21

26

35

36

37

38

39

40

41

42

43

44

45

Cloud cover bias correction in numerical weather models for solar
energy monitoring and forecasting systems with kernel ridge
regression

Ravinesh C. Deo®* A. A. Masrur Ahmed®?, David Casillas-Pérez¢, S. Ali Pourmousavid,
Gary Segalf, Yanshan Yuf, Sancho Salcedo-Sanz®

@School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, QLD, 4300,
Australia.

b Department of Infrastructure Engineering, The University of Melbourne, Victoria, 3010, Australia.
¢Department of Signal Processing and Communications, Universidad Rey Juan Carlos, Fuenlabrada, 28942,
Madrid, Spain.

4 The University of Adelaide, School of Electrical and Electronic Engineering, Australia
¢ Department of Signal Processing and Communications, Universidad de Alcald, Alcald de Henares, 28805,
Madrid, Spain.
fCS Energy, Level 2, HQ North Tower, 540 Wickham St Fortitude Valley, QLD, 4006, Australia.

Abstract

Prediction of Total Cloud Cover (TCDC) from numerical weather simulation models, such as
Global Forecast System (GFS), can aid renewable energy engineers in monitoring and forecast-
ing solar photovoltaic power generation. A major challenge is the systematic bias in TCDC
simulations induced by the errors in the numerical model parameterization stages. Correction
of GFS-derived cloud forecasts at multiple time steps can improve energy forecasts in electricity
grids to bring better grid stability or certainty in the supply of solar energy. We propose a new
kernel ridge regression (KRR) model to reduce bias in TCDC simulations for medium-term
prediction at the inter-daily, e.g., 2-8 day-ahead predicted TCDC values. The proposed KRR
model is evaluated against multivariate recursive nesting bias correction (MRNBC), a con-
ventional approach and eight machine learning (ML) methods. In terms of the mean absolute
error (MAE), the proposed KRR model outperforms MRNBC and ML models at 2-8 day ahead
forecasts, with MAE = 20-27%. A notable reduction in the simulated cloud cover mean bias
error of 20-50% is achieved against the MRNBC and reference accuracy values generated using
proxy-observed and non-corrected GFS-predicted TCDC in the model’s testing phase. The
study ascertains that the proposed KRR model can be explored further to operationalize its
capabilities, reduce uncertainties in weather simulation models, and its possible consideration
for practical use in improving solar monitoring and forecasting systems that utilize cloud cover
simulations from numerical weather predictions.

Keywords: Solar energy generation, Bias correction, Numerical weather models, Global
Forecast System, cloud cover study, solar radiation prediction.

PACS: 0000, 1111

2000 MSC: 0000, 1111

1. Introduction

Since its first advent by Richardson in 1922 [I], Numerical Weather Prediction (NWP)
models have become the gold standards in real-time weather forecasting. Systematic errors
due to physical processes, however, are not addressed correctly in NWP models, and are usu-
ally parameterized. This issue induces a significant model bias in several simulated variables
such as cloud movements and rainfall. The fidelity of NWP models are largely associated
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with model design factors, such as incorrectly parameterized physical equations and internal
variability of these NWP type models [2]. To utilize NWP simulated variables for operational
purposes such as storms or cyclone prediction, climate change and other atmospheric studies,
data pre-processing methods are required to significantly reduce the simulated biases [3,[4]. One
particular practical use of forecasted cloud cover, particularly over multiple forecast horizons
from NWP models, lies in solar irradiance monitoring for a given area, that has in turn appli-
cations in rooftop solar and solar farm photovoltaic (PV) power output predictions. Accurate
forecasting of solar PV outputs will ensure smooth operation of the electricity grids by allowing
effective operational planning with prior information on energy supply intermittencies due to
cloud movements. To implement this, NWP-based cloud cover forecasts without significant
bias are essential [5].

The Total Cloud Cover (TCDC) is a chief cause of significant intermittency in solar energy
supply since a PV panels output can drop down as much as 60% in a few seconds due to a cloud
band [6]. This can also happen for the case of the sun travelling across the sky obscured by
a passing cloud band, causing major fluctuations in direct normal irradiance reaching a solar
PV panel, with the subsequent drop in power generation. Furthermore, a cloudy day can also
impact the solar PV output in a much different way as the passing clouds affect solar energy
production [6]. Therefore, accurate cloud forecasts over short-term (i.e., sub-hourly, hourly,
inter-hourly) and medium-term (i.e., daily or inter-daily) scales have industry implications in
solar energy monitoring. To support decisions regarding the sustainability of solar power supply
and its integration into electricity grids, reliable forecasts of cloud cover are crucial [7, [§].

Typically, TCDC is defined as the fraction of the sky covered by all visible clouds [9], so,
unlike the other weather variables such as temperature and precipitation, the TCDC observa-
tional datasets are different in terms of their characteristics [7]. TCDC is also very difficult
to monitor over a wide range of spatial scales using physical apparatus, and therefore, are of-
ten utilized from NWP model simulations. For example, the movement of clouds over a solar
PV panel can be relatively stochastic (i.e., rapidly changing, unpredictable, or intermittent).
These uncertain features can no doubt hamper solar energy production and supply rates, so it
is highly desirable to construct a better understanding of the features present in total clouds
that affect a solar energy generation system.

This paper proposes a new Machine Learning (ML) method to correct bias produced in
cloud cover forecasts derived from Global Forecast System (GFS) weather simulation model [10].
Maintained by the National Centre for Environment Prediction, the GFS model is a physics-
based system with 0.25° x 0.25° grid resolution with three hourly (3h) temporal resolution for
data produced each day. The GFS model simulates the cloud cover, 2-meter height temperature,
zonal and meridional wind speed, downward shortwave radiation flux and other atmospheric
variables. The GFS model outputs are employed in solar PV prediction modules, for example,
in the polib [11] package that is adopted by electricity industries to monitor their solar gener-
ation potentials. In particular, pvlib is a python-based community-supported tool with sets of
functions and classes to simulate the output of a solar PV system using predicted cloud move-
ments. Developed by the Sandia National Laboratories, pvlib [I1] provides solar positions, clear
sky irradiance, irradiance transposition, direct current power and direct current-to-alternating
current power conversions, and therefore, has found applications in the solar energy indus-
try [12, 13]. Apart from pulib [11], there are other types of solar photovoltaic energy prediction
software including but not limited to, Solpy, Pandapower, Pyleecan, Scipy, Numpy, and Mat-
plotlib [14). While these tools could be useful predictive modules in solar energy monitoring
systems, they require GF'S or other NWP model simulated clouds to estimate the direct nor-
mal irradiance. However, significant bias in predicted clouds (or other variables related to solar
irradiance) lead to inaccurate prediction of solar energy and therefore, add to generation and
demand imbalance in real-time; hence higher electricity prices.
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In order to incorporate forecasted cloud cover or weather model variables in solar moni-
toring systems, reducing the bias in these variables has traditionally focused on correcting the
individual variable representations across a single time (e.g., daily, monthly). However, these
corrections aim to determine the bias in a statistical or a quantile sense and, therefore, utilise
corrected data for future scenarios of solar energy production.

Daily and monthly standardization can address systematic biases in the means and the
variances of simulated variables [15], [16] to support renewable energy generation applications.
Bias correction with non-parametric approaches such as quantile matching [17, 18], 19] 20] and
equidistant quantile [2I] was found to be successful methods in reducing errors in weather
model variables. Still, a major shortcoming of such techniques is that they tend to examine
only the bias in the distribution of GFS (or another model) without considering the impact of
its persistence, which continues to influence the accuracy of simulated variables [22].

We refer to the study of Johnson and Sharma [23] that suggests nested bias correction (NBC)
approach can reduce the variability and persistence at different time scales. Also, techniques
like multivariate bias correction (MBC) [24] 25], copula-based bias correction [26], empirical
copula bias correction (EC-BC) [27], distribution transfer methods [20], power transformation
methods 28, 29, 30] and local intensity scaling methods [30, 1] have been utilized in many
spatial locations to correct bias in weather variables. To the best of the authors’ knowledge, no
prior method has successfully eliminated the biases, given that relationships between simulated
and observed variables are relatively complex [32]. To address this problem, ML has thus
been demonstrated as an alternative method to model highly non-linear features in simulated
variables relative to observations or proxy-observed variables [33, 34] [35], 25]. Based on their
promising performance, ML is therefore becoming a potential tool to correct bias in numerical
weather variables [25].

