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Abstract35

Prediction of Total Cloud Cover (TCDC) from numerical weather simulation models, such as
Global Forecast System (GFS), can aid renewable energy engineers in monitoring and forecast-
ing solar photovoltaic power generation. A major challenge is the systematic bias in TCDC
simulations induced by the errors in the numerical model parameterization stages. Correction
of GFS-derived cloud forecasts at multiple time steps can improve energy forecasts in electricity
grids to bring better grid stability or certainty in the supply of solar energy. We propose a new
kernel ridge regression (KRR) model to reduce bias in TCDC simulations for medium-term
prediction at the inter-daily, e.g., 2–8 day-ahead predicted TCDC values. The proposed KRR
model is evaluated against multivariate recursive nesting bias correction (MRNBC), a con-
ventional approach and eight machine learning (ML) methods. In terms of the mean absolute
error (MAE), the proposed KRR model outperforms MRNBC and ML models at 2-8 day ahead
forecasts, with MAE ≈ 20–27%. A notable reduction in the simulated cloud cover mean bias
error of 20–50% is achieved against the MRNBC and reference accuracy values generated using
proxy-observed and non-corrected GFS-predicted TCDC in the model’s testing phase. The
study ascertains that the proposed KRR model can be explored further to operationalize its
capabilities, reduce uncertainties in weather simulation models, and its possible consideration
for practical use in improving solar monitoring and forecasting systems that utilize cloud cover
simulations from numerical weather predictions.
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1. Introduction40

Since its first advent by Richardson in 1922 [1], Numerical Weather Prediction (NWP)41

models have become the gold standards in real-time weather forecasting. Systematic errors42

due to physical processes, however, are not addressed correctly in NWP models, and are usu-43

ally parameterized. This issue induces a significant model bias in several simulated variables44

such as cloud movements and rainfall. The fidelity of NWP models are largely associated45
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with model design factors, such as incorrectly parameterized physical equations and internal46

variability of these NWP type models [2]. To utilize NWP simulated variables for operational47

purposes such as storms or cyclone prediction, climate change and other atmospheric studies,48

data pre-processing methods are required to significantly reduce the simulated biases [3, 4]. One49

particular practical use of forecasted cloud cover, particularly over multiple forecast horizons50

from NWP models, lies in solar irradiance monitoring for a given area, that has in turn appli-51

cations in rooftop solar and solar farm photovoltaic (PV) power output predictions. Accurate52

forecasting of solar PV outputs will ensure smooth operation of the electricity grids by allowing53

effective operational planning with prior information on energy supply intermittencies due to54

cloud movements. To implement this, NWP-based cloud cover forecasts without significant55

bias are essential [5].56

The Total Cloud Cover (TCDC) is a chief cause of significant intermittency in solar energy57

supply since a PV panels output can drop down as much as 60% in a few seconds due to a cloud58

band [6]. This can also happen for the case of the sun travelling across the sky obscured by59

a passing cloud band, causing major fluctuations in direct normal irradiance reaching a solar60

PV panel, with the subsequent drop in power generation. Furthermore, a cloudy day can also61

impact the solar PV output in a much different way as the passing clouds affect solar energy62

production [6]. Therefore, accurate cloud forecasts over short-term (i.e., sub-hourly, hourly,63

inter-hourly) and medium-term (i.e., daily or inter-daily) scales have industry implications in64

solar energy monitoring. To support decisions regarding the sustainability of solar power supply65

and its integration into electricity grids, reliable forecasts of cloud cover are crucial [7, 8].66

Typically, TCDC is defined as the fraction of the sky covered by all visible clouds [9], so,67

unlike the other weather variables such as temperature and precipitation, the TCDC observa-68

tional datasets are different in terms of their characteristics [7]. TCDC is also very difficult69

to monitor over a wide range of spatial scales using physical apparatus, and therefore, are of-70

ten utilized from NWP model simulations. For example, the movement of clouds over a solar71

PV panel can be relatively stochastic (i.e., rapidly changing, unpredictable, or intermittent).72

These uncertain features can no doubt hamper solar energy production and supply rates, so it73

is highly desirable to construct a better understanding of the features present in total clouds74

that affect a solar energy generation system.75

This paper proposes a new Machine Learning (ML) method to correct bias produced in76

cloud cover forecasts derived from Global Forecast System (GFS) weather simulation model [10].77

Maintained by the National Centre for Environment Prediction, the GFS model is a physics-78

based system with 0.25◦ × 0.25◦ grid resolution with three hourly (3h) temporal resolution for79

data produced each day. The GFS model simulates the cloud cover, 2-meter height temperature,80

zonal and meridional wind speed, downward shortwave radiation flux and other atmospheric81

variables. The GFS model outputs are employed in solar PV prediction modules, for example,82

in the pvlib [11] package that is adopted by electricity industries to monitor their solar gener-83

ation potentials. In particular, pvlib is a python-based community-supported tool with sets of84

functions and classes to simulate the output of a solar PV system using predicted cloud move-85

ments. Developed by the Sandia National Laboratories, pvlib [11] provides solar positions, clear86

sky irradiance, irradiance transposition, direct current power and direct current-to-alternating87

current power conversions, and therefore, has found applications in the solar energy indus-88

try [12, 13]. Apart from pvlib [11], there are other types of solar photovoltaic energy prediction89

software including but not limited to, Solpy, Pandapower, Pyleecan, Scipy, Numpy, and Mat-90

plotlib [14]. While these tools could be useful predictive modules in solar energy monitoring91

systems, they require GFS or other NWP model simulated clouds to estimate the direct nor-92

mal irradiance. However, significant bias in predicted clouds (or other variables related to solar93

irradiance) lead to inaccurate prediction of solar energy and therefore, add to generation and94

demand imbalance in real-time; hence higher electricity prices.95
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In order to incorporate forecasted cloud cover or weather model variables in solar moni-96

toring systems, reducing the bias in these variables has traditionally focused on correcting the97

individual variable representations across a single time (e.g., daily, monthly). However, these98

corrections aim to determine the bias in a statistical or a quantile sense and, therefore, utilise99

corrected data for future scenarios of solar energy production.100

Daily and monthly standardization can address systematic biases in the means and the101

variances of simulated variables [15, 16] to support renewable energy generation applications.102

Bias correction with non-parametric approaches such as quantile matching [17, 18, 19, 20] and103

equidistant quantile [21] was found to be successful methods in reducing errors in weather104

model variables. Still, a major shortcoming of such techniques is that they tend to examine105

only the bias in the distribution of GFS (or another model) without considering the impact of106

its persistence, which continues to influence the accuracy of simulated variables [22].107

We refer to the study of Johnson and Sharma [23] that suggests nested bias correction (NBC)108

approach can reduce the variability and persistence at different time scales. Also, techniques109

like multivariate bias correction (MBC) [24, 25], copula-based bias correction [26], empirical110

copula bias correction (EC-BC) [27], distribution transfer methods [20], power transformation111

methods [28, 29, 30] and local intensity scaling methods [30, 31] have been utilized in many112

spatial locations to correct bias in weather variables. To the best of the authors’ knowledge, no113

prior method has successfully eliminated the biases, given that relationships between simulated114

and observed variables are relatively complex [32]. To address this problem, ML has thus115

been demonstrated as an alternative method to model highly non-linear features in simulated116

variables relative to observations or proxy-observed variables [33, 34, 35, 25]. Based on their117

promising performance, ML is therefore becoming a potential tool to correct bias in numerical118

weather variables [25].119

The promise of ML arises from its capability to discover the associations between predictors120

and a target variable without considering the underlying physical system’s operation [36, 37, 38].121

This black-box method is advantageous in reducing the mathematical complexity of a physical122

model by using pattern recognition that is better understood in contrast to a physical model123

employing partial differential equations with a fixed set of initial conditions [39, 40]. The124

initial conditions in physical models are somewhat difficult to predict accurately over a wide125

range of spatial and temporal domains. One type of ML model, the artificial neural networks126

