. It can be seen that more research and
developments considering the practical limitations of VRFBs
are needed to establish a comprehensive BMS that aligns with
EMS operations aiming to maximize VRFB efficiency. This is
critical to mitigate risks at the battery level and to operate the
system most cost-effectively.

This review paper is organised as follows: a brief introduc-
tion to VRFB design and operation is presented in Section [2]
Then, different applications of VRFB are introduced in this sec-
tion, and the challenges of developing VRFB are identified. In
Section 3] the importance of VRFB modelling and a review
of mainstream VRFB modelling techniques are presented and
analysed. Sectionelaborates on the VRFB-BMS scheme with
seven functionalities to properly manage the battery operation.
Current VRFB-BMSs are reviewed, and advanced techniques
are recommended to improve their performance. Finally, in
Section [5] several VRFB-related EMS are reviewed, and the
importance of EMS for power systems is emphasised. A coop-



erative BMS-EMS scheme is proposed to ensure the sustainable
development of a power which contains VRFBs.

2. Overview and applications of VRFB

2.1. VRFB overview and working principles

The VRFB is commonly referred to as an all-vanadium redox
flow battery. It is one of the flow battery technologies, with at-
tractive features including decoupled energy and power design,
long lifespan, low maintenance cost, zero cross-contamination
of active species, recyclability, and unlimited capacity 511 [13].
The main difference between flow and solid-state batteries is
that the electrolyte is stored in the tanks in the VRFB. The
electricity is produced from chemical reactions within the elec-
trolyte. As shown in Fig. 2] the VRFB normally contains two
separate electrolyte reservoirs (tanks). These two reservoirs
store vanadium solutions with four different oxidation states (
V2, V3, VO [same as V#*] and VO [same as V>*]) with
the benefits of having single electromotive element. The posi-
tive side refers to the positive electrode and tank with VO?>* and
VOJ ions, while the negative side refers to the negative elec-
trode and tank with V>* and V3*.
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Figure 2: A schematic diagram of a typical VRFB system

The electrolytes are stored in the reservoirs, transferred
through the pipes into the half-cells, and returned to the reser-
voirs for re-circulation [52]]. Each half-cell comprises an elec-
trode with a bipolar plate, the redox species react on the elec-
trode, and the current flows through the bipolar plate. The two
half-cells are separated by an ion-exchange membrane to con-
duct supporting vanadium ions in the electrolyte and to prevent
the transfer of the redox-active vanadium ions to prevent elec-
trolyte cross-contamination [53]]. The battery stack has multiple
cells in an array, and adjacent cells share a bipolar plate. The
number of cells determines the rated power of the VRFB [2].
The overall cell reaction is given in (), with the positive cell
reaction and negative cell reaction in (2) and (3).

2+ 3+ Charge + 2+ + 0
VO™ +V7"+H,0 <= VO;+V7+2H", E =126V
Discharge
ey

2+ Charge + + - 0
VO™ +H,0 <= VO;+2H +e, E; =10V (2

Discharge
Charge
V3 e B V¥, E’=-026V (3)
ischarge

In Fig. 3] a description of the VRFB is adapted from [2] to
illustrate the ion species behavior during charging and discharg-
ing process. During the charging process, V3* and V*#* are con-
verted to V>* and V2*. Thus, chemical energy is converted to
stored energy in the battery. During the discharging process, the
V3* and V2* are converted to V3* and V**, where the chemi-
cal energy converts to electrical energy through current flow
(see Fig.[2). The function of the membrane facilitates the diffu-
sion of H* ions between the two half-cells while preventing the
cross-mixing of the electrolyte stored in positive and negative
half-cell [54].
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Figure 3: (a) Charging and (b) discharging process description of VRFB
adapted from [2]

Different types of advanced VRFB membranes have been
evaluated in laboratory tests [20} 21} 22} 23], 24] 25]. These are
still expensive and may not be suitable for commercial appli-
cations. Several commercial membrane technologies are also
evaluated in [26] 27]. Some of these have low permeability
to the vanadium ions, which aggravates the vanadium ion dif-
fusion [50]]. This will lead to self-discharge reactions, signifi-
cantly impacting the usable capacity. In this phenomenon, the
vanadium ions are consumed without releasing electrons. This
capacity loss associated with ion diffusion and side reactions is
one type of internal loss caused by chemical reactions.

Overall, battery losses will lead to efficiency reduction, ne-
cessitating the study of losses and the development of appro-
priate loss models for VRFBs, particularly for optimisation and



Table 1: VRFB losses and influencing factors

Losses

Pump system
loss

Cooling sys-
tem loss

Ohmic loss

Crossover

loss
Mass

port loss
Activation

loss
Shunt current

loss

trans-

Hydraulic
loss (pressure
drop)

Definition

The energy losses of the pump system operation

The energy losses of the cooling system. (Note: Some of the VRFB systems
have a cooling system to avoid overheating)

Power losses due to the transfer of electrons in the electric circuit carbon
felts and bipolar plates and the movement of ions through the electrolyte and
membrane.

Capacity losses due to the diffusion of vanadium ions causing self-discharge

reactions in the VRFB system.
Vanadium ion concentration loss due to the mass transport of the active

species.
The ratio of total discharge output power to total input power stored in VRFB.

The conductivity of the electrolyte and non-zero electrical field potential gra-
dient will cause shunt current [60].

The pressure drop in the hydraulic system mainly including friction loss in
the pipe, congestion loss and other pressure drops in electrodes. (Note: The
pressure drop studies normally help researchers to model the pump loss)

Influencing factors Refer-
ence

Flow rate, pump design, pump effi-  [53]
ciency, converter efficiency
Electrolyte temperature, ambient
temperature, VRFB system design,
battery housing design
Internal resistance, current density,  [56][57]
electron and ion transportation re-
sistance
Membrane permeability of vana-  [50]
dium ions
Low electrolyte velocity, low vana-  [58]
dium concentration in the solvent
Kinetics of the vanadium redox re-  [57][59]
actions
Conductivity of the electrolyte, [60! 61
number of cells, the shape of chan-  162]
nel and pipes, internal resistances
Shape of channel, pipes and mani-  [55]

folds

operation algorithms. Main VRFB losses are summarised in
Table [T by mentioning the associated influencing factors. The
VRFBs have several internal losses similar to any other battery
technology. Despite solid-state battery technologies, VRFBs
suffer from external losses caused by the power-consuming
components in the system to support their operation. Other
sources of losses in VRFBs are caused by inadequate battery
management command from BMS, electrolyte temperature rise,
and cooling system operation. The main performance metrics
of VRFB, their definitions and derivations are summarised in
Table 2] They are the key indicators for the analysis of the
efficiency and capacity performance of a VRFB system. In ad-
dition, several important attributes and parameters are listed in
Table [3] that are the critical system states and parameters for
battery modelling and management.

2.2. Main features of VRFB

The main features of VRFB are different from those of other
solid-state batteries, e.g., lithium-ion and lead-acid batteries,
due to their unique structure and operation principles. Com-
pared to other flow batteries, e.g. zinc-bromine, the same
metal ions are employed in the electrolyte to prevent cross-
contamination issues, which results in a long lifespan [63]]. The
advantages of VRFB batteries are listed below:

1. Long life-cycle up to 20-30 years [51].

2. Flexibility in regulating the output power by increasing the
size of electrodes or using more active vanadium species
[66].

3. Unlimited capacity associated with the volume of the elec-
trolyte.

4. High efficiency (up to 90% in laboratory scale, normally
70%-90% in actual operation) [67]].

5. No cross contamination problems (accidental mixing of
both electrolytes) compared to other flow batteries due to

the same vanadium ions in different electrolytes, thus ide-
ally no degradation [68]].

6. Electrolyte is recyclable.

7. Low manufacturing cost and maintenance cost [2].

The downside of VRFBs can be summarised as follows:
e Low energy density.

e An efficient thermal management system is required to
prevent thermal precipitation of vanadium species.

e Hydrogen evolution generated at the electrode is harmful
to the VRFB system and overall efficiency.

e Poor fast response performance than lithium-ion batteries,
with limited capability to handle sudden peak demand.

e Highly oxidising nature of V>* can damage the mem-
branes and positive electrode terminal [68]].

To highlight the technical advantages and downside of VRFB
system compared with other mainstream battery storage tech-
nologies, a detailed comparison result of five mainstream bat-
tery technologies is given in Table 4] with nine important tech-
nical indexes.

2.3. VRFB Applications

The first practical VRFB (a 5 kW/12 kWh unit) was built by
the University of New South Wales (UNSW) and installed in a
household with rooftop solar photovoltaic (PV) [14]. After the
successful field trial, many companies started commercialising
the technology for various applications related to power sys-
tems. At the same time, more research and development (R&D)
money advancing RES technology and technical improvements
in manufacturing and mass production significantly decreased



Table 2: Performance metrics of VRFB, definition and formulation

Table 3: Attributes and parameters of VRFB

Attributes/parameter Definition

The electromotive force of a single VRFB cell

Cell voltage at 50% SOC (normally 1.26V).

The electromotive force of the VRFB at 50%

Stack voltage SOC.

Open circuit voltage
(OCV)

The cell voltage without circuit connection.

Current densit; .
Y Current applied per membrane area.

Ideal capacity Ideal capacity stored in a certain volume of

electrolyte.

State of Charge
(SOC)

Charge level relative to its capacity.