The promise of ML arises from its capability to discover the associations between predictors
and a target variable without considering the underlying physical system’s operation [36, 37, 38].
This black-box method is advantageous in reducing the mathematical complexity of a physical
model by using pattern recognition that is better understood in contrast to a physical model
employing partial differential equations with a fixed set of initial conditions [39, 40]. The
initial conditions in physical models are somewhat difficult to predict accurately over a wide
range of spatial and temporal domains. One type of ML model, the artificial neural networks
(ANN), has previously been applied to correct inter-instrument bias [41, 42]. On the other
hand, support vector machine (SVM) with its theoretical foundations in statistical learning has
also been recognized as a sophisticated ML tool [43], [44] with SVM models using a kernel-based
ANN to address the drawbacks of a conventional model [45]. Due to the use of kernel functions,
SVMs are therefore quite resilient and efficient in non-linear modelling of noisy data [33], 35].

This study, therefore, adopts an alternative form of ML algorithms known as kernel ridge
regression (KRR) for bias correction of the Total Cloud Cover forecasts from the GFS-based
numerical weather model. The proposed KRR method [46] integrates kernel functions and
ridge regressions to better capture the non-linear correlative features to address regression-
based over-fitting issues found in other methods [47]. The KRR method uses a regularized
variant of a least-square method to learn the global feature extraction functions; hence, it can
potentially predict any target variable with greater accuracy compared to other ML models.
Although ML has previously been used in bias correction, the proposed technique remains
somewhat under-explored. More generally, the KRR method has been used in other prediction
problems, including precipitation [48], drought [49], wind speed [50} 51], 52, 53], [54] and also solar
power [55] and thus has offered a significant advantage in terms of computational simplicity
relative to a conventional SVM or other ML models.

The novelty of this study is (i) to develop for the first time a KRR-based bias correction
model for Total Cloud Cover forecasts (TCDC) at 2-8 day ahead forecast horizons at a solar
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energy farm in Queensland, Australia, (ii) to specifically test the capability of a KRR model
in reducing the errors in TCDC forecasts found in the GFS-derived TCDC forecasts, (iii)
to benchmark the proposed KRR model in respect to the multivariate recursive nesting bias
correction approach as a widely used conventional method and the reference values generated
by proxy-observed and non-corrected GFS-predicted TCDC in the model’s testing phase. To
fulfil this aim, we adopt two distinct modelling strategies: Firstly, the KRR model is trained
using 2-m height temperature, 10-m zonal (U)-wind, 10-m meridional (V)-wind, downward
shortwave radiation flux, and Total Cloud Cover forecasts that are regressed against proxy-
observed (i.e., GFS-Analysis) data. Secondly, only the cloud cover data (i.e., TCDCgrs rorecast )
are incorporated as single inputs (with TCDCgrg_analysis as a target variable) to test the overall
performance of this alternative method to particularly reduce the bias in cloud cover forecasts.

To ascertain its practicality, the proposed KRR model is compared with conventional bias
correction methods based on multivariate recursive nested bias correction (MRNBC) [25] and
ML methods using Bayesian ridge regression (BNR) [56], Decision Tree Regression (DTR) [57],
Gradient Boosting Regressor (GBR) [58], Histogram-based Gradient Boosting Regressor (HGBR)
[59], k-nearest neighbour regression (KNN) [35], multivariate adaptive regression splines (MARS)
[60], extreme gradient boosting (XGB) and random forest (RF) [58] as competing methods to
benchmark the KRR model. Finally, the KRR model is tested at inter-daily time horizons
using Day 2 to Day 8 cloud cover forecasts using real solar farm data (Columboola Solar Farm
in Queensland, Australia) to test the developed predictive system for its application in solar
generation monitoring and supporting industry decisions to manage the solar power supply in
the national electricity grid.

The rest of the paper has been structured in the following way: the next section presents
the materials and methods, which includes a description of the data and study area, a summary
of the GF'S capabilities and the proposed KRR and its adaptation for bias correction of Total
Cloud Cover. Section [3| presents the simulation study, discussing different experiments and
comparisons versus alternative ML approaches such as KNN, MARS or Random Forest.

2. Materials and Methods

2.1. Study Area

We implement a newly developed KRR model for cloud cover bias correction for a solar
farm in Queensland, referred to as Australia’s “Sunshine State”, with enormous solar energy
potential [61], 62]. Under United Nations Sustainable Development Goal #7 (SDG7) [63], the
State government is committed to increasing renewable energy uptake by up to 50% of the
overall future energy supply by 2030. These projects represent an investment of $8.5 billion,
the creation of 7000 jobs, the installation of 4600 MW of renewable energy production and
a reduction of more than 11 million tonnes of COy. As of January 2021, Queensland had
6200 MW of renewable plants, including rooftop solar systems. According to the government,
renewable energy fulfils 20% of electricity consumed [64], which is expected to increase to 50%
by 2030. To improve the existing methodologies that can assist the solar energy producers, this
study considers the case of TCDCgrs Forecast Obtained at Columboola Solar Farm in Queensland,
Australia. This solar farm, with 417,000 solar PV modules, is expected to produce ~ 440 GWh
of energy annually after its completion in 2022, provide electricity to 6 % of all homes in the
state, create hundreds of regional jobs and produce enough electricity for 75,000 homes for 35
years.

Figure [1| shows the geographic location of the study site where the proposed KRR model
for cloud cover bias correction was implemented. Table (1| lists GFS-forecast variables (i.e.,
2-metre height temperature, 10-metre wind speed, Total Cloud Cover, and Downward Short-
wave Radiation Flux) used as inputs for the proposed model and the GFS analysis variable
(i.e., Total Cloud Cover) used as the proxy of the observed data.

4
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Figure 1: Geographic location of study site: Columboola solar energy farm in Queensland, Australia, where the
proposed kernel ridge regression (KRR)-based ML model for bias correction of TCDC was developed utilizing
the Global Forecast System (GFS) analysis (i.e., proxy-observed) and forecasted variables.

Table 1: List of Global Forecast System (GFS)-forecast variables (i.e., 2-metre temperature, 10-metre wind
speed, Total Cloud Cover, and Downward Short-wave Radiation Flux) used as KRR model inputs, and GFS
analysis variable (i.e., Total Cloud Cover used as proxy-observed) in the proposed KRR model used in bias
correction problem.

Variable Short Name Variable Description Level Units
KRR Model Inputs: GFS Forecast (Inputs)

T2mMaFs Forecast 2-metre temperature Height Above Ground K

U GFS-Forecast 10-metre U wind component Height Above Ground ms™!
V GFS-Forecast 10-metre V wind component Height Above Ground ms™!
TCDCgrs.Forecast Total Cloud Cover Atmosphere %
DSWRF grs.Forecast Downward short-wave radiation flux Surface Wm 2
KRR Model Target: GFS Analysis (proxy-observed)

TCDCGFs-Analysis Total Cloud Cover Atmosphere %
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2.2. Global Forecasting System Cloud Cover and Meteorological Data-sets

We develop KRR model using GFS data-set that are managed by National Oceanic and At-
mospheric Administration (NOAA) which aims to deliver an operational set of global weather
predictions [65]. The GFS forecast system aims to produce forecast variables up to 16 days in
advance with a temporal resolution of 3h and 6h, and a spatial resolution of 0.259x0.25° [66].
The GFS is not a frozen system, so its dynamic core and physical package are modified reg-
ularly [67]. For example, after a single-member prediction was replaced by a GFS ensemble
mean forecast in late 2001, this method was modified again in late 2003 to properly incorporate
the bias-corrected GFS ensemble mean forecast [68], 69)].