(ANN), has previously been applied to correct inter-instrument bias [41, 42]. On the other127

hand, support vector machine (SVM) with its theoretical foundations in statistical learning has128

also been recognized as a sophisticated ML tool [43, 44] with SVM models using a kernel-based129

ANN to address the drawbacks of a conventional model [45]. Due to the use of kernel functions,130

SVMs are therefore quite resilient and efficient in non-linear modelling of noisy data [33, 35].131

This study, therefore, adopts an alternative form of ML algorithms known as kernel ridge132

regression (KRR) for bias correction of the Total Cloud Cover forecasts from the GFS-based133

numerical weather model. The proposed KRR method [46] integrates kernel functions and134

ridge regressions to better capture the non-linear correlative features to address regression-135

based over-fitting issues found in other methods [47]. The KRR method uses a regularized136

variant of a least-square method to learn the global feature extraction functions; hence, it can137

potentially predict any target variable with greater accuracy compared to other ML models.138

Although ML has previously been used in bias correction, the proposed technique remains139

somewhat under-explored. More generally, the KRR method has been used in other prediction140

problems, including precipitation [48], drought [49], wind speed [50, 51, 52, 53, 54] and also solar141

power [55] and thus has offered a significant advantage in terms of computational simplicity142

relative to a conventional SVM or other ML models.143

The novelty of this study is (i) to develop for the first time a KRR-based bias correction144

model for Total Cloud Cover forecasts (TCDC) at 2-8 day ahead forecast horizons at a solar145
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energy farm in Queensland, Australia, (ii) to specifically test the capability of a KRR model146

in reducing the errors in TCDC forecasts found in the GFS-derived TCDC forecasts, (iii)147

to benchmark the proposed KRR model in respect to the multivariate recursive nesting bias148

correction approach as a widely used conventional method and the reference values generated149

by proxy-observed and non-corrected GFS-predicted TCDC in the model’s testing phase. To150

fulfil this aim, we adopt two distinct modelling strategies: Firstly, the KRR model is trained151

using 2-m height temperature, 10-m zonal (U)-wind, 10-m meridional (V)-wind, downward152

shortwave radiation flux, and Total Cloud Cover forecasts that are regressed against proxy-153

observed (i.e., GFS-Analysis) data. Secondly, only the cloud cover data (i.e., TCDCGFS-Forecast)154

are incorporated as single inputs (with TCDCGFS-Analysis as a target variable) to test the overall155

performance of this alternative method to particularly reduce the bias in cloud cover forecasts.156

To ascertain its practicality, the proposed KRR model is compared with conventional bias157

correction methods based on multivariate recursive nested bias correction (MRNBC) [25] and158

ML methods using Bayesian ridge regression (BNR) [56], Decision Tree Regression (DTR) [57],159

Gradient Boosting Regressor (GBR) [58], Histogram-based Gradient Boosting Regressor (HGBR)160

[59], k-nearest neighbour regression (KNN) [35], multivariate adaptive regression splines (MARS)161

[60], extreme gradient boosting (XGB) and random forest (RF) [58] as competing methods to162

benchmark the KRR model. Finally, the KRR model is tested at inter-daily time horizons163

using Day 2 to Day 8 cloud cover forecasts using real solar farm data (Columboola Solar Farm164

in Queensland, Australia) to test the developed predictive system for its application in solar165

generation monitoring and supporting industry decisions to manage the solar power supply in166

the national electricity grid.167

The rest of the paper has been structured in the following way: the next section presents168

the materials and methods, which includes a description of the data and study area, a summary169

of the GFS capabilities and the proposed KRR and its adaptation for bias correction of Total170

Cloud Cover. Section 3 presents the simulation study, discussing different experiments and171

comparisons versus alternative ML approaches such as KNN, MARS or Random Forest.172

2. Materials and Methods173

2.1. Study Area174

We implement a newly developed KRR model for cloud cover bias correction for a solar175

farm in Queensland, referred to as Australia’s “Sunshine State”, with enormous solar energy176

potential [61, 62]. Under United Nations Sustainable Development Goal #7 (SDG7) [63], the177

State government is committed to increasing renewable energy uptake by up to 50% of the178

overall future energy supply by 2030. These projects represent an investment of $8.5 billion,179

the creation of 7000 jobs, the installation of 4600 MW of renewable energy production and180

a reduction of more than 11 million tonnes of CO2. As of January 2021, Queensland had181

6200 MW of renewable plants, including rooftop solar systems. According to the government,182

renewable energy fulfils 20% of electricity consumed [64], which is expected to increase to 50%183

by 2030. To improve the existing methodologies that can assist the solar energy producers, this184

study considers the case of TCDCGFS-Forecast obtained at Columboola Solar Farm in Queensland,185

Australia. This solar farm, with 417,000 solar PV modules, is expected to produce ≈ 440 GWh186

of energy annually after its completion in 2022, provide electricity to 6 % of all homes in the187

state, create hundreds of regional jobs and produce enough electricity for 75,000 homes for 35188

years.189

Figure 1 shows the geographic location of the study site where the proposed KRR model190

for cloud cover bias correction was implemented. Table 1 lists GFS-forecast variables (i.e.,191

2-metre height temperature, 10-metre wind speed, Total Cloud Cover, and Downward Short-192

wave Radiation Flux) used as inputs for the proposed model and the GFS analysis variable193

(i.e., Total Cloud Cover) used as the proxy of the observed data.194
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Figure 1: Geographic location of study site: Columboola solar energy farm in Queensland, Australia, where the
proposed kernel ridge regression (KRR)-based ML model for bias correction of TCDC was developed utilizing
the Global Forecast System (GFS) analysis (i.e., proxy-observed) and forecasted variables.

Table 1: List of Global Forecast System (GFS)-forecast variables (i.e., 2-metre temperature, 10-metre wind
speed, Total Cloud Cover, and Downward Short-wave Radiation Flux) used as KRR model inputs, and GFS
analysis variable (i.e., Total Cloud Cover used as proxy-observed) in the proposed KRR model used in bias
correction problem.

Variable Short Name Variable Description Level Units

KRR Model Inputs: GFS Forecast (Inputs)
T2mGFS-Forecast 2-metre temperature Height Above Ground K
UGFS-Forecast 10-metre U wind component Height Above Ground ms−1

VGFS-Forecast 10-metre V wind component Height Above Ground ms−1

TCDCGFS-Forecast Total Cloud Cover Atmosphere %
DSWRFGFS-Forecast Downward short-wave radiation flux Surface Wm−2

KRR Model Target: GFS Analysis (proxy-observed)
TCDCGFS-Analysis Total Cloud Cover Atmosphere %
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2.2. Global Forecasting System Cloud Cover and Meteorological Data-sets195

We develop KRR model using GFS data-set that are managed by National Oceanic and At-196

mospheric Administration (NOAA) which aims to deliver an operational set of global weather197

predictions [65]. The GFS forecast system aims to produce forecast variables up to 16 days in198

advance with a temporal resolution of 3h and 6h, and a spatial resolution of 0.25º×0.25º [66].199

The GFS is not a frozen system, so its dynamic core and physical package are modified reg-200

ularly [67]. For example, after a single-member prediction was replaced by a GFS ensemble201

mean forecast in late 2001, this method was modified again in late 2003 to properly incorporate202

the bias-corrected GFS ensemble mean forecast [68, 69].203

As this physics-based model is initialised every three hours, newly predicted variables are204

generated eight times a day at 0 UTC, 3 UTC, 6 UTC, 9 UTC, 12 UTC, 15 UTC, 18 UTC,205