Perfgrmance Definition Derivation
metrics
Battery effi- The ratio of the total dis- ~ f Viis(D1i5()dt
. charged energy to the total D
ciency S Vala(dr
charged energy. @)
age . T e of s bVt
ficiency & & & [ Velddtas
charge voltage. )
Coulomb Thg ratio of dlschargf: ca- fld,-x(t)dt
efficiency pacity to charge capacity in _J e
coulomb counting method. f 1, (t)dt
The ratio of total output Lais p
Systemeffi-  power during discharge to g _ fo (Pais = Pioys) dt
ciency the total input power during fo (P + Pross) dt
the charging period. @)
State of  The ratio of the maximum 0
Health battery charge to the rated SOH = =" (8)
(SOH) capacity. rated

Flow rate The volume of fluid which passes per unit

time from tanks to stack and vice versa.

the cost of renewable generation. For example, the global on-
shore wind levelised cost of energy (LCOE) had a year-on-year
drop of 13%, while the global off-shore wind LCOE had a year-
on-year drop of 9%. At the same time, a 7% year-on-year drop
in the utility-scale solar PV LCOE has been achieved [69]. The
RES cost reduction and wider application have increased the
need for VRFB as a large-scale ESS for smoothing and peak
shaving, MG application, and RES capacity firming, among
others. In the following subsections, different applications of
VRFBs are reviewed, and real-world examples are given.

2.3.1. Energy storage system in MG

In MGs (particularly stand-alone ones), ESSs are vital
components to support the energy generation from RES, in-
crease the reliability of operation and improve grid utilisa-
tion at users’ end [70]. Various energy storage technolo-
gies, including but not limited to thermal energy storage
(TES), compressed air energy storage (CAES), flywheel en-
ergy storage (FES), small-scale pumped hydroelectric energy
storage (PHES), capacitor/super-capacitor (SC) energy storage,
sodium-sulfur (NaS) battery, fuel cell (FC), lead-acid battery,
lithium-ion battery, redox flow battery (RFB), etc [2] [70] have
been suggested for MG applications in particular. A detailed
comparison in [[70]] shows the advantages and disadvantages of
major ESS for MG applications. Among these ESSs, RFBs
are considered the most promising option for large-scale en-

Power density The ratio of the total power capacity to volume.

Energy density The ratio of the total energy to the volume.

Minimum and max-
imum stack volt-
age/power/current

The minimum and maximum stack voltage
/power/current that are allowed during the
operation.

ergy storage in energy shifting, frequency regulation, peak load
matching, and peak shaving [70]. Among different RFBs, the
VRFBs have technical advantages such as a stable technical
system with fast chemical reactions, low gas evolution, higher
efficiency, low capacity degradation and low maintenance cost
for MG applications. A detailed performance comparison was
presented in [70] to demonstrate the technical superiority of
VRFBs among mainstream RFBs.

Several MG trials in Japan, China, and the USA [70] used
VRFBs for variable RES storage, RES power smoothing, peak
shaving, and backup power [70]. The most common use of
VRFB in MG is for RES storage and power smoothing. Qiu
et al. studied a 5 kW/20 kWh VRFB with a 6 kW PV array
as a standalone MG system at Fort Leonard Wood, Missouri,
USA in [10]. A model of the VRFB was used to validate the
performance of the VRFB operation in the field. One of the
main challenges in deploying the VRFB in MG is the indepen-



Table 4: Comparison of VRFB and other mainstream energy storage batteries [63} 164} 165]]

VRFB Lithium-ion Lead-acid Nickel-cadmium Sodium-sulfur
Lifespan 20-30 years 5-15 years 2-15 years 10-20 years 10-15 years
Lifecycle times 10,000-16,000 100-10,000 250-2000 1000-5000 2500-40,000
Power and capacity ~ Unlinked Linked Linked Linked Linked
Depth of Discharge  100% 100% 80% 80% 100%
Energy density 18-45 kWh/m® 95-500 kWh/m® 25-90 kWh/m® 15-150 kWh/n?® 150-300 kWh/m®
Efficiency 75-90% 75-97% 63-90% 60-90% 75-90%
ngmg [EMPEra- 5 gseC 20-65°C 18-45°C -40-50°C 330-350°C
Self-discharge rate 0% per day 0.1-0.3% per day 0.1-0.3% per day 0.2-0.6% per day 0% per day
Energy cost 130-850€/kWh 500-2100€/kWh 40-170€/kWh 680-1300€/kWh 250-420€/kWh

dent power and energy ratings inherent in VRFB systems. It
requires an in-depth analysis of the required output power and
storage capacity to achieve the best scheduling capability, and
minimum cost in a MG [71]]. Nguyen et al. proposed a dynamic
programming (DP) algorithm to solve the optimal scheduling
problem and determine the optimal power and energy ratings
for the isolated and grid-connected MGs [71]], which handle
the constraints of VRFBs. In [71]], a VRFB has been used to
smooth power and maintain the stability of the MGs. Ontiveros
et al. introduced a power conditioning system (PCS) to com-
pensate for wind energy fluctuations by incorporating a VRFB
system with a wind turbine in a MG [72]]. In [[73]], Safipour et
al. studied the optimal planning of a VRFB in a MG with wind
power generation to improve the operational performance indi-
cators, which also showed the benefits of high flexibility and
low operation, maintenance and replacement cost of the VRFB
unit. Another application of VRFB is reported in [74] for a MG
with a wind turbine, which studied the optimal allocation of the
VREFB in the system (an active distribution network) consider-
ing the dynamic efficiency and lifespan of the VRFB. The paper
formulated a comprehensive model of the wind turbine genera-
tor, load, environmental factors and VRFB dynamic to optimise
the energy flow in MG [[74].

In [9]], Merei et al. introduced an off-grid hybrid PV-wind-
diesel system utilising a lithium-ion, lead-acid, VRFB or a hy-
brid battery system, which helps to achieve the lowest cost and
pollution in operation. This hybrid MG is modelled and tested
in MATLAB/Simulink using real solar irradiation, wind speed
and ambient temperature data from Aachen, Germany, with 10-
minute interval data for 10 years [9]. This study showed that
the VRFB is the most cost-effective and technically-efficient
ESS for that particular stand-alone MG. In [75], first, a solar
PV-wind-biogas-VRFB MG is optimally designed. Then, an
intelligent scheduling and controller system is developed for
the MG daily operation [75]]. In [76], the VRFB is developed
in a transport MG to utilise the recovered energy from the train
and achieve peak shaving. In [77], a SkW/20kWh VRFB was
installed on a portable and expandable MG for off-grid energy
systems. They have shown that VRFB could be a promising
solution for a small-scale energy storage system. These two
studies expanded the breadth of the VRFB applications in both
large-scale and portable MG.

2.3.2. Residential and community storage

Residential and community level ESSs are more popular in
the industry. They can facilitate electrification, self-sufficiency,
carbon emission reduction, grid upgrade postponement, energy
democracy, resiliency and reliability, and reduction in electric-
ity costs at the residential or community levels [78 [79, [80].
Although different battery technologies (e.g., lithium-ion and
lead-acid batteries) have been used in autonomous residential
and community grids in the last several decades, the VRFBs
are newly added to the market in this area. VSUN Energy, Aus-
tralian Vanadium Limited, VoltStorage, and several other com-
panies are developing (or have already launched) commercial
VRFB products for home energy storage [81. [82} |83]. Only a
few researchers have studied the prospects of VRFBs for resi-
dential and community applications. In [84]], with a focus on
an emerging organic photovoltaics (OPV) system, the authors
claimed that the VRFB-OPV hybrid system could be one of the
solutions in a residential application. Terlouw et al. presented a
multi-objective optimisation of energy arbitrage with different
battery types in a community ESS [85]. The aim of this optimi-
sation was to minimise the operational cost and CO, emissions.
The result of this study illustrates a profitable operation for a
community-scale VRFB ESS [83]].

2.3.3. Renewable power plants

In 2020, global renewable energy usage increased by 3%, and
the global electricity generated from RESs increased by 7% in
the same year [[86]]. However, their dependence on weather con-
ditions complicates power system operation. One solution is to
use short-term storage to smooth/firm their output power and
increase their capacity factor. Extensive field studies have been
conducted worldwide to evaluate the application of VRFB in
RES power smoothing. For example, a 4AMW/6MWh VRFB
was installed at a wind farm in Hokkaido, Japan, to smooth
the fluctuations in generation and increase the reliability of
the wind farm [14]. 1 MW/5 MWh and 400 kW/500 kWh
VRFBs are installed in Japan and Indonesia, respectively, in
solar farms to balance the fluctuations [[14]]. See [14]] for more
VRFB applications in REs plant smoothing and short-term stor-
age. These trials proved the advantages of VRFB in renewable
power plants, in addition to load-levelling, peak shaving, and
power arbitrage [15]].



2.4. Current challenges in VRFB applications

The VRFB has unique features, as explained in Section
that make the technology a reliable, economical, and environ-
mentally friendly solution for MG, residential and community
storage and renewable power. Nevertheless, the technical chal-
lenges of the VRFB will have a non-negligible impact on its
performance; thus, an efficient BMS with power and energy
management functionality is vital for the efficiency, stability
and reliability of the entire energy system. Moreover, ther-
mal management and charging control are two core aspects of
the VRFB system to prevent the electrolyte temperature from
exceeding the safe limit. Therefore, a comprehensive thermal
battery model is necessary for the electrolyte temperature esti-
mation in different components, together with a state of charge
(SOC) estimation function to prevent batteries from being over-
charged and over-discharged. Furthermore, the pump loss and
shunt current loss are the two factors that limit the round-trip
efficiency [87]].