As this physics-based model is initialised every three hours, newly predicted variables are
generated eight times a day at 0 UTC, 3 UTC, 6 UTC, 9 UTC, 12 UTC, 15 UTC, 18 UTC,
21 UTC, and 24 UTC. The GFS utilises Global Data Assimilation System (GDAS) [70] that
augments a gridded three-dimensional model space with surface observations, balloon data,
wind profiler data, buoy observations, radar observations, or satellite observations. The GDAS
model output is generated four times daily and includes projections for the next three hours,
six hours, and nine hours.

The present study builds a new modelling strategy to correct the inherent bias in GFS-
derived TCDC forecasts (i.e., TCDCgps Forecast) for 3 distinct forecast horizons, which ac-
cording to Queensland daytime zones (i.e., UTC + 10), are: at 0 UTC (10 AEST), 3 UTC
(13 AEST), and 6 UTC (16 AEST). The 3-h GFS experiments, initialized from 0000 UTC
compared to AEST (Australian Eastern Standard Time), are illustrated schematically in Fig-
ure . For comparison, the GFS-analysis Total Cloud Cover (TCDCgrs analysis) is used as a
proxy for the observed cloud cover generated by the GFS model. We also utilised temper-
ature (T2mgrs_Forecast), downward shortwave radiation flux (DSWRFGrs Forecast), wind speed
(UgFs-Forecast; and Vars_Forecast) 10 reduce the bias through our newly proposed KRR modelling
strategies.

2.3. Theoretical Overview of Kernel Ridge Regression

This section details the proposed KRR model whereas Appendix B shows the details of
the conventional bias correction MRNBC method. For details of comparison models, readers
can consult several other sources [57, [71], 72, [73] 56, B35, 60, 58, (9]. In general, KRR is a
novel algorithm with an unlimited number of non-linear transformations of the independent
variables used as regressors [74]. KRR model utilises ML strategy based on kernel and ridge
regressions [40] to avoid issues of overfitting found in other regression methods. It, therefore,
utilizes regularizations and a kernel technique to capture non-linear connections viz [49].

1
argmin S 1fy — ol + ALy (1)
o=1

fo= Zo‘pw(xpa‘rO) (2)

The Hilbert normed space of Equation [1/is defined as ||-|| 7 and « is the Lagrange multiplier. For
a given m x m kernel matrix, K is developed by w(z,,z,) from some fixed predictor variables
where y is the input ¢ x 1 regression vector and is the ¢ x 1 unknown situation vector that
reduces as follows:

y = (K+ ) (3)

y= Zaow(xmf) (4)
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In model training stage, KRR technique is applied by solving Equation (3)) but utilised to predict
the regression of an unknown sample z in Equation in the testing stage. To achieve the
highest accuracy possible, linear, polynomial, and Gaussian kernels are employed [47, [75], [76].

2.4. Implementation of Machine Learning (ML )-based Bias Correction

The fundamental idea behind bias correction is to identify a sufficiently adaptable and flex-
ible approach that is capable of learning from available data and then constructing a prediction
function that performs well across the projection period (i.e., forecast horizon). To perform
robust bias corrections, it was critical first to optimise the architecture of the proposed KRR
model, and then to take advantage of the associative links between the bias-corrected TCDC
and the fully learned ML model.

An ML-based Python package [77], scikit-learn [78] [79], was thus employed to develop
the the proposed KRR and other benchmark models (i.e., BNR, DTR, GBR, HGBR, KNN,
MLR, XGB, and RF). For the case of MARS model, we have used the py-earth package, and
programming software R for traditional bias correction (i.e., MRNBC) as applied by Yang et
al. [25] for correction of bias in global climate models. As we define in Section 2.5 six statistical
measures are used to evaluate the experimental outcome of the bias-corrected model, created
using Intel i7 processor running at 3.6GHz and 16 GB RAM. Visualisation of bias-corrected
TCDC dataset were made through matplotlib [80], seaborn [81] and Microsoft Excel.

TCDC bias
corrected and
comparison
study

ML-based bias

correction '
A

pproach-2

Figure 2: A schematic of the proposed KRR bias correction method benchmarked against conventional MRNBC
and nine ML (i.e., BNR, DTR, GBR, HGBR, KNN, MARS, XGB, and RF) models. Interpretive Statement: The
proposed KRR bias correction method uses: (i) Approach-1 taking in five GFS outputs: i.e., TCDCgFs.Forecasts
Downward Short-wave Radiation Flux DSWRFGrs Forecast, 2-meter temperature (T2mgrs Forecast), zonal
UGFs-Forecast and meridional Vgrg porecast against the Total Cloud Cover TCDCgrs-analysis (or the refer-
ence or proxy-observed value) as the target, (ii) Approach 2 taking in TCDCGps Forecast a$ an input with
TCDCgars-Analysis as a target based on which the bias needs to be corrected.

Figure [2] is a schematic representation of KRR-based bias correction approach including
the conventional (i.e., multivariate recursive nested bias correction, MRNBC) methods. In
summary, the proposed KRR method is implemented as follows:

1. Data: GFS-forecast and GFS-analysis data were downloaded from NCEP repository [82].
As this repository provides 384-hours ahead data at a 3-hr interval, this study has only

measured three time periods within the Brisbane daytime zone considering the relevance
to solar PV power production at 0 UTC, 3 UTC, and 6 UTC.

Figure [3| shows a schematic illustration of 3-h GFS forecast experiments initialized at
0000 UTC, compared with the Australian Eastern Standard Time (AEST). We adopted
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Figure 3: Schematic illustration of the 3-h GF'S forecasts initialized at 0000 UTC compared with Australian
Eastern Standard Time (AEST) used to develop the proposed KRR bias correction method.

the pygrib python package to extract five selected variables and the datasets were sorted
for Day 2 to Day 8 forecast. To apply the bias correction method, we adopted the
TCDCgrs-analysis dataset as a proxy for the observation and used these to correct the
systemic biases that were present in the TCDCqrs_rorecast dataset.

Table 2] shows the descriptive statistics of the GFS forecast and the GFS analysis data-set
used to develop the proposed KRR model.

. Pre-possessing and post-processing: Missing values were replaced using the pre-

ceding seven data points and all data normalised to be bounded by [0, 1] [83]. As the
TCDC dataset has significant zero values as a normal feature of cloud properties due
to the presence or absence of cloud, this aspect can affect an ML model’s performance.
We have therefore used four normalization techniques with the best normalization tech-
nique selected based on the minimum mean absolute error (MAE). The normalization
techniques trialled were: max-min normalization (Thsinnras), Maximum absolute normal-
ization (Thrazaps), z-score normalization (Ts), and robust scaler normalization (Trepust)
with their mathematical formulations stated as follows:

(a) Max-min normalization (Thsinnraz):

T inMazx — 744 N
MinAt (Tmax - Tmm)

(b) z-score normalization (Ts:q):



Table 2: Descriptive statistics of GFS forecast and GFS analysis (i.e., proxy of the observed) data used to
develop the proposed KRR model. Data were acquired from GFS model over January 1, 2019 and April 30,
2020 used for training 70% and testing (30%) where the 15% of the training set is specifically used for model
validation.