21 UTC, and 24 UTC. The GFS utilises Global Data Assimilation System (GDAS) [70] that206

augments a gridded three-dimensional model space with surface observations, balloon data,207

wind profiler data, buoy observations, radar observations, or satellite observations. The GDAS208

model output is generated four times daily and includes projections for the next three hours,209

six hours, and nine hours.210

The present study builds a new modelling strategy to correct the inherent bias in GFS-211

derived TCDC forecasts (i.e., TCDCGFS-Forecast) for 3 distinct forecast horizons, which ac-212

cording to Queensland daytime zones (i.e., UTC + 10), are: at 0 UTC (10 AEST), 3 UTC213

(13 AEST), and 6 UTC (16 AEST). The 3-h GFS experiments, initialized from 0000 UTC214

compared to AEST (Australian Eastern Standard Time), are illustrated schematically in Fig-215

ure 3. For comparison, the GFS-analysis Total Cloud Cover (TCDCGFS-Analysis) is used as a216

proxy for the observed cloud cover generated by the GFS model. We also utilised temper-217

ature (T2mGFS-Forecast), downward shortwave radiation flux (DSWRFGFS-Forecast), wind speed218

(UGFS-Forecast, and VGFS-Forecast) to reduce the bias through our newly proposed KRR modelling219

strategies.220

2.3. Theoretical Overview of Kernel Ridge Regression221

This section details the proposed KRR model whereas Appendix B shows the details of222

the conventional bias correction MRNBC method. For details of comparison models, readers223

can consult several other sources [57, 71, 72, 73, 56, 35, 60, 58, 59]. In general, KRR is a224

novel algorithm with an unlimited number of non-linear transformations of the independent225

variables used as regressors [74]. KRR model utilises ML strategy based on kernel and ridge226

regressions [46] to avoid issues of overfitting found in other regression methods. It, therefore,227

utilizes regularizations and a kernel technique to capture non-linear connections viz [49].228

argmin
1

q

q∑
o=1

∥fo − yo∥2 + λ∥f∥2H (1)

229

fo =

q∑
p=1

αpω(xp, xo) (2)

The Hilbert normed space of Equation 1 is defined as ∥·∥H and α is the Lagrange multiplier. For230

a given m×m kernel matrix, K is developed by ω(xp, xo) from some fixed predictor variables231

where y is the input q × 1 regression vector and is the q × 1 unknown situation vector that232

reduces as follows:233

y = (K + λqI) (3)
234

ỹ =

q∑
p=1

αoω(xo, x̃) (4)
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In model training stage, KRR technique is applied by solving Equation (3) but utilised to predict235

the regression of an unknown sample x in Equation (4) in the testing stage. To achieve the236

highest accuracy possible, linear, polynomial, and Gaussian kernels are employed [47, 75, 76].237

2.4. Implementation of Machine Learning (ML)-based Bias Correction238

The fundamental idea behind bias correction is to identify a sufficiently adaptable and flex-239

ible approach that is capable of learning from available data and then constructing a prediction240

function that performs well across the projection period (i.e., forecast horizon). To perform241

robust bias corrections, it was critical first to optimise the architecture of the proposed KRR242

model, and then to take advantage of the associative links between the bias-corrected TCDC243

and the fully learned ML model.244

An ML-based Python package [77], scikit-learn [78, 79], was thus employed to develop245

the the proposed KRR and other benchmark models (i.e., BNR, DTR, GBR, HGBR, KNN,246

MLR, XGB, and RF). For the case of MARS model, we have used the py-earth package, and247

programming software R for traditional bias correction (i.e., MRNBC) as applied by Yang et248

al. [25] for correction of bias in global climate models. As we define in Section 2.5, six statistical249

measures are used to evaluate the experimental outcome of the bias-corrected model, created250

using Intel i7 processor running at 3.6GHz and 16 GB RAM. Visualisation of bias-corrected251

TCDC dataset were made through matplotlib [80], seaborn [81] and Microsoft Excel.252
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Figure 2: A schematic of the proposed KRR bias correction method benchmarked against conventional MRNBC
and nine ML (i.e., BNR, DTR, GBR, HGBR, KNN, MARS, XGB, and RF) models. Interpretive Statement: The
proposed KRR bias correction method uses: (i) Approach-1 taking in five GFS outputs: i.e., TCDCGFS-Forecast,
Downward Short-wave Radiation Flux DSWRFGFS-Forecast, 2-meter temperature (T2mGFS-Forecast), zonal
UGFS-Forecast and meridional VGFS-Forecast against the Total Cloud Cover TCDCGFS-Analysis (or the refer-
ence or proxy-observed value) as the target, (ii) Approach 2 taking in TCDCGFS-Forecast as an input with
TCDCGFS-Analysis as a target based on which the bias needs to be corrected.

Figure 2 is a schematic representation of KRR-based bias correction approach including253

the conventional (i.e., multivariate recursive nested bias correction, MRNBC) methods. In254

summary, the proposed KRR method is implemented as follows:255

1. Data: GFS-forecast and GFS-analysis data were downloaded from NCEP repository [82].256

As this repository provides 384-hours ahead data at a 3-hr interval, this study has only257

measured three time periods within the Brisbane daytime zone considering the relevance258

to solar PV power production at 0 UTC, 3 UTC, and 6 UTC.259

Figure 3 shows a schematic illustration of 3-h GFS forecast experiments initialized at260

0000 UTC, compared with the Australian Eastern Standard Time (AEST). We adopted261
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Figure 3: Schematic illustration of the 3-h GFS forecasts initialized at 0000 UTC compared with Australian
Eastern Standard Time (AEST) used to develop the proposed KRR bias correction method.

the pygrib python package to extract five selected variables and the datasets were sorted262

for Day 2 to Day 8 forecast. To apply the bias correction method, we adopted the263

TCDCGFS-Analysis dataset as a proxy for the observation and used these to correct the264

systemic biases that were present in the TCDCGFS-Forecast dataset.265

Table 2 shows the descriptive statistics of the GFS forecast and the GFS analysis data-set266

used to develop the proposed KRR model.267

2. Pre-possessing and post-processing: Missing values were replaced using the pre-268

ceding seven data points and all data normalised to be bounded by [0, 1] [83]. As the269

TCDC dataset has significant zero values as a normal feature of cloud properties due270

to the presence or absence of cloud, this aspect can affect an ML model’s performance.271

We have therefore used four normalization techniques with the best normalization tech-272

nique selected based on the minimum mean absolute error (MAE). The normalization273

techniques trialled were: max-min normalization (TMinMax), maximum absolute normal-274

ization (TMaxAbs), z-score normalization (TStd), and robust scaler normalization (TRobust)275

with their mathematical formulations stated as follows:276

(a) Max-min normalization (TMinMax):277

TMinMax =
(Ti − Tmin)

(Tmax − Tmin)
(5)

(b) z-score normalization (TStd):278

TStd =
Ti − T̄l

Std
(6)

8



Table 2: Descriptive statistics of GFS forecast and GFS analysis (i.e., proxy of the observed) data used to
develop the proposed KRR model. Data were acquired from GFS model over January 1, 2019 and April 30,
2020 used for training 70% and testing (30%) where the 15% of the training set is specifically used for model
validation.