Another reason to have proper BMS is to manage and protect
the battery system under varying ambient and operational envi-
ronments. This includes monitoring the battery state (mainly
thermal and SOC), data processing, data storage and commu-
nication, intelligent charging/discharging control, maintenance
reminders, fault alarms and pump control for system efficiency
maximisation, etc. Generally, battery models are used within a
BMS to ensure safe operation, optimisation and data process-
ing, which help improve the battery system’s performance un-
der various physical constraints. Additionally, an effective EMS
is important in the VRFB-based power system applications to
reduce the load fluctuations, increase the economic benefit, bal-
ance the supply and load demand, enhance dynamic frequency
response, and other functions to improve the efficiency and eco-
nomic performance [44} [11} [88].

Considering these aspects will enable VRFBs to be applied
more widely. Therefore, in the rest of the paper, we describe the
state-of-the-art VRFB modelling techniques, BMS and EMS,
summarise the caveats in current systems, and suggest future
research direction.

3. VRFB modelling techniques

3.1. Overview

Appropriate battery models are a cost-effective and practi-
cal way to estimate and predict fundamental battery parame-
ters such as SOC, stack voltage, open circuit voltage (OCV),
chemical characteristics and thermal behaviour. The predictive
ability of the battery models is practical for battery design and
optimisation, aiming to increase the battery/system efficiency,
malfunction diagnosis and prognosis and lifespan extension.

Specifically, the VRFB models are the building blocks for
battery state monitoring and advanced automated control dur-
ing charge-discharge operation. The VRFB models generally
address two issues. The first is the unobservability of some
system states, such as OCYV, active species level, capacity, etc.,
where the battery models are employed for state estimation.
Moreover, some other system states, including SOC and state

of health (SOH) are difficult to accurately be estimated via sim-
ple Coulomb counting methods. The joint application of battery
models with battery estimation technologies is an efficient way
to gain more accurate results, which have been studied and pro-
posed for various types of batteries. Besides, these proposed
VRFB models enable researchers to understand the principle
and behaviour of battery systems. Through developing differ-
ent VRFB models, researchers found an efficient approach to
secure the long-term stability and efficiency of VRFB systems
linked with hydraulic system pressure drop, flow rate optimi-
sation, charge current optimisation, temperature management,
and electrolyte rebalancing.

VRFB models can generally be categorised into equivalent
circuit models (ECMs), electrochemical models (EMs), hybrid,
and artificial intelligence (Al)-based (data-driven) models. The
ECMs were initially proposed for other types of batteries (e.g.,
lead-acid and lithium-ion) modelling and has been adapted to
the VRFB. These models use a circuit model of different or-
ders and allow for simulating the physical mechanisms instead
of the electrochemical mechanisms; hence, it is simpler to form
the state-space representation. The EMs were established based
on the mass balance equation, energy conservation law and ion
diffusion to simulate mechanisms of the chemical reactions in-
side the battery cells. The hybrid model is a relatively new
generation of battery models that combines the merits of the
two models mentioned above and is an efficient way for bat-
tery analysis and state estimation. The Al-based battery models
are applied to improve the estimation accuracy of a VRFB sys-
tem that is more adaptive to solving the constraints in system
uncertainties. In the following subsections, the four modelling
categories are discussed in detail.

Battery models employ different methodologies to describe
dynamic behaviour. For a typical battery, the chemical charac-
teristics are studied to describe its dynamic properties, includ-
ing internal chemical reactions, thermal dynamics, degradation,
stability and capacity. Moreover, studying physical characteris-
tics contributes to modelling the battery output, including volt-
age variation, efficiency and charge-discharge behaviour. The
joint study of electrochemical characteristic form a comprehen-
sive battery model to accurately predict the battery character-
istics. Several types of VRFB models have been developed by
researchers from different disciplines and applied in various ap-
plications. These battery models differ in input parameters, out-
puts, accuracy, simulation tools and response time. Three types
of VRFB models, most commonly used in research, are the
ECM, EM, and hybrid model [5]. The Al-based battery models
are a recent development proposed to enhance the state esti-
mation accuracy. These proposed VRFB models are available
for different application scenarios containing different functions
and availability.

3.1.1. Equivalent circuit models (ECM)

The ECM is developed to describe the battery’s exter-
nal/dynamic electrical characteristics via the use of fundamen-
tal electrical components, including resistors, capacitors, and
a voltage source to form a circuit network. Originally, the
ECMs have been developed for older battery technologies,
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Figure 4: VRFB models implementation process

e.g., lithium-ion and lead-acid. In recent years, various ECMs In particular, a simple ECM, also known as first-order
have been developed and studied by researchers for VRFB in  resistance-capacitance (RC) ECM, is proposed in [92]], which
(189 [92] [93] 94 03] [96. [97]]. considers the internal self-discharge and pump losses. Relevant
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research related to VRFB has been carried out based on this
simple ECM in [90, 91} (92, [97, [98]] to solve control and state
estimation problems in different applications. In this simple
model, the thermodynamic equilibrium potential of the battery
is presented by a voltage source, with an electrode capacitance
and loss resistances to simulate the electrical characteristics of
the entire VRFB system. In [97], a detailed design scheme of
this simple ECM is introduced, which divides the battery model
into three subsystems: stack voltage estimator, SOC estimator
and pump model. This demonstrated a more detailed imple-
mentation approach to consider the influence of the pump loss
as a shunt resistance in the simple ECM. Moreover, an online
parameter and SOC estimation study is carried out in [98] based
on this simple ECM. This study showed the effectiveness of this
ECM in advanced parameter and state estimation studies. Same
as the first-order RC-ECM, second-order RC-ECMs are com-
monly used in the literature due to their simple structure with
higher accuracy and adaptability for different parameter identi-
fication methods [99]]. In these models, again, a voltage source
represents the thermodynamic equilibrium potential of the bat-
tery with two additional RC networks describing its dynamic
characteristics. These two VRFB models are broadly combined
with different parameter/state estimation techniques (recursive
least square method family, Kalman filter family, etc.).

The n-order ECM mentioned above requires online esti-
mation techniques to enhance the estimation accuracy due to
changes in the battery cell’s internal chemical state, signifi-
cantly impacting its thermal dynamics and capacity degrada-
tion. In [93] 94} 96|, online identified ECMs based on first-
order or second-order RC-ECM are presented with online up-
dating of the estimated value of parameters, which results in
enhanced state estimation accuracy. To consider the dynamic
factors arising from chemical reactions, Xiong et al. proposed
a thermal-dependent ECM with a thermal prediction module
to simulate the impact of thermal dynamics on the OCV of
the VRFB [100]. In [101} [102]], Xiong et al. improved the
thermal-dependent model with a capacity fading factor to sim-
ulate battery degradation caused by the self-discharge reactions
and other internal losses. All of these studies improved ECMs
by considering the dynamic characteristics of the VRFB sys-
tem with enhanced efficiency via the use of adaptive estimation
techniques. Moreover, Han et al. recognised the significance
of self-discharge reactions in the VRFB models and proposed
an improved first-order ECM in [95], which contains a self-
discharge resistor connected in parallel with the RC ladder to
simulate the self-discharge losses during battery operation [935]].
This improved model has the potential to estimate the capacity
reduction during charge-discharge cycles and assess the capac-
ity reduction rate under different SOC levels [93].

With an in-depth understanding of the VRFB principles,
comprehensive ECMs have been developed to reflect the
ECM’s electrochemical, hydraulic and thermal dynamics. Al-
though several vital factors, including thermal dynamic, pump
loss and capacity fading of the VRFB system, have been consid-
ered in [[100} [101] [102] [95]], these ECMs are formulated based
on the mass balance equation, energy conservation law, Nernst
equation, Bernoulli equation and conventional ECMs. In [103],
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Zhang et al. proposed a comprehensive ECM that assessed the
shunt current, effect of ion diffusion, and hydraulic model based
on a second-order ECM. Also, a first-order ECM with a param-
eter identification process is presented in this study to validate
the applicability of the proposed ECM. A similar study was car-
ried out in [104] considering the effect of the pump and shunt
current losses in the proposed accurate ECM. These studies il-
lustrated an approach to linking the electrochemical equations
into the circuit topologies to establish a more comprehensive
ECM for single-cell and multi-cell VRFBs. In [105], an ECM
is proposed for the entire VRFB stack by connecting 40 first-
order ECMs for a single cell in series. It is the first time that
a dynamic ECM of a whole stack has been validated in an IS-
VRFB system, which is significant for the future development
of online SOH estimation for VRFBs.

In conclusion, many researchers studied ECMs as the pri-
mary modelling technique based on the associated equations
between current, voltage and SOC, with additional considera-
tion of VRFB characteristics, including its thermal dynamic and
hydraulic system scheme. However, two major issues affect the
accuracy of these models. First, the parameters estimated using
offline identification methods may not reflect the true battery
dynamic under a varying current. Although advanced estima-
tion algorithms, e.g., extended Kalman filter (EKF), potentially
can handle the constraints within an online parameter identi-
fication process, the estimation accuracy is restricted by the
initial setting of these parameters. Second, the OCV in these
ECMs is approximated by the SOC-OCV polynomial function.
Inaccurate SOC estimation will reduce the accuracy in OCV
estimation and thus decrease the accuracy in parameter estima-
tion. Nevertheless, the ECMs are highly applicable to estimate
the electrical properties of VRFBs, but ignoring fundamental
chemical states (e.g., ion concentration and electrolyte temper-
ature) in these models jeopardises the accuracy of SOC and ca-
pacity estimation. A detailed summary of the developed ECMs
mentioned above has been presented in Table

3.1.2. Electrochemical models (EM)

An EM is formulated based on the internal chemical reac-
tions inside a battery cell, where understanding the state varia-
tions of the vanadium ions is fundamental to modelling its op-
erating mechanism. Combining the energy conservation equa-
tion, Nernst equation, mass balance equation and Bernoulli
equation, a numerical ordinary differential equation (ODE) can
be established to study the vanadium ion concentration varia-
tions with flow rate, electrical characteristics, hydraulic system
design and electrolyte temperature. The EM has the ability to
simulate VRFB operation with current and flow rate as input pa-
rameters, aiming to estimate the active species concentrations
and hence the SOC, stack voltage and other performance pa-
rameters. Moreover, EMs play a critical role in battery struc-
ture design and optimisation using simulation studies to gauge
the impact of battery configurations, electrolyte and membrane
material on its performance.