Variable Forecast Horizon Max Min Mean Skewness Kurtosis
Day 2 1100 0.00 601.07 -0.22 -1.38

a Day 3 1100 0.00 605.30 -0.23 -1.46

= 3 Day 4 1100 0.00 595.55 -0.20 _1.47
Eog Day 5 1100 0.00 595.71 -0.20 -1.46
c% R Day 6 1100 0.00 599.78 -0.20 -1.39
a Day 7 1090 0.00 604.91 -0.24 -1.44
Day 8 1100 0.00 605.01 -0.27 -1.42

Day 2 100 0.00 27.82 1.01 -0.56

o Day 3 100 0.00 29.38 0.91 -0.74

CSD 7 Day 4 100 0.00 32.80 0.73 -1.04
) % Day 5 100 0.00 32.95 0.73 -1.05
O = Day 6 100 0.00 32.62 0.70 -1.12
H Day 7 100 0.00 31.88 0.77 -0.96
Day 8 100 0.00 33.87 0.66 -1.11

Day 2 314.55 285.38 301.64 -0.31 -0.62

" Day 3 314.76  285.36 301.57 -0.35 -0.59

‘5 7 Day 4 313.59 285.24 301.49 -0.33 -0.67

= Day 5 314.74 284.35 301.45 -0.34 -0.61

g = Day 6 314.65 284.76 301.53 -0.33 -0.54
Day 7 315.22 285.20 301.45 -0.34 -0.55

Day 8 313.45 285.54 301.70 -0.45 -0.42

Day 2 10.49 -12.23 -4.25 0.99 0.94

Day 3 7.38 -13.03 -3.50 0.49 -0.37

o 7 Day 4 856 -11.41 -4.37 1.08 1.09

9] § Day 5 8.80 -12.24 -4.37 1.02 0.95

- R Day 6 8.83 -10.67 -4.46 1.13 1.25
Day 7 10.93 -11.93 -4.52 1.19 1.74

Day 8 885 -13.19 -4.05 0.66 0.01

Day 2 10.29 -7.74 0.14 0.22 -0.08

Day 3 10.06 -9.55 -0.70 -0.03 -0.34

o 7 Day 4 8.53 -7.08 0.09 0.25 -0.10

U § Day 5 8.65 -7.22 0.12 0.31 -0.03

> g Day 6 957 -6.64  0.03 0.30 -0.10
Day 7 8.58 -10.66 -0.07 0.22 0.10

Day 8 13.70 -7.37 -0.22 0.21 0.35

Day 2 100 0.00 31.70 0.78 -1.01

o Day 3 100 -5.83  31.82 0.78 -1.02

C(DD a Day 4 100 -5.83  31.89 0.77 -1.03
) Té Day 5 100 -5.83  31.95 0.77 -1.03
O < Day 6 100 -5.83  31.95 0.77 -1.03
& Day 7 100 -5.83  31.92 0.77 -1.03
Day 8 100 -5.83  32.02 0.76 -1.04
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(¢) Maximum Absolute normalization (74 4ps):

T;

T arAbs = 35 7 A7 7.\ 7
MazAb Max(Abs(x)) (7
(d) Robust scaler normalization (Tgropust):
T, — 1T,
T obust — = 3
ot = 0,0, ®)

where T} are respective predictors, 7j is the average of T}, Tinn is the minimum value
for predictors, T},4, is the maximum value and Std is the standard deviation, T, is the
median of T; and (Q3 — @1) is the interquartile range between 15 quartile (25'") and 3
quartile (75'") quantile. As there is no specific rule for data partitioning [83], [84], we used
70% training, 15% testing with a validation set as the last 15% of the training set for all
data collected between 1 January 2019 and 30 April 2020.

. Implementation of ML-based Bias Correction: This study has developed a total

of 10 different models (i.e., the proposed KRR model along with nine other benchmark
models) to correct the bias in TCDCgps_porecast for data over Day 2 to Day 8 forecasts.
Our MARS model considers multivariate data with basis functions to investigate the
predictor variable and identifies the predictor and target features [85]. The DTR is a
non-parametric, supervised system to approximate a sine curve using ‘if-then-else’ deci-
sion where generally, the deeper the tree, the more complicated a rule could be to fit
a model. A prime task of ML is to set hyper-parameters for optimal bias correction
method, so an optimum architecture of the KRR model was created using GridSearchCV
(regularization strength, o = 1.5; gamma parameter is fixed to None, with a degree of
the polynomial kernel is 3 and the kernel is linear; see Table . The performance of
ML bias correction was compared with traditional bias corrections (i.e., MRNBC), and
the reference value usually calculated between TCDCgrs rorecast and TCDCgrs- Analysis Was
used with TCDCgrs-aAnalysis considered as the proxy of the observed cloud cover dataset.

. Implementation of MRNBC Bias Correction Method: We now detail the proce-

dure developed to correct bias using the MRNBC method, which is a traditional non-
ML approach used previously. We made univariate adjustments followed by multivari-
ate corrections using a time series with appropriate bias correction statistics generated
for all variables and locations. Therefore, the MRNBC method corrected the bias in
TCDCqFs-Forecast by removing the current GFS mean and adding the observed mean. The
time series adjusted in Step-2 are standardised, and this residual time series is adapted
for bias using auto and cross-correlations for day lag-1 and lag-0. To summarise the
corrections necessary at each time scale, a weighting factor may also be computed. The
TCDCgFs-Forecast daily time series is multiplied by the weighting factor from each time
scale to produce the final bias-corrected time series. The MRNBC bias correction proce-
dure is schematized in Figure

. Two Different Approaches for Bias Correction We adopt two different approaches

to correct the bias in GFS-based cloud cover predictions. The first approach, denoted as
Approach-1 in this paper, integrates five GFS data series comprised of TCDCgrs_rorecast
TQmGFS—Forecasta DSWRFGFS—Forecasta UGFS—Forecast and VGFS—Forecast> that are used as the
proposed KRR model’s input variables. This approach utilizes the exogenous meteoro-
logical variables that are used to reduce the bias in the predicted TCDC. The second
approach, denoted as Approach-2, uses a single matrix TCDCgps_porecast data-set where
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Table 3: The optimal hyper-parameters of the proposed KRR model, including that of the other benchmark

models include machine learning (i.e., BNR, DTR, GBR, HGBR, KNN, MARS, MLR, and RF)

Model Name  Hyper-parameters Acronym Optimum
Type
© Regularization strength alpha 1.5
E ) Kernel mapping kernel linear
.i g KRR  Gamma parameter gamma None
= 2 Degree of the polynomial kernel degree 3
© Zero coefficient for polynomial and sigmoid kernels coef0 1.2
Maximum number of iterations n_iter 200
Stop the algorithm if w has converged tol 0.0001
Shape parameter for Gamma distribution over al- alpha_1 1e-05
BNR pha
Inverse scale parameter over alpha alpha_2 1e-05
Shape parameter for Gamma distribution over lambda_1 1e-06
lambda
Inverse scale parameter for Gamma distribution lambda_2 le-04
" over lambda
g The initial value for alpha alpha_init None
o Maximum depth of the tree max_depth None
= DTR Minimum number of samples for an internal node min_sample_split 2
%0 Number of features for the best split max_features Auto
E Number of boosting stages n_estimators 102
x Minimum number of samples for an internal node min_sample_split 2
'j GBR  Learning rate learning_rate 0.1
g Maximum depth of individual regression estima- max_depth 3
< tors’ estimators
g Number of features to consider for the best split max_feature None
v Learning rate learning_rate 0.1
= Maximum number of iterations max_iter 120
g HGBR maximum number of leaves for each tree max_leaf nodes 31
5 leaf_
o Maximum number of bins max_bins 260
f-'g Number of neighbours n_neighbors 5
Weights Weights uniform
The algorithm used to compute the nearest neigh- algorithm auto
bours
KNN Leaf-size passed leaf size 30
Power parameter for the Minkowski metric p 2
The distance metric to use for the tree. metric minkowski
Additional keyword arguments for the metric metric_params none
The number of parallel jobs n_jobs int
MARS maximum degree of terms max_degree 1
Smoothing parameter used to calculate GCV penalty 3.0
Number of trees in the forest n_estimators 120
Maximum depth of the tree max_depth 2
RF . . . .
Minimum number of samples for an internal node min_sample_split 2
Number of features for the best split max_features auto

11
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historical patterns and the persistence are used to reduce the bias in the predicted TCDC
produced by the GFS model. Both approaches use TCDC analysis data-set as the proxy
of the observed variable generated by the GFS Numerical Weather Prediction Model.
To arrive at the optimal method used in reducing bias in the predicted TCDC, we have
examined 10 models (nine based on ML and MRNBC-based conventional model) to iden-
tify the best bias correction performance in comparison with the reference values between
TCDCqgrs-rorecast and TCDCgrs Analysis for the present study site.