Variable Forecast Horizon Max Min Mean Skewness Kurtosis

D
S
W

R
F

G
F
S

F
o
r
e
c
a
st

Day 2 1100 0.00 601.07 -0.22 -1.38
Day 3 1100 0.00 605.30 -0.23 -1.46
Day 4 1100 0.00 595.55 -0.20 -1.47
Day 5 1100 0.00 595.71 -0.20 -1.46
Day 6 1100 0.00 599.78 -0.20 -1.39
Day 7 1090 0.00 604.91 -0.24 -1.44
Day 8 1100 0.00 605.01 -0.27 -1.42

T
C
D
C

G
F
S

F
o
r
e
c
a
st

Day 2 100 0.00 27.82 1.01 -0.56
Day 3 100 0.00 29.38 0.91 -0.74
Day 4 100 0.00 32.80 0.73 -1.04
Day 5 100 0.00 32.95 0.73 -1.05
Day 6 100 0.00 32.62 0.70 -1.12
Day 7 100 0.00 31.88 0.77 -0.96
Day 8 100 0.00 33.87 0.66 -1.11

T
2
m

G
F
S

F
o
r
e
c
a
st

Day 2 314.55 285.38 301.64 -0.31 -0.62
Day 3 314.76 285.36 301.57 -0.35 -0.59
Day 4 313.59 285.24 301.49 -0.33 -0.67
Day 5 314.74 284.35 301.45 -0.34 -0.61
Day 6 314.65 284.76 301.53 -0.33 -0.54
Day 7 315.22 285.20 301.45 -0.34 -0.55
Day 8 313.45 285.54 301.70 -0.45 -0.42

U
G
F
S

F
o
r
e
c
a
st

Day 2 10.49 -12.23 -4.25 0.99 0.94
Day 3 7.38 -13.03 -3.50 0.49 -0.37
Day 4 8.56 -11.41 -4.37 1.08 1.09
Day 5 8.80 -12.24 -4.37 1.02 0.95
Day 6 8.83 -10.67 -4.46 1.13 1.25
Day 7 10.93 -11.93 -4.52 1.19 1.74
Day 8 8.85 -13.19 -4.05 0.66 0.01

V
G
F
S

F
o
r
e
c
a
st

Day 2 10.29 -7.74 0.14 0.22 -0.08
Day 3 10.06 -9.55 -0.70 -0.03 -0.34
Day 4 8.53 -7.08 0.09 0.25 -0.10
Day 5 8.65 -7.22 0.12 0.31 -0.03
Day 6 9.57 -6.64 0.03 0.30 -0.10
Day 7 8.58 -10.66 -0.07 0.22 0.10
Day 8 13.70 -7.37 -0.22 0.21 0.35

T
C
D
C

G
F
S

A
n
a
ly
si
s

Day 2 100 0.00 31.70 0.78 -1.01
Day 3 100 -5.83 31.82 0.78 -1.02
Day 4 100 -5.83 31.89 0.77 -1.03
Day 5 100 -5.83 31.95 0.77 -1.03
Day 6 100 -5.83 31.95 0.77 -1.03
Day 7 100 -5.83 31.92 0.77 -1.03
Day 8 100 -5.83 32.02 0.76 -1.04
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(c) Maximum Absolute normalization (TMaxAbs):279

TMaxAbs =
Ti

Max(Abs(x))
(7)

(d) Robust scaler normalization (TRobust):280

TRobust =
Ti − Tω

Q3 −Q1

(8)

where Ti are respective predictors, T̄l is the average of Ti, Tmin is the minimum value281

for predictors, Tmax is the maximum value and Std is the standard deviation, Tω is the282

median of Ti and (Q3 −Q1) is the interquartile range between 1st quartile (25th) and 3rd283

quartile (75th) quantile. As there is no specific rule for data partitioning [83, 84], we used284

70% training, 15% testing with a validation set as the last 15% of the training set for all285

data collected between 1 January 2019 and 30 April 2020.286

3. Implementation of ML-based Bias Correction: This study has developed a total287

of 10 different models (i.e., the proposed KRR model along with nine other benchmark288

models) to correct the bias in TCDCGFS-Forecast for data over Day 2 to Day 8 forecasts.289

Our MARS model considers multivariate data with basis functions to investigate the290

predictor variable and identifies the predictor and target features [85]. The DTR is a291

non-parametric, supervised system to approximate a sine curve using ‘if-then-else’ deci-292

sion where generally, the deeper the tree, the more complicated a rule could be to fit293

a model. A prime task of ML is to set hyper-parameters for optimal bias correction294

method, so an optimum architecture of the KRR model was created using GridSearchCV295

(regularization strength, α = 1.5; gamma parameter is fixed to None, with a degree of296

the polynomial kernel is 3 and the kernel is linear; see Table 3). The performance of297

ML bias correction was compared with traditional bias corrections (i.e., MRNBC), and298

the reference value usually calculated between TCDCGFS-Forecast and TCDCGFS-Analysis was299

used with TCDCGFS-Analysis considered as the proxy of the observed cloud cover dataset.300

4. Implementation of MRNBC Bias Correction Method: We now detail the proce-301

dure developed to correct bias using the MRNBC method, which is a traditional non-302

ML approach used previously. We made univariate adjustments followed by multivari-303

ate corrections using a time series with appropriate bias correction statistics generated304

for all variables and locations. Therefore, the MRNBC method corrected the bias in305

TCDCGFS-Forecast by removing the current GFS mean and adding the observed mean. The306

time series adjusted in Step-2 are standardised, and this residual time series is adapted307

for bias using auto and cross-correlations for day lag-1 and lag-0. To summarise the308

corrections necessary at each time scale, a weighting factor may also be computed. The309

TCDCGFS-Forecast daily time series is multiplied by the weighting factor from each time310

scale to produce the final bias-corrected time series. The MRNBC bias correction proce-311

dure is schematized in Figure 4.312

5. Two Different Approaches for Bias Correction We adopt two different approaches313

to correct the bias in GFS-based cloud cover predictions. The first approach, denoted as314

Approach-1 in this paper, integrates five GFS data series comprised of TCDCGFS-Forecast,315

T2mGFS-Forecast, DSWRFGFS-Forecast, UGFS-Forecast and VGFS-Forecast) that are used as the316

proposed KRR model’s input variables. This approach utilizes the exogenous meteoro-317

logical variables that are used to reduce the bias in the predicted TCDC. The second318

approach, denoted as Approach-2, uses a single matrix TCDCGFS-Forecast data-set where319
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Table 3: The optimal hyper-parameters of the proposed KRR model, including that of the other benchmark
models include machine learning (i.e., BNR, DTR, GBR, HGBR, KNN, MARS, MLR, and RF)

Model
Type

Name Hyper-parameters Acronym Optimum

O
b
je
ct
iv
e

M
o
d
e
l

KRR

Regularization strength alpha 1.5
Kernel mapping kernel linear
Gamma parameter gamma None
Degree of the polynomial kernel degree 3
Zero coefficient for polynomial and sigmoid kernels coef0 1.2

B
e
n
ch

m
a
rk

M
a
ch

in
e
L
e
a
rn

in
g
M

o
d
e
ls

BNR

Maximum number of iterations n iter 200
Stop the algorithm if w has converged tol 0.0001
Shape parameter for Gamma distribution over al-
pha

alpha 1 1e-05

Inverse scale parameter over alpha alpha 2 1e-05
Shape parameter for Gamma distribution over
lambda

lambda 1 1e-06

Inverse scale parameter for Gamma distribution
over lambda

lambda 2 1e-04

The initial value for alpha alpha init None

DTR
Maximum depth of the tree max depth None
Minimum number of samples for an internal node min sample split 2
Number of features for the best split max features Auto

GBR

Number of boosting stages n estimators 102
Minimum number of samples for an internal node min sample split 2
Learning rate learning rate 0.1
Maximum depth of individual regression estima-
tors’ estimators

max depth 3

Number of features to consider for the best split max feature None

HGBR

Learning rate learning rate 0.1
Maximum number of iterations max iter 120
maximum number of leaves for each tree max leaf nodes 31
Maximum number of bins max bins 260

KNN

Number of neighbours n neighbors 5
Weights Weights uniform
The algorithm used to compute the nearest neigh-
bours

algorithm auto

Leaf-size passed leaf size 30
Power parameter for the Minkowski metric p 2
The distance metric to use for the tree. metric minkowski
Additional keyword arguments for the metric metric params none
The number of parallel jobs n jobs int