Mathematical models have been developed and assessed in
[[LO6L 107, [108L 109, 1104 111} [112] to predict the performance
of the VRFBs. However, the proposed two-dimensional and



three-dimensional models in the literature are useful in VRFB
design but not so helpful in control and operation schedul-
ing/management. Also, these models neglect the capacity loss
caused by the ion diffusion [50]. Tang et al. in [50] proposed
a dynamic VRFB model considering the effect of ion diffusion
and side reactions to study the capacity loss in VRFBs. How-
ever, the proposed dynamic model did not consider the thermal
dynamics of the VRFB, which may lead to thermal precipitation
in the electrolyte. A thermal model of battery configuration and
self-discharge reactions in VRFB was proposed in [113]] based
on the dynamic model from [50] to avoid the thermal precip-
itation by estimating the electrolyte temperature in the tanks,
pipes and stack during the charge-discharge cycle. The thermal
dynamic model is formulated based on energy balance equa-
tions and mass balance equations to form a comprehensive bat-
tery model for system state estimation, control and optimisation
purposes [113]].

Nevertheless, these models were developed assuming that
the VRFB cells act as continuous stir tank reactors (CSTR) in
which the vanadium ions are distributed uniformly throughout
the cells [[114]. This assumption may be appropriate in a labora-
tory scale VRFB, but does not hold true for commercial systems
with larger dimensions [114]. In [114]], the authors assumed the
VREFB cell acts as a plug flow reactor (PFR) by extending the
dynamic model to a multi-layer model to consider the effect of
vanadium ion variations between the inlet and outlet of the cell
[114]]. The proposed multi-layer model in [[114] shows the dis-
crepancy in cell voltage and concentration level between differ-
ent layers, which suggests studying the effect of concentration
imbalances in the battery stack. A detailed summary of the de-
veloped EMs mentioned above has been presented in Table 6]

3.1.3. Hybrid models

The EMs and ECMs are the most commonly used models
to simulate VRFB operation. While the conventional ECMs
neglect the chemical characteristics and hydraulic design of
the VRFB system, the EMs are highly nonlinear, complicat-
ing SOC observation and adaptive state estimation. Consider-
ing the strengths and pitfalls of these models, a multi-physics
hybrid model is proposed in [5]] based on electrochemical prop-
erties and principles and the mechanism of battery operation.
The proposed hybrid model integrates ECM and EM, reflects
the internal chemical dynamics via the electrochemical battery
model, and simulates the electrical characteristics of the ECM
[S]. Implementing the hydraulic mechanism, thermal mechan-
ics and other factors inside the VRFB system forms a compre-
hensive hybrid battery model that overcomes the limitations of
a single model, e.g., insufficient parameter estimation and in-
accurate system state estimation. However, the hybrid models
have their limitations, such as being less appealing in practical
applications and even in simulation studies due to their compu-
tational complexity [5].

3.1.4. Al-based battery models

Recent development in Al and data-driven modelling has
reached the VRFB modelling domain to solve complex prob-
lems in battery modelling and state estimation. For example,
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neural networks (NNs), an Al-based algorithm with a strong
nonlinear fitting ability, have been used to fit the dynamics of
a battery system without considering its physical structure and
operational principles. A relationship was found between the
inputs and outputs during the training process using training
data.

In [115], field analysis and NN are used to model a VRFB
system based on a reduced-order circuit model. The proposed
adaptive NN (ANN) aims to simulate the operation of the heat-
ing, ventilation and air conditioning (HVAC) system and ambi-
ent environment. This study introduced an ANN method that
considers ambient variations to form a detailed model for an
entire VRFB system. An enhanced physics-constrained deep
neural network (ePCDNN) approach is introduced in [116] to
enhance the performance of a physics-based zero-dimensional
VRFB model with extreme voltage response [116]. The results
show the proposed ePCNDD framework can achieve high ac-
curacy in voltage response, which can also be used in battery
system design and optimisation.

3.2. Model evaluation and validation

All battery models need to be evaluated and validated prop-
erly by experimental data. The evaluation of battery models
guarantees that the core functions of the proposed battery model
are achieved, e.g., type of battery model, input and output vari-
ables, model complexity and computational burden, and model
accuracy.

In general, battery model applicability is evaluated by
analysing the objectives and characteristics of the application,
using the minimum number of input parameters and the lowest
computational requirements to maximise the accuracy of the
battery performance prediction. Also, validation of a battery
model aims to investigate the technical performance by evalu-
ating the simulation results estimated by the model against the
experimental data. This could be the long-term and short-term
capacity degradation, voltage and capacity under different flow
rates and currents, electrolyte temperature and thermal dynam-
ics, charge voltage and current under different input power and
pump loss and hydraulic pressure drop during various opera-
tions.

4. Battery management system (BMS)

4.1. Overview and functionalities

A well-designed BMS is responsible for properly manag-
ing VRFB’s operation during charging-discharging cycles and
system state monitoring for safety issues and performance en-
hancements. The definition of the BMS varies in different appli-
cations and typically refers to a developed management scheme
to locally monitor, control, and optimise the efficiency of an in-
dividual or multiple battery modules and minimise the degrada-
tion level [[125]. For an independent VRFB system formed by
the battery units and converters, a BMS is an integral part of the
system and must be developed within the whole infrastructure
[99]. From the power systems perspective, a BMS is customar-
ily integrated to manage the battery operation and works in col-
laboration with an energy management system (EMS) or power



Table 5: A summary of the major ECMs for VRFB in the literature

ECM Descriptions Refer-
ence
Simple ECM A simple model considers the internal losses and physical properties of the VRFB. However, the parameters
considers in-  of the proposed ECM have limited accuracy because electrical parameters are based on the estimated values  [90, 91}
ternal losses  reported in [90l 911 192 97]]. It also neglects chemical and thermal dynamics effect on the system. Adaptive 92| 97,
(same as first- estimation techniques (EKF, recursive least square-EKF (RLS), particle filter (PF) etc.) are necessary to have 98]
order RC-ECM) more accurate parameter identification results under these simple ECMs, as shown in [98].
An electrical circuit-based ECM model with a 2™-order RC ladder is proposed to consider the equilibrium cell
voltage, ohmic resistance and other dynamic parameters. These general RC-ECMs also need adaptive esti-
n"-order RC- mation algorithms (e.g., EKF, RLS-EKF, PF etc.) to perform well in parameter identification,e.g., SOC and  [93| [94]
ECM SOH estimation. These proposed estimation algorithms based on ECMs do not consider the battery’s chemical 96]
characteristics. The OCV in these nth-order ECMs is simply obtained via a polynomial relationship between
the OCV and SOC, which has limited accuracy without using enhanced SOC observation methods.
A thermal prediction module is proposed in the thermal-dependent ECM to additionally consider the impact
Thermal-  of thermal dynamics on the VRFB system. However, the heat transfer parameters in the thermal prediction (100]
dependent ECM  module are difficult to obtain in real VRFB systems, thus, decreasing the accuracy of the thermal dynamic
estimation.
Thermal- . . . . . . .
Thermal prediction module and a capacity fading factor is added to consider the impact of thermal dynamic and
dependent  and . . .. .
e fad- f:apacny degradation on the VRFBs. The problem of ‘the thejrmal predllctlon module are the same as mentlonefi [1O1L
i it in the thermal-dependent ECM. Moreover, the ?apac1t}f fading .fact.or is formulated based on an EM or experi- [102]
ECM mental results, which increases the complexity in practical applications.
. Self-discharge was taken into account in the ECM, using a resistor connected in parallel with the RC ladder
ECM considered . . . . . . .
self-discharge to simulate the capacity fading based on the self-discharge test‘proﬁle.. The mmulathn results from this type (?f
. ECM have a better performance when the EKF-based method is applied to the terminal voltage and SOC esti-  [95]]
for SOC estima- . L . . .
tion ma.tlon._ However, the average SOC c?st1mat10n error has not been discussed in the literature, and the parameter
estimation process of the RC ladder is not demonstrated.
An internal parameter extraction method is proposed based on a hybrid RC-ECM with shunt current and par-
asitic losses in this type of ECM to illustrate the parameter variations according to the flow rate, current and
Precise i battery state. Besides, the hydraulic and thermal. models are established to simulate the. battery operat.ion more
namic ECM accurately. The results show the proposed precise dynamic ECM has good accuracy in VRFB terminal volt- 98]
age estimation and is applicable in RES system management. The internal parameter extraction method relies
on the formulation of the terminal voltage, which is not adaptable in other applications with a varying flow rate
and operational environment.
. An ECM considering the shunt current, diffusion current and hydraulic model to establish a comprehensive
Comprehensive . . . . . .
ECM model for VRFBs for power system analysis. The simulation results show a solid performance in voltage esti-  [104]
mation, but the estimation error increases with the flow rate.
Dynamic multi- A dynamic ECM of the entire VRFB stack established by connecting 40 first-order ECMs in series. The (105]

cell ECM

proposed ECM is validated in an IS-VRFB system with an accurate parameter measurement.

management system (PMS) to handle the objectives set by the
energy system’s operators while optimising the performance
considering the overall systems and grid connection [125]].