2.5. FEvaluation of ML-Based Bias Correction Method

The effectiveness of the proposed KRR model, including all of the ML-based and conven-
tional bias correction methods employing the reference value (calculated between TCDCgrs.Analysis
and TCDCgrs_Forecast ) 1 evaluated. We adopt a range of performance metrics such as the Pear-
son’s Correlation Coefficient (r), root mean square error (RMSE) and mean absolute error
(MAE) in the testing phase where TCDCgrs analysis (i-€., the proxy-observed) and corrected
TCDCGFs Forecast datasets are compared). In its most general sense, the effectiveness of any
model is determined by the agreement between the corrected (i.e., TCDC) and the proxy-
observed (TCDCgrs-analysis) data. While RMSE is a more appropriate measure of performance
than MAE when the error distribution is Gaussian [86], for a more persuasive model, the Will-
mott’s Index (WI) [87, 88, [89] and Legates—McCabe’s Index (LM) [90, 91, [92] are employed in
this study.

Mathematically, these are expressed as follows:

Correlation coefficient (r):

S (TCDC ge — TCDC 4n1)(TCDC e — TCDC pc)

VX (TCDC any, — TCDC anz)*\/ Sy (TCDC 5 — TCDC e )?
Mean absolute error (MAE):

r

n

1

MAE =~ ;| TCDC g — TCDC gni (10)
Root mean squared error (RMSE):
1 n
RMSE = | =" (TCDC o = TCDC.ay)? (11)

i=1
Willmott’s Index of Agreement (d):

i S (TCDC pe — TCDC any)? 12
Zy:n(l TCDCBC — TCDCANL| + |TCDCANL — TCDCANL|)2

Legates -McCabe’s Index (LM):

IM—1— > iy | TCDC g — TCDC gy (13)
Y ITCDC gnp, — TCDC gy
Mean Absolute Percentage Deviation (MAPD: %):
100 <~ |TCDCpc — TCD
wapp = 10§~ TCPCse — TCDC (14)

n TODCANL

1=

12
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Consider multiple time series of GFS forecast and GFS
Analysis Variable

|

Decide Total Number of Iterations - NTR

Estimate Mean, Standard Deviation, Lag-0 and Lag-1 Auto
and Cross Correlations of GFS Analysis Variable

Estimate Mean, Standard Deviation, Lag-0 and Lag-1
Auto and Cross Correlations of GFS Forecast Variable

Correct Daily GFS Forecast for Mean, Standard Deviation, T

. reat
Lag-0 and Lag-1 Auto and Cross Correlations el [
corrected

Form Monthly Time Series of Daily GFS Forecast Bias daily
Corrected Variable and Correct for Biases in Mean, series as

Standard Deviation, Lag-0 and Lag-1 Auto and Cross GFS
Correlations forecast

series

Using Equation 8, and Aggregated and Bias Corrected
Time Series of Variables at Monthly, Seasonal and Annual
Levels, adjust the Bias Corrected Daily Time Series

Ifitr <NTR

Compare itr
with NTR

Ifitr = NTR

Figure 4: Schematic of the conventional MRNBC method presented in this study as a comparison method
against the proposed KRR bias correction method used to correct bias in TCDC.

where TCDC 4y, and TCDC g, respectively, represents the proxy of the observed (T'C DCgrs— analysis)
and bias-corrected data series for 1" tested value, and TCDC 4n;, and TCDC p¢ refer to their
average values, accordingly. The number of observations is denoted by N, while the coefficient
of variation is denoted by CV.

In comparing the different models adopted for this bias correction problem, this study uses
promoting percentage of the Legate-McCabe’s Index (Apy (%)) as a complementary measure
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of the model efficiency. The Ay (%) is calculated comparing the actual LM obtained using the
proposed KRR and LM values generated by the KNN, MARS, and RF models. Mathematically,
the Ay (%) is computed as follows:

LMygr — LM,
Apn(%) = K’ZRMKRR COM 100 (15)

where LMcoy represents the LM value of the benchmark model (e.g., KNN, MARS, or RF).

3. Results and Discussion

The practicality of the proposed KRR model for bias correction is established using two
distinct approaches as shown previously in Figure 2 We now evaluate the amount of bias that
has been reduced by applying these approaches considering TCDCgps_rorecast data relative to the
proxy-observed (TCDCgrs analysis) data using the proposed KRR model. All of the comparative
ML models (BNR, DTR, GBR, HGBR, KNN, KRR, MARS, MLR, XGB, and RF) are also
assessed using statistical metrics (Equations , infographics and visualisations to determine
the degree of agreement between the corrected TCDCgps Forecast and the proxy-observed variable
(TCDCgrs-Analysis). Overall, the performance metrics indicate that the proposed KRR model
has outperformed all of the alternative models in the testing phase, which is also demonstrated
by a superior value of r and d and a low value of RMSE and MAE in the independent testing
phase discussed in the following section.

3.1. Bozxplots for the Distribution of Errors After Bias Reduction

According to the results presented in Figures[5]and [6] an in-depth examination of Willmott’s
Index (d) and the root mean squared error (RMSE) provides persuasive evidence that the
proposed ML approaches offer substantial benefits in reducing the bias compared with the
traditional MRNBC method and the respective reference values tested for all the forecast days
over which the GFS Total Cloud Cover forecast is considered. This figure clearly shows the
closer distribution of RMSE and d values for the case of ML models using Approach-2 (see
Figures [fb and [6p) compared with Approach-1 (Figures [Fp and [6h). The lower end of the plot
for the value of d is relatively situated within the lower quartile (25'") and the upper quartile
(75¢n) range for the Day 2 GFS forecast data series.

There appears also to be a single outlier found further than the the 75" percentile. However,
for Day 3 to Day 8 GFS forecasts, the bias correction of TCDCgrs.Forecast time series results
in a lesser improvement, except for Day 6 forecasts. This is reasonable as the uncertainties
in TCDC are likely to increase with an increment in the forecast horizon. Noticeably, as the
forecasting period changes from Day 2 to Day 8, the performance of our bias correction model
decreases significantly. Despite this, we can note from Figures [ and [6] that ML models can be
considered the most potent strategy for bias correction at solar farms, at least for the present
study site and the suite of models considered.

Further analysis is performed through a boxplot of errors (i.e., RMSE) for results obtained
through Approach-2. This shows the bias-corrected Total Cloud Cover vs. TCDCGFS-Analysis
of all the ML models as illustrated in Figure [fb. For Day 2 TCDCgrs.Forecast data series, it
is noticeable that the dispersion of RMSE for bias correction methods concerning the quartile
values has distinct outliers. The lower end of the boxplot seems to lie precisely between the
lower quartile (25 percentile) and upper quartile (75™ percentile).

Likewise, the correlation coefficient (d) and RMSE are higher for the other days (Day 2 to
Day 8) forecast except for Day 6. Therefore, the improvement of bias using ML methods signifies
improved performance compared with the MRNBC and the respective reference values of the
TCDCars Forecast and TCDCars Analysis: When data from the other models were compared, the
accuracy of KRR-based bias correction outweighed those of the other ML models (see Figure 5)).
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Figure 5: Box plots of the d values calculated for nine ML-bias corrections models (i.e., KRR, BNR, DTR, GBR,
HGBR, KNN, MARS, RF, XGB) pooled together including conventional MRNBC method with their respective
reference d value calculated from TCDCgrs-Forecast and TCDCgrs.Analysis). (a) Approach-1, (b) Approach-2.
[For details on each approach, see Figure

The boxplots of bias-corrected RMSE calculated between data for all the nine ML-based
bias correction methods pooled together (i.e., KRR, BNR, DTR, GBR, HGBR, KNN, MARS,
RF, XGB), conventional bias correction method (i.e., MRNBC) and along with their respective
reference values (RMSE calculated between TCDCgrs porecast aid TCDCgrs-analysis) are also
shown in Figure [6, When used to correct the TCDC simulations, it appears that the proposed
KRR model with Approach-2 (see Figure [2[ produces the lowest MAE values compared with
the other ML models for the same approach and the reference value method.

For Approach-2, the MAE value generated for Day 2 forecast is bounded by [20.20, 26.75]
%, with the best value obtained for the proposed KRR indicating a modest 14% improvement
over the reference MAE value. A similar reduction in the cloud cover bias is notable for the
cloud cover forecasts generated for the Day 3 over to the Day 7 horizons.