MARS
maximum degree of terms max degree 1
Smoothing parameter used to calculate GCV penalty 3.0

RF

Number of trees in the forest n estimators 120
Maximum depth of the tree max depth 2
Minimum number of samples for an internal node min sample split 2
Number of features for the best split max features auto
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historical patterns and the persistence are used to reduce the bias in the predicted TCDC320

produced by the GFS model. Both approaches use TCDC analysis data-set as the proxy321

of the observed variable generated by the GFS Numerical Weather Prediction Model.322

To arrive at the optimal method used in reducing bias in the predicted TCDC, we have323

examined 10 models (nine based on ML and MRNBC-based conventional model) to iden-324

tify the best bias correction performance in comparison with the reference values between325

TCDCGFS-Forecast and TCDCGFS-Analysis for the present study site.326

2.5. Evaluation of ML-Based Bias Correction Method327

The effectiveness of the proposed KRR model, including all of the ML-based and conven-328

tional bias correction methods employing the reference value (calculated between TCDCGFS-Analysis329

and TCDCGFS-Forecast) is evaluated. We adopt a range of performance metrics such as the Pear-330

son’s Correlation Coefficient (r), root mean square error (RMSE) and mean absolute error331

(MAE) in the testing phase where TCDCGFS-Analysis (i.e., the proxy-observed) and corrected332

TCDCGFS-Forecast datasets are compared). In its most general sense, the effectiveness of any333

model is determined by the agreement between the corrected (i.e., TCDC) and the proxy-334

observed (TCDCGFS-Analysis) data. While RMSE is a more appropriate measure of performance335

than MAE when the error distribution is Gaussian [86], for a more persuasive model, the Will-336

mott’s Index (WI) [87, 88, 89] and Legates–McCabe’s Index (LM) [90, 91, 92] are employed in337

this study.338

Mathematically, these are expressed as follows:339

Correlation coefficient (r):340

r =

∑n
i=1(TCDCBC − TCDCANL)(TCDCBC − TCDCBC )√∑n

i=1(TCDCANL − TCDCANL)2
√∑n

i=1(TCDCBC − TCDCBC )2
(9)

Mean absolute error (MAE):341

MAE =
1

n

n∑
i=1

|TCDCBC − TCDCANL| (10)

Root mean squared error (RMSE):342

RMSE =

√√√√ 1

n

n∑
i=1

(TCDCBC − TCDCANL)2 (11)

Willmott’s Index of Agreement (d):343

d = 1−
∑n

i=n(TCDCBC − TCDCANL)
2∑n

i=n(|TCDCBC − TCDCANL|+ |TCDCANL − TCDCANL|)2
(12)

Legates –McCabe’s Index (LM):344

LM = 1−
∑n

i=1 |TCDCBC − TCDCANL|∑n
i=1 |TCDCANL − TCDCANL|

(13)

Mean Absolute Percentage Deviation (MAPD: %):345

MAPD =
100

n

n∑
i=1

|TCDCBC − TCDCANL|
TCDCANL

(14)
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Consider multiple time series of GFS forecast and GFS 

Analysis Variable 

Decide Total Number of Iterations - NTR 

Estimate Mean, Standard Deviation, Lag-0 and Lag-1 Auto 

and Cross Correlations of GFS Analysis Variable 

Estimate Mean, Standard Deviation, Lag-0 and Lag-1 

Auto and Cross Correlations of GFS Forecast Variable 

Correct Daily GFS Forecast for Mean, Standard Deviation, 

Lag-0 and Lag-1 Auto and Cross Correlations 

Form Monthly Time Series of Daily GFS Forecast Bias 

Corrected Variable and Correct for Biases in Mean, 

Standard Deviation, Lag-0 and Lag-1 Auto and Cross 

Correlations 

Using Equation 8, and Aggregated and Bias Corrected 

Time Series of Variables at Monthly, Seasonal and Annual 

Levels, adjust the Bias Corrected Daily Time Series  

Compare itr 

with NTR 

STOP 

itr = itr + 1 

Treat 

final bias 

corrected 

daily 

series as 

GFS 

forecast 

series 

Start with 

itr = 1 

If itr < NTR 

If itr = NTR 

Figure 4: Schematic of the conventional MRNBC method presented in this study as a comparison method
against the proposed KRR bias correction method used to correct bias in TCDC.

where TCDCANL and TCDCBC , respectively, represents the proxy of the observed (TCDCGFS−Analysis)346

and bias-corrected data series for ith tested value, and TCDCANL and TCDCBC refer to their347

average values, accordingly. The number of observations is denoted by N , while the coefficient348

of variation is denoted by CV.349

In comparing the different models adopted for this bias correction problem, this study uses350

promoting percentage of the Legate-McCabe’s Index (∆LM (%)) as a complementary measure351
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of the model efficiency. The ∆LM (%) is calculated comparing the actual LM obtained using the352

proposed KRR and LM values generated by the KNN, MARS, and RF models. Mathematically,353

the ∆LM (%) is computed as follows:354

∆LM(%) =
LMKRR − LMCOM

LMKRR

× 100 (15)

where LMCOM represents the LM value of the benchmark model (e.g., KNN, MARS, or RF).355

3. Results and Discussion356

The practicality of the proposed KRR model for bias correction is established using two357

distinct approaches as shown previously in Figure 2. We now evaluate the amount of bias that358

has been reduced by applying these approaches considering TCDCGFS-Forecast data relative to the359

proxy-observed (TCDCGFS-Analysis) data using the proposed KRR model. All of the comparative360

ML models (BNR, DTR, GBR, HGBR, KNN, KRR, MARS, MLR, XGB, and RF) are also361

assessed using statistical metrics (Equations 10-14), infographics and visualisations to determine362

the degree of agreement between the corrected TCDCGFS-Forecast and the proxy-observed variable363

(TCDCGFS-Analysis). Overall, the performance metrics indicate that the proposed KRR model364

has outperformed all of the alternative models in the testing phase, which is also demonstrated365

by a superior value of r and d and a low value of RMSE and MAE in the independent testing366

phase discussed in the following section.367

3.1. Boxplots for the Distribution of Errors After Bias Reduction368

According to the results presented in Figures 5 and 6, an in-depth examination of Willmott’s369

Index (d) and the root mean squared error (RMSE) provides persuasive evidence that the370

proposed ML approaches offer substantial benefits in reducing the bias compared with the371

traditional MRNBC method and the respective reference values tested for all the forecast days372

over which the GFS Total Cloud Cover forecast is considered. This figure clearly shows the373

closer distribution of RMSE and d values for the case of ML models using Approach-2 (see374

Figures 5b and 6b) compared with Approach-1 (Figures 5a and 6a). The lower end of the plot375

for the value of d is relatively situated within the lower quartile (25th) and the upper quartile376

(75th) range for the Day 2 GFS forecast data series.377

There appears also to be a single outlier found further than the the 75th percentile. However,378

for Day 3 to Day 8 GFS forecasts, the bias correction of TCDCGFS-Forecast time series results379

in a lesser improvement, except for Day 6 forecasts. This is reasonable as the uncertainties380

in TCDC are likely to increase with an increment in the forecast horizon. Noticeably, as the381

forecasting period changes from Day 2 to Day 8, the performance of our bias correction model382

decreases significantly. Despite this, we can note from Figures 5 and 6 that ML models can be383

considered the most potent strategy for bias correction at solar farms, at least for the present384

study site and the suite of models considered.385

Further analysis is performed through a boxplot of errors (i.e., RMSE) for results obtained386

through Approach-2. This shows the bias-corrected Total Cloud Cover vs. TCDCGFS-Analysis
387

of all the ML models as illustrated in Figure 5b. For Day 2 TCDCGFS-Forecast data series, it388

is noticeable that the dispersion of RMSE for bias correction methods concerning the quartile389

values has distinct outliers. The lower end of the boxplot seems to lie precisely between the390

lower quartile (25th percentile) and upper quartile (75th percentile).391

Likewise, the correlation coefficient (d) and RMSE are higher for the other days (Day 2 to392