While a BMS is equally important in VRFBs and solid-state
batteries [41]], only a limited number of papers have discussed
the principle of a well-designed BMS for VRFB. Relevant stud-
ies on general BMS design and lithium-ion battery BMS design
have been reviewed in [125, 199]. In [125], Gabbar et al. re-
viewed the development and industrial standards for solid-state
batteries and introduced the topologies, components and soft-
ware framework for a proper BMS design. Typically, a proper
BMS design should have six fundamental functions, including
monitoring, protection, charging and discharging management,
communication, diagnosis and data management [125]]. These
are general guidelines for current battery technologies. Consid-
ering the unique structure and operation of VRFBs compared to
solid-state batteries, however, additional functions are essential
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for the VRFB-BMS. Moreover, unlike conventional solid-state
batteries, VRFBs suffer from electrolyte thermal precipitation,
vanadium ion imbalance and hydrogen evolution which need
to be considered for the overall system’s safety and reliability.
Therefore, a special BMS design is needed to handle the dif-
ferences and constraints associated with VRFBs. Besides, it is
vital to enhance the VRFB system efficiency and longevity by
finding a proper flow rate [41]. The functionality requirements
of VRFB-BMS are shown in Fig. [5]and are discussed in detail
in the following subsections.

4.1.1. Monitoring

The primary task of a BMS is the monitoring of the most
crucial system states affecting the performance and safe oper-
ation, including terminal voltage, current, cell voltage, elec-
trolyte temperature, and SOC. These states are monitored by
sensors or estimated using appropriate battery models to pre-



Table 6: A summary of EMs in the literature

EM Descriptions Reference
Dynamic mod- This dynamic model studies the internal losses of the VRFB caused by ion diffusion and side reactions.The

elling of the side  proposed dynamic model neglects the thermal dynamics caused by the chemical reactions. Also, it models the 50, [T17)
reactions and ion  internal chemical processes in the battery cell without integrating the entire VRFB system including pumps,

diffusion pipes and tanks.

Thermal mod-

elling of bat- . . .

_— coifs A compreheI}S{ve .VRI.-TB system model was proposed to take .the thermal dynamics into account to avoid
uration and thermal precipitation in the electrolyte solution and overheating. The proposed model neglects the non- 56, [120]
. homogeneous vanadium ion distribution caused by different electrode reaction rates. [121]]

self-discharge
re-actions

A dynamic model for a single cell is proposed similar to the CSTR model in [T13]] with additional con-

sideration of the concentration variation of vanadium ions. A single cell is divided into multiple layers in (12,
Dynamic  plug the vertical direction to examine the heterogeneity in the concentration of vanadium ions. The proposed 123,
flow reactor model is established under the assumption of cell and electrolyte temperatures remaining constant at room v 4
model temperature. Without considering thermal dynamics, this model is not applicable for electrolyte temperature

management to avoid possible thermal precipitation in the electrolyte solution and prevent possible overheat-

ing of the cell components [T14].
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Figure 5: VRFB-BMS functionality requirements

vent hazardous situations, e.g., battery overcharge, over-current
and overheating. Permanent damage to the membrane and bat-
tery cells may occur if they are exposed to these hazardous con-
ditions. Since some of the system states, e.g., OCV, cannot be
measured, or some other system states, e.g. SOC, electrolyte
temperature, and active species concentrations, cannot be accu-
rately measured or estimated, battery models and other adaptive
estimation methodologies are inevitable to estimate the states
accurately within the VRFB-BMS.

4.1.2. Thermal management system (TMS)

A TMS is necessary to reduce the risk of electrolyte ther-
mal precipitation and hydrogen evolution, hence, preventing
fire and explosion while minimising system losses [126]. Ac-
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cording to [113}[127], too high or too low electrolyte tempera-
tures may cause irreversible precipitation of vanadium species
in the VRFB cell, which leads to energy losses [126]. The pri-
mary objective of the TMS is to control the electrolyte tem-
perature within a safe limit, which ensures the safe, stable and
reliable operation of the VRFB system [37]].

4.1.3. Communication and data management

BMS operation depends on the parameters measured or es-
timated locally, such as voltage, current and ion concentration.
Therefore, sensors, communication links and proper data man-
agement strategies are needed [128]]. Also, building a database
of historical values allows offline battery model development
based on data-intensive approaches, such as artificial intelli-
gence and machine learning techniques. Communication be-
tween different components is at the core of the entire system
operation, which could be done using data sharing and access
protocols. For instance, an EMS run by a third party should be
able to access the battery SOC, temperature, current and voltage
historical data.

4.1.4. Protection

The BMS prevents potential risks and protects people and
equipment from battery-related incidents. The BMS protection
could include operation mode detection, setting fault criteria,
temperature management and overheating protection, fault de-
tection, predicting system states, isolation fault detection, etc.
[123]. Also, some local decision-making intelligence is needed
for the BMS to protect the VRFB system by isolating the bat-
tery cells.

4.1.5. Charging and discharging management

The BMS must efficiently supervise a battery’s charging and
discharging operation to maximise its lifespan. The charg-
ing and discharging management regulates the SOC range and
number of cycles and works harmoniously with the EMS by
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Figure 6: A hypothetical VRFB-BMS scheme with the proposed functionalities

controlling the input current, setting input/output power lim-
itations, starting the pre-charge sequence, adopting different
charging modes, etc.

4.1.6. Diagnosis and prognosis

The BMS monitors the sensor signals and the system states
estimated by the battery models to detect potential faults and
generate warning signals beforehand. The main faults could be
voltage/current faults, inlet/electrolyte temperature faults, insu-
lation faults, short-circuit faults, input/output power faults etc.
Also, once a fault is diagnosed, the BMS produces a warning
and responds based on the severity of the fault [39].

4.1.7. Flow rate management

The flow rate management is supervised by the BMS to ad-
just the flow rate by controlling the pump’s speed. One of the
main objectives is to control the dynamic flow rate to minimise
internal and external losses resulting from concentration over-
potential and pump loss under varying load power output con-
ditions [129]]. Besides, as another objective, flow rate manage-
ment receives commands from the TMS to optimise the elec-
trolyte flow rate to stabilise and manage the electrolyte temper-
ature.

These functionalities form a comprehensive and efficient
VRFB-BMS development scheme. Based on these function-
alities, a hypothetical scheme is illustrated in Fig. [6|for VRFB-
BMS to visualise the links between each functionality within
the VRFB-BMS.
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4.2. State-of-the-art BMS

As a newly developing battery technology, few publications
have discussed the development of VRFB-BMS. To investi-
gate an optimisation scheme for BMS operation focusing on
the VRFB itself, Khaki and Das proposed a charging and flow
rate management to realise fast charging and enhance the en-
ergy efficiency [130]. Their proposed VRFB-BMS is a multi-
objective optimisation problem with different weighting factors
assigned to fast and energy-efficient charging objectives. Nev-
ertheless, their proposed BMS solely manages the charging pro-
cess of VRFB considering input current and flow rate but ne-
glects the electrolyte thermal dynamics, which may raise the
electrolyte temperature and cause damage to the ion-exchange
membrane. Evaluating the electrolyte temperature variations
during the charge-discharge cycles, Bhattacharjee and Shaha
developed an efficient thermal management system for VRFB
in [37]. The proposed thermal management scheme can regu-
late the VRFB stack temperature within a safe range. Also, it
adjusts the pump speed by a gain controller based on the esti-
mation of the inlet stack temperature error, instant flow rate, and
pump power by using a look-up table and stack power loss for-
mulation [37]]. The experimental laboratory test shows promis-
ing performance in achieving high overall efficiency while reg-
ulating the stack temperature within a safe range in charge-
discharge cycles [37].

The aforementioned VRFB-BMSs explored a possible ap-
proach to manage the VRFB safely and aimed to maximise
the overall efficiency with the lowest operational cost. How-
ever, the proposed schemes have not been validated on large-



scale VRFBs integrated into a larger energy system. Further-
more, some of the main BMS functions have not been imple-
mented in these BMS, e.g., communication and data manage-
ment, monitoring, diagnosis and protection. In [41], Trovo et
al. had a detailed description of a 9 kW/27 kWh industrial-
scale (IS) VRFB-BMS, including the hardware design and soft-
ware development [41]. The IS-VRFB-BMS uses a desktop
computer with LabVIEW software and National Instruments
compact data acquisition (DAQ) device [41l]. A PMS is con-
nected with the VRFB to provide electric power conditioning
during the charge-discharge cycles through the bidirectional
static converter [41]. The PMS is remotely managed and con-
trolled by the BMS to regulate usage and quality of the input
power [128]). This study addressed the gap by developing an ad-
vanced industrial-use VRFB-BMS, which has the potential for
further research and practical development for industrial appli-
cations. Flexibility and expandability in operational decision-
making are the two most crucial factors to achieving intelligent
operation and future expansion in automatic control. Accord-
ingly, the IS-VRFB-BMS should be modular, including signal
management, surveillance system, software development and
human-machine interface (HMI). A signal management module
is devised to acquire the current, voltage and other system states
from the sensors. These signals are transmitted to the BMS for
further processing and action. A surveillance system (SS) is de-
veloped to protect the battery system against malfunctions and
emergency conditions. A programmable logic controller (PLC)
is dedicated to guaranteeing its reliability and coordinating with
the BMS to ensure the safety of the VRFB system. The soft-
ware development is the core of the IS-VRFB-BMS in [41] to
designate the overall objectives and apply various optimisation
algorithms under multiple scenarios. Moreover, an HMI is de-
veloped in [41] to allow users to review the states of the VRFB
system and control the VRFB system accordingly. However,
the proposed IS-VRFB-BMS only contains some of the essen-
tial functions to ensure the safe operation of the VRFB system
but lacks an accurate adaptive SOC, SOH estimation method
and flow rate optimisation. Combining newly developed state
estimation and model-based nonlinear optimisation techniques
would be challenging to improve its performance and longevity.