It is imperative to note that Approach-1, which employs a MARS model, was more effec-
tive in correcting the TCDC bias for the Day 8 cloud cover forecasts relative to Approach-2.
Consequently, the ML-based KRR model outperforms the classic bias correction strategy in
correcting the GFS-derived TCDC. In accordance with this result, the four best methods (i.e.,
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Figure 6: Box plots of the bias-corrected RMSE calculated between data for all ML-based bias correc-
tion methods pooled together (i.e., KRR, BNR, DTR, GBR, HGBR, KNN, MARS, RF, XGB), conven-
tional MRNBC method along with their respective reference RMSE calculated between TCDCars-Forecast and
TCDCgqrs-Analysis)- (a) Approach-1, (b) Approach-2. [For details on each approach, see Figure .

KNN, KRR, MARS, and RF) were then chosen to conduct an in-depth examination of the bias
correction approaches utilizing these machine learning models.

To further demonstrate the proposed KRR model’s capability to correct the bias in the
TCDCgrs-Forecast data generated for Day 2-8 forecast horizons, we now show the LM values
between corrected cloud cover forecasts and proxy-observed cloud cover forecasts generated by
the GFS model. Here, we aim to compare a metric known as the promoting percentage, which
is an incremental performance in the model based on the value of LM (A, M ,%) derived from
the benchmark model against the proposed objective (i.e., KRR) model.

Figure [7] shows the above results of the proposed KRR model against that of the KNN,
MARS, and the RF model applied to correct the bias in TCDC data for Day 2 to Day 8
forecast horizons. The bias correction outcomes for the proposed KRR model relative to the
other models, is relatively diverse. Notwithstanding this, Figure 7] shows that the effectiveness
of the bias correction using the proposed KRR method is more significantly notable by 20% to
65% for all the predicted days. Overall, the highest gain in respect to the accuracy appears to
have been reached by =~70% for the proposed KNN model for the case of 4-day ahead forecasting
of Total Cloud Cover.

16



428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

o B KNN @ MARS & RF
70 ®

60
50 @

40 o ‘

30 ')
20 u L 2 =

10

Apy (%)

\ 4 ¢

(b) 80
70 m KNN u MARS
60

u RF |
0 II I|I ||I I|| ‘ll I“ |‘

Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8
Time Horizon (Days)

5

o

A

App (%)
o

3

o

2

o

1

o

Figure 7: Percentage change in LM that compares its values obtained using the proposed KRR model
with respect to KNN, MARS and RF models. (a) Approach-1, (b) Approach-2. Note that: Appy (%) =
M x 100. Note: LMcons represents the LM value of the benchmark (KNN, MARS or RF) model.
[For detalls on each approach, see Figure l

3.2. Percentage Reduction in Bias

To investigate the performance of ML-based bias correction and specifically check the per-
formance of the proposed KRR model, the MAE values for all of the tested models is listed
in Table {4} along with traditional bias correction method (MRNBC) and the reference value
method.

Tableshows the MAE (%) computed between the ‘proxy-observed’ (TCDCgrs-Analysis) and
ML-bias corrected TCDC using the proposed KRR model. Note that here, the conventional
bias correction method used is the multivariate recursive nesting bias correction (MRNBC)
method, whereas the benchmark ML methods include the BNR, DTR, GBR, HGBR, KNN,
MARS, MLR, and the RF model (see Table .

It is important to note that in Approach 2, the proposed KRR model outperforms all of the
ML, MRNBC and reference value datasets for TCDC forecasts over Days 2-8 forecast horizons
based on its lowest error value. For example, for Day 2 forecasts of the predicted TCDC, the
proposed KRR model produces an error value that is &~ 13.8 % lower than the reference value
comparing the TCDC forecasts and the TCDC analysis variable. Likewise, the bias in TCDC
is reduced by =~ 2.9 %, 13.4 %, 9.7 %, 12.3 %, 13.3 % and 13.5 % for Day 3, Day 4, Day 5,
Day 6, Day 7 and Day 8, respectively. This shows that the proposed KRR model developed
using TCDCgrs rorecast as @ predictor with TCDCgrs-analysis as the target variable, which also
outperforms the conventional MRNBC method, performs consistently in terms of reducing the

17



447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

Table 4: The MAE (%) computed between ‘proxy-observed’ (TCDCgrs-analysis) and ML-bias corrected
TCDC used to evaluate the proposed KRR model. Note Approach-1 uses T2mars Forecast; VGFS-Forecast
UGFS—Forecasta TCDCGFS—Forecast7 and DSWRFGFS—Forecast whereas ApproaCh'2 uses TCDCGFS-Forecast as a pre-
dictor against TCDCgrs-Analysis as target variable. The reference MAE is computed between TCDCgrs-Forecast
and TCDCgrs-Analysis data to provide additional benchmarks for the proposed KRR bias correction method.
Note: the best bias correction model has been boldfaced.

GFS Inter-daily Forecast Horizon

Model and Method Day 2 Day3 Day4 Day5 Day6 Day7 Day38

Error comparing TCDC grs rorecast
and TCDC¢rs anaiysis Reference 23.45 29.36 3293 31.49 27.59 31.68 32.36
datasets

Conventional Bias

Correction Method

MRNBC 2590 32.05 3265 3276 30.28 33.57 34.50

Approach-1

Objective Model KRR 25.07 34.56 3223 31.33 27.68 30.76 30.26
BNR 25.35 3190 3293 3263 29.08 3241 31.31

DTR 35.65 3047 4135 37.00 3824 37.98 3446

GBR 32.52  31.68 3432 3238 298 31.73 28.77

Benchmark HGBR 3245 3239 3415 3095 30.73 33.18 28.77
Models KNN 26.76 29.90 30.32 30.48 2998 3220 31.31
MARS 26.60 26.18 33.21 3277 28,99 33.40 24.80

RF 25.19 3214 32.84 3252 2894 3227 31.16

XGB 2647 3074 3296 32.17 28.80 32.08 30.08

Approach 2

Objective Model KRR 20.20 28.75 28.52 28.44 24.20 27.47 27.99
BNR 25.32  31.63 31.89 31.78 2877 31.57 31.69

DTR 26.75 3222 33.19 31.82 29.23 31.55 32.74

GBR 25681 31.73 3236 31.27 2852 31.36 31.82

Benchmark HGBR 2591 31.70 32.24 31.55 2837 3146 32.19
Models KNN 21.22  38.64 33.39 36.67 30.29 41.85 38.18
MARS 25.36 3146 31.85 3L.75 2874 31.67 31.66

RF 25.28 31.60 31.85 3L.75 28774 31.54 31.66

XGB 2548 3150 31.52 31.20 28.36 3149 31.52

bias in GFS-based predicted cloud cover generated over multiple forecast horizons.

For the case of Approach-1 that that has used meteorological variables such as T2mars-Forecast »
VGFS—Forecasty UGFS—Forecasta TCDCGFS—Forecast and DSWRFGFS—Forecast pl"OdU_CGd by the GFS model
and the TCDCgrs-analysis produced as the target variable, the best performance of the proposed
KRR model is noted for Day 2, Day 6 and Day 7. This performance in terms of error reduction
is relatively inferior to Approach 2 in terms of the MAE value. One possibility for the relatively
weaker performance of the proposed KRR model when utilizing these exogenous meteorological
variables in Approach-1 could perhaps be attributable to the systematic errors within each in-
dividual GF'S variable and a potentially weaker relationship with TCDCgrs analysis @s the target
variable. For Day 3, Day 4 and Day 5, the proposed KNN model appears to be the best for
Approach-1, although the proposed KRR model in Approach 2 still remains superior than this
model.