Day 8) forecast except for Day 6. Therefore, the improvement of bias using ML methods signifies393

improved performance compared with the MRNBC and the respective reference values of the394

TCDCGFS-Forecast and TCDCGFS-Analysis. When data from the other models were compared, the395

accuracy of KRR-based bias correction outweighed those of the other ML models (see Figure 5).396
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Figure 5: Box plots of the d values calculated for nine ML-bias corrections models (i.e., KRR, BNR, DTR, GBR,
HGBR, KNN, MARS, RF, XGB) pooled together including conventional MRNBC method with their respective
reference d value calculated from TCDCGFS-Forecast and TCDCGFS-Analysis). (a) Approach-1, (b) Approach-2.
[For details on each approach, see Figure 2]

The boxplots of bias-corrected RMSE calculated between data for all the nine ML-based397

bias correction methods pooled together (i.e., KRR, BNR, DTR, GBR, HGBR, KNN, MARS,398

RF, XGB), conventional bias correction method (i.e., MRNBC) and along with their respective399

reference values (RMSE calculated between TCDCGFS-Forecast and TCDCGFS-Analysis) are also400

shown in Figure 6. When used to correct the TCDC simulations, it appears that the proposed401

KRR model with Approach-2 (see Figure 2 produces the lowest MAE values compared with402

the other ML models for the same approach and the reference value method.403

For Approach-2, the MAE value generated for Day 2 forecast is bounded by [20.20, 26.75]404

%, with the best value obtained for the proposed KRR indicating a modest 14% improvement405

over the reference MAE value. A similar reduction in the cloud cover bias is notable for the406

cloud cover forecasts generated for the Day 3 over to the Day 7 horizons.407

It is imperative to note that Approach-1, which employs a MARS model, was more effec-408

tive in correcting the TCDC bias for the Day 8 cloud cover forecasts relative to Approach-2.409

Consequently, the ML-based KRR model outperforms the classic bias correction strategy in410

correcting the GFS-derived TCDC. In accordance with this result, the four best methods (i.e.,411
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Figure 6: Box plots of the bias-corrected RMSE calculated between data for all ML-based bias correc-
tion methods pooled together (i.e., KRR, BNR, DTR, GBR, HGBR, KNN, MARS, RF, XGB), conven-
tional MRNBC method along with their respective reference RMSE calculated between TCDCGFS-Forecast and
TCDCGFS-Analysis). (a) Approach-1, (b) Approach-2. [For details on each approach, see Figure 2].

KNN, KRR, MARS, and RF) were then chosen to conduct an in-depth examination of the bias412

correction approaches utilizing these machine learning models.413

To further demonstrate the proposed KRR model’s capability to correct the bias in the414

TCDCGFS-Forecast data generated for Day 2-8 forecast horizons, we now show the LM values415

between corrected cloud cover forecasts and proxy-observed cloud cover forecasts generated by416

the GFS model. Here, we aim to compare a metric known as the promoting percentage, which417

is an incremental performance in the model based on the value of LM (∆LM ,%) derived from418

the benchmark model against the proposed objective (i.e., KRR) model.419

Figure 7 shows the above results of the proposed KRR model against that of the KNN,420

MARS, and the RF model applied to correct the bias in TCDC data for Day 2 to Day 8421

forecast horizons. The bias correction outcomes for the proposed KRR model relative to the422

other models, is relatively diverse. Notwithstanding this, Figure 7 shows that the effectiveness423

of the bias correction using the proposed KRR method is more significantly notable by 20% to424

65% for all the predicted days. Overall, the highest gain in respect to the accuracy appears to425

have been reached by ≈70% for the proposed KNN model for the case of 4-day ahead forecasting426

of Total Cloud Cover.427
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Figure 7: Percentage change in LM that compares its values obtained using the proposed KRR model
with respect to KNN, MARS and RF models. (a) Approach-1, (b) Approach-2. Note that: ∆LM (%) =
LMKRR−LMCOM

LMKRR
× 100. Note: LMCOM represents the LM value of the benchmark (KNN, MARS or RF) model.

[For details on each approach, see Figure 2].

3.2. Percentage Reduction in Bias428

To investigate the performance of ML-based bias correction and specifically check the per-429

formance of the proposed KRR model, the MAE values for all of the tested models is listed430

in Table 4, along with traditional bias correction method (MRNBC) and the reference value431

method.432

Table 4 shows the MAE (%) computed between the ‘proxy-observed’ (TCDCGFS-Analysis) and433

ML-bias corrected TCDC using the proposed KRR model. Note that here, the conventional434

bias correction method used is the multivariate recursive nesting bias correction (MRNBC)435

method, whereas the benchmark ML methods include the BNR, DTR, GBR, HGBR, KNN,436

MARS, MLR, and the RF model (see Table 3.437

It is important to note that in Approach 2, the proposed KRR model outperforms all of the438

ML, MRNBC and reference value datasets for TCDC forecasts over Days 2-8 forecast horizons439

based on its lowest error value. For example, for Day 2 forecasts of the predicted TCDC, the440

proposed KRR model produces an error value that is ≈ 13.8 % lower than the reference value441

comparing the TCDC forecasts and the TCDC analysis variable. Likewise, the bias in TCDC442

is reduced by ≈ 2.9 %, 13.4 %, 9.7 %, 12.3 %, 13.3 % and 13.5 % for Day 3, Day 4, Day 5,443

Day 6, Day 7 and Day 8, respectively. This shows that the proposed KRR model developed444

using TCDCGFS-Forecast as a predictor with TCDCGFS-Analysis as the target variable, which also445

outperforms the conventional MRNBC method, performs consistently in terms of reducing the446
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Table 4: The MAE (%) computed between ‘proxy-observed’ (TCDCGFS-Analysis) and ML-bias corrected
TCDC used to evaluate the proposed KRR model. Note Approach-1 uses T2mGFS-Forecast, VGFS-Forecast,
UGFS-Forecast, TCDCGFS-Forecast, and DSWRFGFS-Forecast whereas Approach-2 uses TCDCGFS-Forecast as a pre-
dictor against TCDCGFS-Analysis as target variable. The reference MAE is computed between TCDCGFS-Forecast

and TCDCGFS-Analysis data to provide additional benchmarks for the proposed KRR bias correction method.
Note: the best bias correction model has been boldfaced.

Model and Method
GFS Inter-daily Forecast Horizon
Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8

Error comparing TCDCGFS Forecast

and TCDCGFS Analysis

datasets
Reference 23.45 29.36 32.93 31.49 27.59 31.68 32.36

Conventional Bias
Correction Method

MRNBC 25.90 32.05 32.65 32.76 30.28 33.57 34.50

Approach-1

Objective Model KRR 25.07 34.56 32.23 31.33 27.68 30.76 30.26

Benchmark
Models

BNR 25.35 31.90 32.93 32.63 29.08 32.41 31.31
DTR 35.65 30.47 41.35 37.00 38.24 37.98 34.46
GBR 32.52 31.68 34.32 32.38 29.85 31.73 28.77
HGBR 32.45 32.39 34.15 30.95 30.73 33.18 28.77
KNN 26.76 29.90 30.32 30.48 29.98 32.20 31.31
MARS 26.60 26.18 33.21 32.77 28.99 33.40 24.80
RF 25.19 32.14 32.84 32.52 28.94 32.27 31.16
XGB 26.47 30.74 32.96 32.17 28.80 32.08 30.08