The state-of-the-art VRFB-BMS limitations and restrictions
are listed below:

e The VRFB system is highly nonlinear, which increases the
computational burden for advanced modelling and appli-
cation of adaptive/predictive control algorithms.

e The chemical parameters (e.g., vanadium ion concentra-
tion) cannot be measured by sensors directly; hence com-
plex models are needed for more accurate SOC and elec-
trolyte temperature estimation.

e SOH estimation is important to ensure the long-term, cost-
effective operation of VRFBs, similar to the studies on
lithium-ion batteries [131]. However, there is only lim-
ited literature considering SOH estimation techniques in
VREFBs [1311[132].
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e Current ECMs developed for VRFB management need on-
line parameter estimation. EMs have the potential to re-
place the ECMs models. However, their associated param-
eters (e.g., physical and chemical configurations for bat-
tery components) are difficult to obtain, leading to higher
system state estimation errors.

e Solving a multi-objective optimisation is necessary for
VRFB-BMS due to competing objectives, e.g., optimal
flow rate and input current, which is complex and requires
more computational resources to solve in real time.

The above restrictions lead to two major dilemmas for
VRFB-BMS: 1) the current VRFB models are either nonlin-
ear or require online parameter estimation, both of which need
high computational power that may limit their application in
industrial systems, 2) multi-objective optimisation algorithms
and important system state estimation have not been validated
in practical VRFB-BMS, which necessitates further feasibility
studies for testing and verification.

4.3. Application developments of the VRFB-BMS

4.3.1. State estimation

Estimating SOC, SOH, active species levels, and other es-
sential system states is the fundamental task of a VRFB-BMS.
The SOC is recognised as the most crucial state in a battery
system. An accurate SOC estimation prevents the over-charge
or over-discharge of the battery, ensuring safe operation [121].
In previous BMS, coulomb counting and OCV methods (i.e., a
relationship between OCV and SOC) are commonly used to es-
timate SOC. However, the method offers a limited current mea-
surement accuracy due to neglecting the shunt current and other
internal losses. Multiple SOC estimation algorithms have been
studied for VRFBs, and the feasibility of these algorithms has
been examined in the various electrical vehicle (EV) BMSs, and
their performance has been validated.

Several model-based SOC estimation algorithms are pro-
posed in the literature using Kalman filter (KF), EKF, unscented
Kalman filter (UKF), particle filtering (PF) and sliding mode
observers (SMOs). A general framework of the VRFB state
estimation and parameter identification is shown in Fig.[/} In
[931 194} [121], the EKF was proposed to obtain more accurate
SOC estimation. In [121], Xiong et al. applied the EKF in
the thermal-dependent ECM for SOC estimation, which helped
to improve the robustness of the EKF method. Qiu et al. in
[98] introduced a gain factor in the EKF to establish an im-
proved EKF (IEFK) method to estimate the SOC. The IEKF
method achieves better accuracy, convergence speed and ro-
bustness when compared with EKF, and could be more appli-
cable in industrial applications [98]. Khaki and Das proposed
a new model in [96] for a hybrid model and applied the hy-
brid extended Kalman filter (HEFK) and PF methods. Their
results show that these two methods adequately estimate the
terminal voltage and SOC. Moreover, the terminal voltage esti-
mated using the proposed hybrid HEKF-PF technique matched
the experimental data in both constant current (CC) and con-
stant voltage (CV) charging modes, and the HEKF algorithm
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Figure 7: VRFB parameter identification and state estimation framework

has a better performance to adapt to various types of battery
charging processes [133]. However, the proposed ECM-based
hybrid HEKF-PF technique is computationally expensive for
industrial applications. To reduce the complexity of SOC es-
timation, Khaki and Das [133]] developed a fast and simplified
ECM-based estimation algorithm to estimate the SOC and SOH
with more practical significance jointly. Other advanced esti-
mation algorithms are adopted from lithium-ion battery liter-
ature and applied to VRFBs. A reliable online SOC and ca-
pacity estimation is proposed in [[134] using a multi-time scale
KF-RLS method for SOC and capacity estimation individually.
The proposed KF-RLS method requires lower computational
resources, which makes it more practical in real-world applica-
tions.

Xiong et al. in [101] proposed an SMO for dynamic estima-
tion of the SOC. The SMO method is expanded to estimate the
SOC based on an EM by Clemente [[135]. In [[136} [137]], two
improved RLS methods, time-varying forgetting factor recur-
sive least squares (TTF-RLS) and hybrid H, filter RLS (HIF-
RLS) are applied to the first- and second-order RC-ECM in an
online parameter identification method. These two RLS-based
methods perform accurately in tracking the variation of param-
eter dynamics, with a good performance in SOC and capacity
estimation [[136}[137].

Considering the unique merits of Al-based techniques men-
tioned in Section the neural network (NN) is adopted to
estimate the important state of the VRFB system as a reference
value for the VRFB-BMS. In [138], a neural network-based
method is studied to have a joint real-time SOC and capacity
estimation. In this study, considering the degradation of the
VREFB, a loss degree is classified into three levels via the prob-
abilistic neural network (PNN). Using the backpropagation to
train the model based on experimental data within each level,
the capacity estimation result is obtained, and the SOC is cal-
culated based on the online estimated capacity. This study is
validated by experimental results, which show the applicability
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Table 7: State-of-the-art state estimation techniques

Model Parameters Algorithm Ref
ECM  SOC, electrolyte temperature EKF [12141931194]
ECM SOC IEKF [98]
ECM SOC, terminal voltage HEKF-PF 96
ECM SOC, SOH ECM-based [133]
ECM SOC, capacity KF RLS [[134]
ECM SOC SMO [101]
ECM SOC, capacity RTLS [136L137]
EM SOC SMO [135]
EM SOC, capacity NN [138]
EM SOC BPNN [139]
EM Cell voltage PCDNN [140]

of the NN in battery state estimation. Other relevant research
is presented in [139] using the backpropagation for SOC esti-
mation. A three-layer NN is proposed with the Bayesian reg-
ulation algorithm, and the result demonstrated the feasibility
and accuracy of this method in online SOC estimation with a
mean absolute error of less than 2% [139]]. In [140], another
NN-based cell voltage estimation study is carried out to train
a deep neural network (DNN) with physical model constraints
and battery sample data and a physics-constrained deep neu-
ral network (PCDNN) method. However, the proposed method
does not estimate SOC or capacity; thus, it cannot be used in
a modern BMS. Moreover, it is more applicable to utilise the
PCDNN method in a battery model as an enhanced voltage cap-
ture method shown in [116]]. In Table a summary of the state-
of-the-art state estimation techniques is given.

4.3.2. Advanced optimisation

Electrolyte flow rate and charge/discharge current are the
two parameters with the most significant impacts on the bat-
tery performance, including electrolyte temperature, system ef-
ficiency and losses. These two parameters can be efficiently



controlled to optimise the battery operation based on different
objectives. Generally, these parameters significantly affect the
concentration overpotential and pressure drop. Therefore, bal-
ancing these two factors to improve the system efficiency of
VREFBs is an optimisation problem. From the previous litera-
ture, three common methods are presented and analysed in the
following subsections.

Model-based optimisation. In the decision-making process,
model-based optimisation is widely used to examine the influ-
ence of parameters on system performance. In [55]], a concen-
tration overpotential and pressure drop model is employed to
study the trade-off between system efficiency and volumetric
flow rate. It is shown that a high flow rate will reduce the
concentration overpotential but cause a considerable increase
in the pressure drop/pump power consumption [S5]. An opti-
mised variable flow rate with a flow factor of 7.5 was found to
be the optimal solution for a 40-cell VRFB system at a given
cut-off voltage limit compared with other flow factors and con-
stant flow rate [55)]. A similar study was carried out in [141]],
which considered the thermal-hydraulic behaviour of a VRFB
system. Optimal flow rates under various charging currents are
obtained from the thermal battery model based on several SOC
values [[141]]. Compared with the results in [S5]], the study illus-
trated a significant impact on the electrolyte temperature caused
by a high electrolyte flow rate, demonstrating the significance
of the optimised flow rate to avoid electrolyte thermal precipita-
tion. An innovative model-based flow rate optimisation method
is proposed in [[124], which reached the highest performance
compared to conventional flow rate control methods (constant
flow rate and variable flow rate).

The model-based optimisation methods in [124} 55| [121]] pre-
sented efficient ways to study the impact of flow rate on the con-
centration overpotential and pressure drop. The main benefit
of model-based optimisation is finding an approximate optimal
flow rate within a specific condition, which contributes to devel-
oping 2D/3D look-up tables to improve the system’s efficiency.
Look-up tables are commonly used in industry to operate a sys-
tem close to optimality with a limited number of parameters in
the decision-making process. Nevertheless, the main restric-
tions of model-based optimisation methods are threefold: 1)
model-based optimisation methods cannot be used as an on-
line/dynamic operation, 2) the derived optimised flow rate is not
the optimal flow rate throughout the entire operational process,
3) the model-based optimisation methods are not adaptive un-
der a varying current or ambient temperature, which requires an
iterative derivation of the optimised solution if the influencing
factors or decision parameters alter, and 4) in a multi-objective
optimisation problem with nonlinear terms and multiple deci-
sion factors, model-based methods may not be efficient because
of computational complexity.