We now evaluate the robustness of the four top-performing models, which includes the
proposed KRR and the KNN, MARS and RF model by using correlation coefficient (r) for
Approach-1 and Approach-2. These are plotted together in Figure [§

Note that a larger r-value is expected to represent a greater degree of agreement between
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Figure 8: Comparative analysis of selected ML-based bias correction (i.e., KRR, MARS, KNN, RF) meth-
ods using correlation coefficient (r) between corrected TCDCgrs-Forecast and reference TCDCgrs-analysis- 1n-
cluded is a respective reference r-value computed using ‘non-corrected’ TCDCgrs.Forecass and bias-corrected
TCDCGFS Forecast using MRNBC method. (a) Approach-1, (b) Approach-2. [For details on each approach, see

Figure .

corrected TCDCgrg-Forecast and reference TCDCqrs analysis- 1f this is so, the result is expected
to show a reduction in the bias within the Total Cloud Cover forecasts generated by the GFS
model. Importantly, the results for Approach-2 show consistently higher r-value compared with
that of the KRR, MARS, SVR and RF models for all tested forecast horizons from Day 2 to
Day 8.

In fact, compared with reference value derived from the ‘non-corrected” TCDCgrs Forecast
and bias-corrected TCDCgrg.Forecast; there appears to be a dramatic reduction of 52.2 % in
these biases as measured by an increase in r-value for Day 2, which is & 38.9 % - 60.1 % for
Day 3 to Day 8 forecasts. When compared with the conventional bias correction using MRNBC,
we note that the proposed KRR model has generated an increased r-value by ~ 85.1 - 112.6%
for Day 3 to Day 8 forecasts.

While the other three MLL models have also led to an reduction in the bias in Total Cloud
Cover, the magnitude of bluethis change in r-value remains lower when compared with both
the MRNBC and the reference r-values. When the results are closely inspected for Approach-1,
the proposed KRR model has led to an increase in the r-value (compared against MRNBC) by
~ 55.8-13.8 % for Day 2 to Day 7. However, when compared against then reference r-values,
the proposed KRR model increases the r-value by 44.5 % for Day 2, 15.7 % for Day 3, 2.3 %
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for Day 5 and 20.8 % for Day 6.

Overall, it is evident that the proposed KRR model developed using Approach-2 where
TCDCars Forecast and TCDCgrs_analysis are used in model construction is superior for all forecast
horizons and against all of the ML and conventional methods used to reduce the overall bias in
Total Cloud Cover forecasts. Because the benchmark models performed poorly, as demonstrated
in Figure |8, the newly proposed KRR model is therefore reaffirmed as superior for the present
research study site.
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Figure 9: Change (V) in mean absolute percentage error, MAPD (%) generated by proposed KRR bias cor-
rection method against a reference value of MAPD deducted from TCDCgrs-Forecast and TCDCgrs-Analysis-
(a) Approach-1, and (b) Approach-2. [For details on each approach, see Figure . Interpretive statement: a
positive change is used to show the objective model outperforms benchmark models.

The change (V) in MAPD (%) generated by the proposed KRR method compared to the
reference value deduced from TCDCgrg-rorecast a1d TCDCgrs- Analysis 1s presented in Figure |§| A
positive change shows the proposed objective model (i.e., KRR) outperforming the benchmark
model.

For both approaches, VMAPD (%) is significant for Day 2 GF'S forecast, whereas Approach
2 with KRR shows the lowest value at ~48%. For Approach-1, the MAE value from an SVR
model is ~17.5% higher, whereas VMAPD range from [5, 35] % for Day 3 to Day 8 forecasts in
Approach-2 with some deviation noted for the KNN model. In a rational sense, the proposed
KRR model demonstrates the most significant improvement in MAPD (VMAPD; %) ranging
from 15% to 14% for Day 2 to Day 8 with respect to a reduction in bias for the TCDC dataset.
Accordingly, we can ascertain that our newly developed KRR model appears to fall within the
criterion of an acceptable predictive model that can correct the bias in GFS-derived Total Cloud

20



30

N
o
L

Standard Deviation
=
o

Standard Deviation

Observed Observed

Color Code Symbol
1 KRR O Day2
B KNN < Day 3
B MARS X Day 4
M RF <> Day 5
/\ Day 6

© Day7

X Day 8

Figure 10: Taylor diagram showing correlation coefficient, standard deviation, and root mean square centered
difference (RMSD). (a) The proposed KRR model is compared with: (b) KNN, (¢) MARS, (d) RF) for the
most accurate approach (i.e., Approach-2). [For details on each approach, see Figure.
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Cover forecasts. Therefore, it may be a useful tool for solar energy monitoring and forecasting
systems.

3.3. Evaluation of Proposed Model Using a Taylor Diagram

We now revert to a Taylor diagram that provides a way of graphically summarizing how
closely the model performance matches the observations. Figure is an alternative repre-
sentation of proposed KRR model’s performance compared to the benchmark models using a
Taylor diagram [93]. In this case, a significant correlation seems to exist between bias-corrected
TCDC and the proxy-observed variable (TCDCgrs-Analysis) for the case of the proposed KRR
model.

It is clear that the bias corrected TCDC data produced from the proposed KRR model
is a close match to the proxy of the observed TCDC data relative to the other competing
ML models. Therefore, in a nutshell, based on the statistical performance measures, we can
ascertain that the newly developed KRR model has the predictive skills to reduce the overall
bias in Total Cloud Cover generated by the weather simulation model used in this study.

4. Conclusions, Limitations and Future Research Insights

4.1. Conclusion

This paper utilised ML-based bias correction (i.e., KRR) method to reduce the bias in
Total Cloud Cover generated by the GFS numerical weather model at a solar energy farm
in Queensland, Australia. To demonstrate the feasibility of the developed KRR model, data
from Columboola solar energy farm located in Queensland, Australia, were used. The results
indicated a superior performance of the proposed model compared to several machine learning
and conventional bias correction methods. We learned that the ML-based bias correction
approach had a solid potential to significantly reduce, if not eradicate, the bias in TCDC, by
utilising cloud cover, temperature, wind speed and downward solar radiation flux forecasts as
covariates for TCDC that provide adequate predictive features and relationships in observed
cloud cover variables. Precisely, the KRR model’s capability to correct the bias in TCDC
dataset was established in terms of the percentage improvement in mean bias error that for
this study site has ranged from ~20% to ~50% using the traditional MRNBC method for Day
2 to Day 8 forecast.

The study showed that training a ML model using a single GFS predictor variable (i.e.,

TCDCGFs Forecast as well as integrating multiple predictor variables (i.e., T2mars Forecasts V GFS-Forecasts
Ugrs-Forecast ald DSWRF grg porecast- against the proxy-observed GFS variable (i.e., TCDCgrs-analysis)

successfully corrected the bias in Total Cloud Cover, albeit with a varying degree of accuracy.
These GFS-based predictor variables provided historical information on the cloud evolution
against the respective meteorological variables and their lagged stochastic behaviour. Nonethe-
less, we contend that biases in individual predicted variables from GFS may also affect the
accuracy of cloud cover bias correction task. In our study, we found using a single set of model
input variables (i.e., TCDCgrs Forecast) Was better suited compared to the multi-variable ap-
proach, such that the results have established high predictive potency of employing a single
variable to resolve the bias-related problem for this solar energy site.

These results have shown that the performance of ML-based bias correction for longer-
term forecast horizon (i.e., Day 8) was much better in Approach-1 (where multiple predictor
variables: TCDCGFS—Forecasta TQmGFS—Forecasty DSWRFGFS—Forecasta UGFS—Forecasta and VGFS—Forecast
were incorporated in the KRR model’s input matrix). This outcome appears to reveal the
interactions of these variables with the proxy-observed cloud cover over the passage of time.
This led to an improved overall performance, i.e., for a longer-term Day 8 bias correction result
although the multi-variable approach (i.e., Approach-1) registered comparatively large bias
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compared with the single variable approach (Approach-1). While the results of this pilot study
may not be explicitly conclusive and may require further investigation, one possible explanation
for comparatively large bias could be the interference of disproportionately embedded biases
within each of these forecast variables that could hinder the correlation among such biases to
affect further TCDC produced by the GFS model.