Approach 2

Objective Model KRR 20.20 28.75 28.52 28.44 24.20 27.47 27.99

Benchmark
Models

BNR 25.32 31.63 31.89 31.78 28.77 31.57 31.69
DTR 26.75 32.22 33.19 31.82 29.23 31.55 32.74
GBR 25.81 31.73 32.36 31.27 28.52 31.36 31.82
HGBR 25.91 31.70 32.24 31.55 28.37 31.46 32.19
KNN 21.22 38.64 33.39 36.67 30.29 41.85 38.18
MARS 25.36 31.46 31.85 31.75 28.74 31.67 31.66
RF 25.28 31.60 31.85 31.75 28.74 31.54 31.66
XGB 25.48 31.50 31.52 31.20 28.36 31.49 31.52

bias in GFS-based predicted cloud cover generated over multiple forecast horizons.447

For the case of Approach-1 that that has used meteorological variables such as T2mGFS-Forecast,448

VGFS-Forecast, UGFS-Forecast, TCDCGFS-Forecast and DSWRFGFS-Forecast produced by the GFS model449

and the TCDCGFS-Analysis produced as the target variable, the best performance of the proposed450

KRR model is noted for Day 2, Day 6 and Day 7. This performance in terms of error reduction451

is relatively inferior to Approach 2 in terms of the MAE value. One possibility for the relatively452

weaker performance of the proposed KRR model when utilizing these exogenous meteorological453

variables in Approach-1 could perhaps be attributable to the systematic errors within each in-454

dividual GFS variable and a potentially weaker relationship with TCDCGFS-Analysis as the target455

variable. For Day 3, Day 4 and Day 5, the proposed KNN model appears to be the best for456

Approach-1, although the proposed KRR model in Approach 2 still remains superior than this457

model.458

We now evaluate the robustness of the four top-performing models, which includes the459

proposed KRR and the KNN, MARS and RF model by using correlation coefficient (r) for460

Approach-1 and Approach-2. These are plotted together in Figure 8.461

Note that a larger r-value is expected to represent a greater degree of agreement between462
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Figure 8: Comparative analysis of selected ML-based bias correction (i.e., KRR, MARS, KNN, RF) meth-
ods using correlation coefficient (r) between corrected TCDCGFS-Forecast and reference TCDCGFS-Analysis. In-
cluded is a respective reference r-value computed using ‘non-corrected’ TCDCGFS-Forecast and bias-corrected
TCDCGFS-Forecast using MRNBC method. (a) Approach-1, (b) Approach-2. [For details on each approach, see
Figure 2].

corrected TCDCGFS-Forecast and reference TCDCGFS-Analysis. If this is so, the result is expected463

to show a reduction in the bias within the Total Cloud Cover forecasts generated by the GFS464

model. Importantly, the results for Approach-2 show consistently higher r-value compared with465

that of the KRR, MARS, SVR and RF models for all tested forecast horizons from Day 2 to466

Day 8.467

In fact, compared with reference value derived from the ‘non-corrected’ TCDCGFS-Forecast468

and bias-corrected TCDCGFS-Forecast, there appears to be a dramatic reduction of 52.2 % in469

these biases as measured by an increase in r-value for Day 2, which is ≈ 38.9 % - 60.1 % for470

Day 3 to Day 8 forecasts. When compared with the conventional bias correction using MRNBC,471

we note that the proposed KRR model has generated an increased r-value by ≈ 85.1 - 112.6%472

for Day 3 to Day 8 forecasts.473

While the other three ML models have also led to an reduction in the bias in Total Cloud474

Cover, the magnitude of bluethis change in r-value remains lower when compared with both475

the MRNBC and the reference r-values. When the results are closely inspected for Approach-1,476

the proposed KRR model has led to an increase in the r-value (compared against MRNBC) by477

≈ 55.8-13.8 % for Day 2 to Day 7. However, when compared against then reference r-values,478

the proposed KRR model increases the r-value by 44.5 % for Day 2, 15.7 % for Day 3, 2.3 %479
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for Day 5 and 20.8 % for Day 6.480

Overall, it is evident that the proposed KRR model developed using Approach-2 where481

TCDCGFS-Forecast and TCDCGFS-Analysis are used in model construction is superior for all forecast482

horizons and against all of the ML and conventional methods used to reduce the overall bias in483

Total Cloud Cover forecasts. Because the benchmark models performed poorly, as demonstrated484

in Figure 8, the newly proposed KRR model is therefore reaffirmed as superior for the present485

research study site.486

Figure 9: Change (∇) in mean absolute percentage error, MAPD (%) generated by proposed KRR bias cor-
rection method against a reference value of MAPD deducted from TCDCGFS-Forecast and TCDCGFS-Analysis.
(a) Approach-1, and (b) Approach-2. [For details on each approach, see Figure 2]. Interpretive statement: a
positive change is used to show the objective model outperforms benchmark models.

The change (∇) in MAPD (%) generated by the proposed KRR method compared to the487

reference value deduced from TCDCGFS-Forecast and TCDCGFS-Analysis is presented in Figure 9. A488

positive change shows the proposed objective model (i.e., KRR) outperforming the benchmark489

model.490

For both approaches, ∇MAPD (%) is significant for Day 2 GFS forecast, whereas Approach491

2 with KRR shows the lowest value at ≈48%. For Approach-1, the MAE value from an SVR492

model is ≈17.5% higher, whereas ∇MAPD range from [5, 35] % for Day 3 to Day 8 forecasts in493

Approach-2 with some deviation noted for the KNN model. In a rational sense, the proposed494

KRR model demonstrates the most significant improvement in MAPD (∇MAPD; %) ranging495

from 15% to 14% for Day 2 to Day 8 with respect to a reduction in bias for the TCDC dataset.496

Accordingly, we can ascertain that our newly developed KRR model appears to fall within the497

criterion of an acceptable predictive model that can correct the bias in GFS-derived Total Cloud498
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Figure 10: Taylor diagram showing correlation coefficient, standard deviation, and root mean square centered
difference (RMSD). (a) The proposed KRR model is compared with: (b) KNN, (c) MARS, (d) RF) for the
most accurate approach (i.e., Approach-2). [For details on each approach, see Figure 2].
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Cover forecasts. Therefore, it may be a useful tool for solar energy monitoring and forecasting499

systems.500

3.3. Evaluation of Proposed Model Using a Taylor Diagram501

We now revert to a Taylor diagram that provides a way of graphically summarizing how502

closely the model performance matches the observations. Figure 10 is an alternative repre-503

sentation of proposed KRR model’s performance compared to the benchmark models using a504

Taylor diagram [93]. In this case, a significant correlation seems to exist between bias-corrected505

TCDC and the proxy-observed variable (TCDCGFS-Analysis) for the case of the proposed KRR506

model.507

It is clear that the bias corrected TCDC data produced from the proposed KRR model508

is a close match to the proxy of the observed TCDC data relative to the other competing509

ML models. Therefore, in a nutshell, based on the statistical performance measures, we can510

ascertain that the newly developed KRR model has the predictive skills to reduce the overall511

bias in Total Cloud Cover generated by the weather simulation model used in this study.512

4. Conclusions, Limitations and Future Research Insights513

4.1. Conclusion514

This paper utilised ML-based bias correction (i.e., KRR) method to reduce the bias in515

Total Cloud Cover generated by the GFS numerical weather model at a solar energy farm516

in Queensland, Australia. To demonstrate the feasibility of the developed KRR model, data517

from Columboola solar energy farm located in Queensland, Australia, were used. The results518

indicated a superior performance of the proposed model compared to several machine learning519

and conventional bias correction methods. We learned that the ML-based bias correction520

approach had a solid potential to significantly reduce, if not eradicate, the bias in TCDC, by521

utilising cloud cover, temperature, wind speed and downward solar radiation flux forecasts as522

covariates for TCDC that provide adequate predictive features and relationships in observed523

cloud cover variables. Precisely, the KRR model’s capability to correct the bias in TCDC524

dataset was established in terms of the percentage improvement in mean bias error that for525

this study site has ranged from ∼20% to ∼50% using the traditional MRNBC method for Day526