Model-based nonlinear dynamic optimisation. Considering
the constraints in model-based optimisation results in a non-
linear optimisation problem, which necessitates model-based
nonlinear dynamic optimisation algorithms to determine the op-
timal flow rate and charge/discharge current. The nonlinearities
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arise from the nonlinear battery models. The optimisation ap-
proaches depend on the predictive ability of the given electro-
chemical battery model. The optimisation problem is formu-
lated mathematically to represent the objectives and technical
constraints. For example, the charge/discharge current and flow
rate are maintained within a boundary to avoid overheating and
insufficient power output due to low flow rate and discharge
current, and the SOC is kept within a safe range to prevent over-
charge and discharge. This dynamic optimisation is an online
optimisation that finds global optimal solutions and considers
the physical constraints under pre-set objectives.

To investigate the feasibility of the model-based nonlinear
dynamic optimisation method to realise the maximum energy
harvest from RESs and maintain the VRFB system safety, the
authors in [142] proposed a model-based-nonlinear optimisa-
tion method to manage a variable input power by determining
the optimal charge current and flow rate. The goal was to min-
imise the total energy consumption during the charging process
with the SOC, flow rate, input current, and physical constraints.
The proposed optimal charging method is solved using the non-
linear optimisation methods (i.e., genetic algorithm and fmin-
con) in MATLAB/Simulink. Besides the maximum energy har-
vest, fast charging is another practical issue to satisfy the users’
demands. Combining these two objectives, Khaki et al. formu-
lated a multi-objective optimal charging current and flow man-
agement for a fast charging and energy-efficient VRFB system
in [133]. The charge duration control is expressed as a 2"-
order exponential model in terms of the charging current den-
sity and four parameters fitted from the experimental curves.
Due to electrolyte flow management and efficiency objectives,
the multi-objective optimisation of VRFB is formulated as a
comprehensive objective function with three objectives, charg-
ing duration control, minimising input energy and minimising
pump loss with three corresponding weighting factors.

The model-based nonlinear dynamic optimisation method is
efficient in enhancing the system efficiency of a specific VRFB
system, both offline and online. However, these methods re-
quire an accurate battery model and are not robust against dis-
turbances. Moreover, in MG and more complex power sys-
tems, the optimisation of a VRFB system is performed under
other higher-level objectives at EMS level, and these model-
based methods may not be competitive in these cases for multi-
objective optimisation. As for future recommendations, more
robust optimisation methods are necessary to handle the afore-
mentioned constraints and handle the uncertainties and obser-
vation disturbance during the battery operation.

Conventional controllers. Conventional control algorithms
and controller designs have been used to regulate the VRFB’s
inputs under different conditions. A gain scheduling approach
is proposed in [36] to regulate the flow rate considering the
OCYV changes. In that study, the battery charge/discharge pro-
cess was modelled by a nonlinear function. Therefore, gain
scheduling is implemented with several linear controllers to
handle the nonlinearity of the charge-discharge cycle. In [35],
the authors proposed an output robust feedback controller to
regulate the electrolyte flow rate by determining the optimal



reference point for voltage. Bhattacharjee et al. [38]] designed
a real-time flow rate control integrated with maximum power
point tracking (MPPT) controller using common Perturb & Ob-
serve (P&O) algorithm. Optimisation of the VRFB system is
realised through the proposed integrated MPPT-based CC-CV
charging regime with real-time flow rate control to maximise
the system efficiency and manipulate the electrolyte tempera-
ture variations. These two conventional controllers are simple
and effective to manage the flow rate and battery charging pro-
cess. However, the conventional controllers may have several
limitations in handling the optimisation process, which consid-
ers the overall power systems with various uncertainties and
disturbances. As a result, more advanced real-time controllers
must be explored to improve the optimisation performance un-
der more complex power systems while managing the VRFB
operation, which explicitly considers the electrolyte flow rate,
charging current and thermal dynamics.

4.4. Future direction for VRFB-BMS development

Compared to solid-state batteries such as lithium-ion batter-
ies, advanced methods and algorithms have not yet been ex-
plored to improve VRFB’s operation. Advanced real-time con-
trol techniques are expected to better handle the fluctuations
and disturbances in the VRFB system and uncertainties in the
battery models. These issues will reduce the accuracy of VRFB
models and negatively influence the decision-making process
for optimisation. To handle this, fuzzy logic control (FLC)
and model predictive control (MPC) are highly applicable for
real-time control in a VRFB-BMS. These two advanced real-
time control techniques do not require a high-precision battery
model and have been proposed and utilised in lead-acid and
lithium-ion batteries.

Model predictive control (MPC). MPC is an advanced control
algorithm that uses the predictive ability of a system’s model
to estimate the current state of the system [143]. The objec-
tive of the MPC algorithm is to provide an optimal control se-
quence within a finite time horizon by solving an optimisation
problem. Extensive research on single ESS and hybrid power
systems shows the applicability of MPC in battery charging op-
timisation and real-time energy dispatch. In [[144], a nonlinear
MPC is proposed to minimise charging time for a lithium-ion
battery based on a detailed electrochemical battery model. In
[[145], Xavier and Trimboli introduced a novel application of
MPC in a lithium-ion battery to realise cell-level control. The
MPC algorithm optimised the battery charging time-based on
a 1%-order RC ECM and showed good performance based on
a simple ECM. Zou et al. proposed another MPC algorithm
for lithium-ion battery optimal charging based on a reduced-
order model implemented using partial differential equations
[[146l [144] [145]. The simulation result show that MPC algo-
rithm can handle the optimal charging problem in a lithium-ion
battery with a moderately accurate battery model, which is ro-
bust and can be expanded to handle the optimal charging prob-
lem in VRFB based on low-precision ECMs.

To study the robust performance of the proposed MPC algo-
rithm for optimal charging problems in single-cell and multi-

19

cell batteries, studies have been carried out in [[146, [144, [145]].
These studies have shown that an MPC algorithm can solve for
optimal charging current under different physical constraints
such as temperature, SOC and stack voltage. However, the
merits of MPC have not been completely demonstrated in a
battery-level system. To further study optimisation using MPC
in handling multiple uncertainties and solving inaccurate, non-
linear and comprehensive models, researchers have applied it
in hybrid power systems with several components and complex
models. In [147], a new adaptive switched MPC strategy is in-
troduced to optimise the operation of power switches in a pro-
posed photovoltaic-diesel battery (PDB) hybrid system [[147].
The proposed MPC approach operates differently during charg-
ing and discharging, which helps reduce the computational bur-
den using a multi-output and multi-input state-space function
for the hybrid power system. Considering the dynamics of a
hybrid power system, an adaptive MPC approach is proposed
in [148] to handle the uncertainties in the real-time dispatch
between the grid and the ESS. The MPC strategies proposed
in [147, [148] are expandable to large-scale VRFB-integrated
power systems and VRFB-based hybrid storage systems to pre-
dict the charging/discharging behaviours of VRFB systems in
real-time dispatch. Moreover, these predicted behaviours help
the VRFB-BMS in decision-making to find the optimised flow
rate and manage the electrolyte temperature, which provides a
link between VRFB-BMS and EMS for performance improve-
ment on the battery and power system levels.

Fuzzy logic control (FLC). The FLC is a broadly used method
in nonlinear and non-analytical systems. FLC is composed of
a knowledge base, and its parameters can be estimated with-
out a precise system model [149]. Many studies explored the
application of FLC for lithium-ion BMS to protect the battery
from overcharging, over-discharging and realise energy-saving
[150} 1514 [152]. The benefits of applying the FLC algorithm in
lithium-ion batteries are due to the complicated electrochemi-
cal characteristics of these batteries, where a general accurate
battery model is difficult to formulate [153]]. Moreover, human
expertise in the battery charging process is hard to be formu-
lated into the usual control rules [[153]]. Like lithium-ion batter-
ies, the VRFB has complex electrochemical characteristics and
thermal dynamics, and conventional ECMs with offline identi-
fied parameters are not accurate enough at different flow rates
and currents. Besides, the VRFB charging process is influenced
by the temperature, flow rate and currents, which increases the
complexity of establishing control rules for fast charging and
energy-saving. To solve these problems, FLC is applicable in
VRFB-BMS for charging optimisation.

In [153], a fuzzy-controlled active state-of-charge controller
(FC-ASCC) is designed to optimise the charging process of
a lithium-ion battery [[153]. Conventional CV methods limit
the charging speed using a charging current reduction when
the stack voltage reaches a pre-defined limit. The FC-ASCC
offers a new adaptive charging strategy with performance im-
provements compared with conventional CV methods. Another
FLC-based charging methodology is introduced in [154] to en-
hance the fast-charging performance of lithium-ion batteries.



Unlike the FC-ASCC proposed in [153]], this charging method-
ology considered the temperature feedback from a temperature
control unit (TCU). The results in this study show a charging
time reduction of 9.78% without sacrificing the available capac-
ity and charging efficiency while preventing the battery over-
heating [[154]. These studies provide two valuable examples of
achieving battery fast charging with thermal management using
FLC, which applies to VRFBs.