4.2. Limitations and Future Research

In spite of the success of the proposed KRR model in reducing the bias in Total Cloud Cover
forecasts generated by GFS model over Day 2 to Day 8 horizons, there remain some limitations.
Firstly, this study has tested a single solar energy farm in Queensland, Australia. Further tests
of the model including relevant parameter tuning and application at more diverse locations
are warranted to fully explore its potential in reducing the bias in cloud cover predictions.
Secondly, such tests should also include integrating the bias-corrected cloud cover forecasts
into a solar PV monitoring software such as pvlib, Solpy, Pandapower, Pyleecan, Scipy, Numpy,
or Matplotlib [IT) 11} 4] to check the impact of more accurate forecasts on solar generation
monitoring and related economic (e.g. solar energy price bidding) or other benefits. Thirdly,
a future study could deep learning algorithms that have exceptional capabilities in terms of
extracting more complex data features may offer better performance in correcting bias in real-
time weather models used for solar energy monitoring. Some relevance may be drawn from
recent studies where deep learning was broadly implemented, for example, in hydrology [37, [39]
and solar energy studies [94], 95, 96].

Therefore, in future studies, subject to availability of big atmospheric datasets, a deep
learning hybrid approach could be adopted as a bias correction method both for solar power
production monitoring and power failure risk analysis when solar energy is integrated into
the energy grid. Finally, the exact positioning of the spatial grid over a specific solar farm
remains a major challenge if we are to use the bias corrected cloud cover forecasts for solar PV
power monitoring as evident in this study where the Columboola solar energy farm was located
slightly off-grid from the GFS model. Therefore, exploring other types of NWP models with
finer grids, or exploring an ensemble of NWP forecasts to correct the bias in their cloud cover
remains an open problem of interest to the solar energy community. Our group’s next step in
future research is to adopt the Global Ensemble Forecast System or the Australian Community
Climate and Earth-System Simulator (ACCESS)-S2/S3) that are NWP model candidates to
be used by solar energy companies in the USA or Australia for their intra-daily and inter-daily
solar generation capacity prediction, including its effect on electricity sale bidding price in smart
grids or their solar-conventional energy supply-demand models.
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Appendix A. Further Analysis of Bias Reduction Results

Tables A.5 and A.6 show the percentage increase in the level of agreement between bias-
corrected Total Cloud Cover forecasts versus the non-corrected values generated by the GFS
model over an eight day forecast horizon. Here, we show the two approaches and present the
change in r-value against conventional bias correction method and the reference value (without
any bias corrections applied). It is evident that all ML models lead to a significant reduction in
the bias in cloud cover forecasts for Approach-2. When results for Approach-1 are considered
(Table A.5), there is some discrepancy for Day 5 and Day 8. In spite of this, the present study
shows a strong potential utility of ML methods for bias correction of cloud cover forecasts
generated by the GFS numerical weather prediction model.

Table A.5: The percentage change in correlation coefficient () between TCDCgrs-Forecast and TCDCars-Analysis
after applying bias corrections for Approach-1. Note that a positive change, indicated in blue font, represents
a reduction in the bias of Total Cloud Cover forecasts. The best model for bias reduction is boldfaced.

Relative to MRNBC

Day Ahead Forecast Horizon KRR MARS RF SVR

Day 2 55.8 52.4 52.4  55.1
Day 3 b4.2  67.8 67.8 453
Day 4 3.8 12.0 12.0  29.6
Day 5 176  -234 -23.4 428
Day 6 63.1 714 714  66.5
Day 7 13.8 404 40.4 20.3
Day 8 -17.2 -41.8 -41.8  -2.9

Day Ahead Forecast Horizon Relative to reference value

Day 2 44.5 414 414 438
Day 3 15.7 259 259 9.0

Day 4 -184  -11.9 -11.9 1.9

Day 5 2.3 -33.4 -33.4 243
Day 6 20.8 26.9 269 233
Day 7 -16.2 3.4 3.4 -11.4
Day 8 -37.6  -56.1 -56.1  -26.8

Appendix B. Multivariate recursive nesting bias correction

The MRNBC corrects the seasonal and non-seasonal time series based on multivariate auto-
regressive modelling. First introduced by Mehrotra et al. (2018), the MRNBC aims to incorpo-
rate the Recursive Nested Bias Correction (RNBC). The method has been used previously [25].
So, in this approach, the TCDCgrs.rorecast Simulations are nested into the observed data for all
timescales of interest. Before applying the nesting, seasonal and non-seasonal time series are
standardised to a mean of zero and a standard deviation of 1.

With m predictor variables at an ¢ time step for a Z(m x t) matrix, the lag-one auto-
correlation and the lag-one and lag-zero cross-correlation in TCDCgrs. porecast Simulations can
be modified to match the observed correlations in the time and space [97]. The multivari-
ate autoregressive order 1 (MAR1) model for TCDCgrs orecast data and observed variables is
therefore expressed as follows [08]:

ZM=CZ! + Dq (B.1)
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Table A.6: The percentage change in correlation coefficient () between TCDCgrs-Forecast and TCDCars-Analysis
after applying bias corrections for Approach-2. Note that a positive change, indicated in blue font, represents
a reduction in the bias of Total Cloud Cover forecasts. The best model for bias reduction is boldfaced.

Relative to MRNBC

Day Ahead Forecast Horizon KRR MARS RF SVR

Day 2 64.0 061.0 b54.5  59.7
Day 3 85.1 85.0 75.8 86.0
Day 4 98.3  96.3 96.3 96.5
Day 5 84.0  76.0 76.0 82.7
Day 6 979 79.3 95.6 93.8
Day 7 112.6 101.2 101.2 1054
Day 8 89.7  88.6 83.6 85.9

Day Ahead Forecast Horizon Relative to reference value

Day 2 52.2 494 433 481
Day 3 38.9 388 319 396
Day 4 55.9 544 544 54.6
Day 5 60.1 532 532  59.0
Day 6 46.5 328 449 435
Day 7 56.6 481 481  51.2
Day 8 429 421 384 401
79 =EZ?  +F, (B.2)

where Z" represents the observations and Z9 is the TCDCars rorecast data. Data are stan-
dardised to construct a periodic time series Zf to be modified to match the observation ZZL,
where € is a mutually independent vector with random variation having zero mean value and
an identity covariance matrix. C' and D are lag-zero and lag-one cross-correlation coefficient
matrices for observation Zf and the coefficients £ and F' are calculated for the standardised
TCDCqFs-Forecast output. R

Equations and are rearranged and modified Z7 along with lag-zero and lag-one
correlation matrices such as C' and D to 2f have the desired dependence properties [98].

Zh=CZ° +DF'Z¢ — DF'EZY, (B.3)

For correction of periodic parameters, let vectors Zt’fi and foi represent the observations
and the TCDCgrs.rorecast OUtputs, respectively, with m variables for month ¢ and year ¢t. The
standardised periodic time series with a mean of zero and a unit variance is denoted as ZAH
Following Equation , the series ZAng maintains the observed lag-one serial and cross depen-
dence as follows [98]:

2% = G2y + DiF 2 = DiF B2 (B.4)

where Zt'i-_l is the corrected time series from a previous month in year ¢. After corrections, the
resulting time series Z'9 is rescaled by the observed mean and standard deviation to yield the
final corrected time series Z9, details of which can be found in [97, 99, 100].

After correcting the monthly time series, Z is combined to produce a seasonal sequence
and the periodic correction. This time series is connected to an annual time series and the
correlation, standard deviation, and mean are corrected to form Ag (A is the matrix of yearly
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data, p x {5). Subsequently, each time, aggregation corrections can be applied to daily time

series to create a simple correction step [101]:

_ Y? 59 A9
g T\ o (Pt o (A o o B.5
1,7,8,t (1/}?37t> <S§7t Af X 1,7,8,t ( )
where Y7

st Sf’t and AJ indicate the monthly, seasonally, and annually corrected values, re-
spectively. Yf&t, S?; and A represent the accumulated monthly, seasonal, and annual values,
respectively, in day ¢ and j, season s, and year t. The three-step bias correction technique
confirms that future variation is not influenced by the bias correction procedure utilised to

correct TCDCgrs_Forecast [99].
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