5. Energy management system of VRFB-based power sys-
tems

5.1. Overview

As outlined in the previous sections, VRFB seems to be a
great large-scale ESS. The main application of VRFB could be
in MG with different RES. However, due to the high cost of
components (particularly the ESSs) and the complexity of MG
operation under various sources of uncertainties, a higher level
EMS is needed to coordinate components operation at local lev-
els [42]. This need intensifies in islanded microgrids (IMG),
where careful frequency and voltage regulation and stability are
highly anticipated due to intermittent RES generation and low
system inertia [44]]. As explained in Section 4] a BMS is a local
monitoring and control unit, while an EMS operates the energy
system as a whole to minimise the MG overall operational cost
and maintain the dynamic and steady-state frequency and volt-
age stability [42]. As a result, an EMS should be capable of
generation and storage scheduling based on economic, relia-
bility and resiliency constraints, load management and online
monitoring.

In the following subsections, we review state-of-the-art EMS
for VRFBs and recommend future development for EMS in
VREFB systems.

5.2. State-of-the-art VRFB-based EMS
In [44]], a novel IMG-EMS was proposed to optimise the en-
ergy and reserve scheduling of a VRFB with controlled dis-
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tributed generators. The main objective of the IMG-EMS was
to minimise the operational cost of the IMG while preserving
the frequency stability and ensuring efficiency [44]]. Moreover,
a linear VRFB model was used in the EMS to approximate the
non-linear characteristics of the VRFB system. The MG op-
timisation problem was formulated as a two-stage stochastic
mixed-integer linear programming (MILP) problem to obtain
the global optimal solutions [44]. Foles et al. addressed the
integration of PV-VRFB, and the development of an effective
EMS for the hybrid MG in UEvora [47]. The significance of
this work is that they used the VRFB to smooth the output of
PVs and maintain the ramp rate within a pre-defined range [47]).
Lee et al. discussed a real MG located in Daejeon, South Korea,
and developed an EMS to optimise the VRFB-ESS operation.
This research focused more on studying the economic feasibil-
ity of an office building as a MG. They showed that their EMS
could achieve low operation cost and optimal energy manage-
ment to overcome the low-efficiency problem of VRFBs [11]].
Another EMS is introduced in [48]] to realise optimal power dis-
patch of the VRFB-ESS, PVs and distributed generation (DG)
units in an IMG. The energy management problem was formu-
lated as an optimisation problem to minimise the total opera-
tional cost by frequency regulation and peak shaving and solved
by particle swarm optimisation (PSO) [48]]. In [49], an appli-
cation of VRFB is explored for an EV charging station that is
powered by a PV system. The developed EMS used VRFB to
improve the overall system’s efficiency and reduce strain on the
MG by using a hybrid EKF (HEKF) algorithm [49]. The results
showed that the HEKF-based EMS could optimise the charg-
ing process considering other parameters, such as PV power
estimation, EV user’s demand, and EV configuration from a
database [49]].

The VRFB-based EMSs in the literature have one thing in
common: one type of renewable energy supply and the VRFB
as the sole type of ESS considered in the MG. However, it is
known that a mix of RESs could significantly enhance the utili-
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sation of renewable energy in a more cost-effective way, partic-
ularly in rural and remote areas. In [45], a novel EMS for hybrid
RES-MG and VRFB-ESS was developed to effectively manage
the cost of demand, shave the peaks and optimally schedule the
components within the MG comprising a 10 kWp solar PV sys-
tem, 1 kW wind turbine, and 15 kVA biogas engine generator.
This study demonstrated a scalable and generalised commercial
EMS, which is claimed to be applicable for other large-scale hy-
brid RES-MGs [45]]. Another hybrid RES-MG case study with
solar PV, wind turbines and a biogas engine generator was stud-
ied in [75] investigating the application of an EMS to achieve
zero loss of power supply probability. The proposed EMS con-
sidered the intermittency of the renewable sources, operation
and maintenance costs and revenue generation to form an in-
telligent scheduling system and real-time controller for loss re-
duction [75]. With the development of the internet of things
(IoT) technology, Samanta et al. in [12]] proposed an optimised
energy management scheme for an integrated hybrid MG us-
ing a low-cost IoT-based smart communication platform. The
study used previously studied hybrid RES-MG, and the IoT-
based EMS showed flexibility in smart scheduling and opti-
misation. A hybrid random forest (RF) and coral reefs opti-
misation (RFCRO) algorithm is proposed in [46] to manage
the power flow between a wind turbine, PV array, VRFB and
fuel cell by establishing an overall cost function. In this study,
the RF aims to predict the load demand, and CRO optimises
the MG configuration from the predicted load demand [46].
Simulation results showed the proposed hybrid RFCRO EMS
improved the MG’s productivity, efficiency and power qual-
ity. Also, the proposed method outperformed other approaches,
namely bacterial foraging optimisation - artificial neural net-
work (BFOANN), Ant lion optimisation (ALO), grasshopper
optimisation algorithm Pi sigma neural network (GOAPSNN)
and radial basis function neural network- slap swarm algorithm
(RBFNN-SSA), with faster convergence and higher accuracy
[46].

5.3. Recommendations for future development of EMS

In [44, 147, [11] 148 |49 450 [750 12l 146], various EMSs
are developed for different power systems that integrate with
VRFB. These studies demonstrate the importance of the EMS
to manage the energy system operation for profit maximisa-
tion, smoothing the PV power, overcoming the low-efficiency
problem of the VRFB system, optimising the charging process
of VRFB and so on. However, only a few papers considered
the link between EMS and BMS; hence, resulting in subopti-
mal outcomes. For instance, in [44], the maximum power of a
VRFB and a range of SOC are considered in a simplified non-
linear model as the physical constraints of the VRFB system
in the EMS, and the electrolyte temperature and flow rate are
neglected in operation. Therefore, the efficiency of the VRFB
system may decrease and even cause an emergency shutdown.
A similar situation can arise when the EMS only considers the
objectives of the whole power system without taking into ac-
count VRFB’s specific requirements and constraints. More-
over, in [[126], Trovo et al. identified the thermal precipitation
and energy losses issue caused by standby conditions during
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the long-term operation of VRFB systems. The design of two
standby modes in the VRFB-BMS is important to provide fast
power service for the end-users [[126]]. A standby period can be
predicted by the EMS using historical data, which assists the
BMS in determining the timing of different modes. Integrating
the EMS and BMS is an efficient solution to overcoming these
issues. With advanced state estimation and optimisation tech-
niques, the BMS can provide accurate state estimation feedback
to the EMS, which maximises the system efficiency and main-
tains the electrolyte temperature within a safe limit.

In Fig. |8l a collaborative BMS-EMS scheme is proposed
to enhance the performance of both the power and VRFB
systems. This approach utilised the overall data monitor-
ing/analysis, forecasting, and optimised control features of the
EMS in the power system, together with the real-time ad-
vanced state estimation, optimisation and thermal management
of the BMS in the VRFB system. The EMS receives the pre-
defined objectives from manual instructions and data analysis
from distributed energy resources (DERs)/end-users to forecast
the demand/supply. The predicted values are used by differ-
ent decision-making algorithms to optimise the operation. Be-
sides, the forecast values can be utilised by the VRFB-BMS
to estimate the optimal flow rate in future intervals and predict
the thermal dynamics. In other words, sharing the forecast re-
sults with the BMS allows it to realise predictive control, make
optimal decisions, and protect the battery over a broader time
horizon. Another benefit of linking BMS and EMS is that the
advanced system state estimation technique built in the VRFB-
BMS provides the EMS with more accurate SOC and capacity
estimation as physical constraints for decision-making. Sup-
pose the VRFB system reaches a high/low SOC level. In that
case, the EMS can recognise this issue and prepare to command
another battery for energy storage/distribution. This prevents
overcharging/discharging issues in the VRFBs and maintains
the sustainability of the energy supply chain.

6. Conclusion

In this review article, VRFB’s working principle, current
commercial products, features and applications in power sys-
tems are presented at the beginning for a general overview of
VREFB technologies. The applications of the VRFB in MG, res-
idential and community storage and renewable power plants il-
lustrate the potential of the VRFB system in power smoothing,
energy storage, peak shaving and other applications. Contem-
porary challenges are identified and analysed to highlight the
importance of a well-developed battery model for accurate state
estimation and application in advanced optimisation/control al-
gorithms. Four types of VRFB models are reviewed and evalu-
ated to show their merits and constraints. An additional review
is conducted to outline seven critical functionalities for a well-
design VRFB-BMS. Then, state-of-the-art techniques for state
estimation and advanced control techniques are reviewed from
VRFB-related literature to demonstrate their potential. Besides,
two advanced real-time control methods are introduced to rec-
ommend a future development roadmap for VRFB-BMS. Fi-
nally, several VRFB-based EMS are reviewed, and the impor-



tance of a link between BMS and EMS has been identified to
achieve a more solid performance within the VRFB and hybrid
energy system. Here is a summary of the significance of this
review paper:

Eight types of VRFB losses are summarised to give read-
ers an overall understanding of which factors in battery
design and operation may significantly impact the battery
efficiency performance.

Current applications of VRFB are reviewed and cate-
gorised into three aspects, and their functions are intro-
duced.

Contemporary challenges in the development of VRFB are
identified and analysed based on previous literature and
our studies.

Mainstream VRFB models are studied, analysed and sum-
marised to show their strengths and weaknesses in differ-
ent applications.

Based on the study of other solid-state batteries, a hypo-
thetical BMS approach is proposed that takes into account
the unique attributes of VRFB batteries.

Advanced optimisation and system state estimation tech-
niques are reviewed. Future development recommenda-
tions for real-time control are presented to show the path
to improving the current VRFB-BMS design.

Several VRFB-based EMS are reviewed, and a new col-
laborative BMS-EMS scheme for VRFB-based power sys-
tems is proposed to enhance the performance of both the
power systems and VRFB itself.
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