2 to Day 8 forecast.527

The study showed that training a ML model using a single GFS predictor variable (i.e.,528

TCDCGFS-Forecast as well as integrating multiple predictor variables (i.e., T2mGFS-Forecast, VGFS-Forecast,529

UGFS-Forecast and DSWRFGFS-Forecast. against the proxy-observed GFS variable (i.e., TCDCGFS-Analysis)530

successfully corrected the bias in Total Cloud Cover, albeit with a varying degree of accuracy.531

These GFS-based predictor variables provided historical information on the cloud evolution532

against the respective meteorological variables and their lagged stochastic behaviour. Nonethe-533

less, we contend that biases in individual predicted variables from GFS may also affect the534

accuracy of cloud cover bias correction task. In our study, we found using a single set of model535

input variables (i.e., TCDCGFS-Forecast) was better suited compared to the multi-variable ap-536

proach, such that the results have established high predictive potency of employing a single537

variable to resolve the bias-related problem for this solar energy site.538

These results have shown that the performance of ML-based bias correction for longer-539

term forecast horizon (i.e., Day 8) was much better in Approach-1 (where multiple predictor540

variables: TCDCGFS-Forecast, T2mGFS-Forecast, DSWRFGFS-Forecast, UGFS-Forecast, and VGFS-Forecast541

were incorporated in the KRR model’s input matrix). This outcome appears to reveal the542

interactions of these variables with the proxy-observed cloud cover over the passage of time.543

This led to an improved overall performance, i.e., for a longer-term Day 8 bias correction result544

although the multi-variable approach (i.e., Approach-1) registered comparatively large bias545
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compared with the single variable approach (Approach-1). While the results of this pilot study546

may not be explicitly conclusive and may require further investigation, one possible explanation547

for comparatively large bias could be the interference of disproportionately embedded biases548

within each of these forecast variables that could hinder the correlation among such biases to549

affect further TCDC produced by the GFS model.550

4.2. Limitations and Future Research551

In spite of the success of the proposed KRR model in reducing the bias in Total Cloud Cover552

forecasts generated by GFS model over Day 2 to Day 8 horizons, there remain some limitations.553

Firstly, this study has tested a single solar energy farm in Queensland, Australia. Further tests554

of the model including relevant parameter tuning and application at more diverse locations555

are warranted to fully explore its potential in reducing the bias in cloud cover predictions.556

Secondly, such tests should also include integrating the bias-corrected cloud cover forecasts557

into a solar PV monitoring software such as pvlib, Solpy, Pandapower, Pyleecan, Scipy, Numpy,558

or Matplotlib [11, 11, 14] to check the impact of more accurate forecasts on solar generation559

monitoring and related economic (e.g. solar energy price bidding) or other benefits. Thirdly,560

a future study could deep learning algorithms that have exceptional capabilities in terms of561

extracting more complex data features may offer better performance in correcting bias in real-562

time weather models used for solar energy monitoring. Some relevance may be drawn from563

recent studies where deep learning was broadly implemented, for example, in hydrology [37, 39]564

and solar energy studies [94, 95, 96].565

Therefore, in future studies, subject to availability of big atmospheric datasets, a deep566

learning hybrid approach could be adopted as a bias correction method both for solar power567

production monitoring and power failure risk analysis when solar energy is integrated into568

the energy grid. Finally, the exact positioning of the spatial grid over a specific solar farm569

remains a major challenge if we are to use the bias corrected cloud cover forecasts for solar PV570

power monitoring as evident in this study where the Columboola solar energy farm was located571

slightly off-grid from the GFS model. Therefore, exploring other types of NWP models with572

finer grids, or exploring an ensemble of NWP forecasts to correct the bias in their cloud cover573

remains an open problem of interest to the solar energy community. Our group’s next step in574

future research is to adopt the Global Ensemble Forecast System or the Australian Community575

Climate and Earth-System Simulator (ACCESS)-S2/S3) that are NWP model candidates to576

be used by solar energy companies in the USA or Australia for their intra-daily and inter-daily577

solar generation capacity prediction, including its effect on electricity sale bidding price in smart578

grids or their solar-conventional energy supply-demand models.579
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Appendix A. Further Analysis of Bias Reduction Results873

Tables A.5 and A.6 show the percentage increase in the level of agreement between bias-874

corrected Total Cloud Cover forecasts versus the non-corrected values generated by the GFS875

model over an eight day forecast horizon. Here, we show the two approaches and present the876

change in r-value against conventional bias correction method and the reference value (without877

any bias corrections applied). It is evident that all ML models lead to a significant reduction in878

the bias in cloud cover forecasts for Approach-2. When results for Approach-1 are considered879

(Table A.5), there is some discrepancy for Day 5 and Day 8. In spite of this, the present study880

shows a strong potential utility of ML methods for bias correction of cloud cover forecasts881

generated by the GFS numerical weather prediction model.882

Table A.5: The percentage change in correlation coefficient (r) between TCDCGFS-Forecast and TCDCGFS-Analysis

after applying bias corrections for Approach-1. Note that a positive change, indicated in blue font, represents
a reduction in the bias of Total Cloud Cover forecasts. The best model for bias reduction is boldfaced.

Relative to MRNBC
Day Ahead Forecast Horizon

KRR MARS RF SVR
Day 2 55.8 52.4 52.4 55.1
Day 3 54.2 67.8 67.8 45.3
Day 4 3.8 12.0 12.0 29.6
Day 5 17.6 -23.4 -23.4 42.8
Day 6 63.1 71.4 71.4 66.5
Day 7 13.8 40.4 40.4 20.3
Day 8 -17.2 -41.8 -41.8 -2.9

Day Ahead Forecast Horizon Relative to reference value

Day 2 44.5 41.4 41.4 43.8
Day 3 15.7 25.9 25.9 9.0
Day 4 -18.4 -11.9 -11.9 1.9
Day 5 2.3 -33.4 -33.4 24.3
Day 6 20.8 26.9 26.9 23.3
Day 7 -16.2 3.4 3.4 -11.4
Day 8 -37.6 -56.1 -56.1 -26.8

Appendix B. Multivariate recursive nesting bias correction883

The MRNBC corrects the seasonal and non-seasonal time series based on multivariate auto-884

regressive modelling. First introduced by Mehrotra et al. (2018), the MRNBC aims to incorpo-885

rate the Recursive Nested Bias Correction (RNBC). The method has been used previously [25].886

So, in this approach, the TCDCGFS-Forecast simulations are nested into the observed data for all887

timescales of interest. Before applying the nesting, seasonal and non-seasonal time series are888

standardised to a mean of zero and a standard deviation of 1.889

With m predictor variables at an i time step for a Z(m × t) matrix, the lag-one auto-890

correlation and the lag-one and lag-zero cross-correlation in TCDCGFS-Forecast simulations can891

be modified to match the observed correlations in the time and space [97]. The multivari-892

ate autoregressive order 1 (MAR1) model for TCDCGFS-Forecast data and observed variables is893

therefore expressed as follows [98]:894

Ẑh
i = CẐh

i−1 +Dϵi (B.1)
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Table A.6: The percentage change in correlation coefficient (r) between TCDCGFS-Forecast and TCDCGFS-Analysis

after applying bias corrections for Approach-2. Note that a positive change, indicated in blue font, represents
a reduction in the bias of Total Cloud Cover forecasts. The best model for bias reduction is boldfaced.

Relative to MRNBC
Day Ahead Forecast Horizon

KRR MARS RF SVR
Day 2 64.0 61.0 54.5 59.7
Day 3 85.1 85.0 75.8 86.0
Day 4 98.3 96.3 96.3 96.5
Day 5 84.0 76.0 76.0 82.7
Day 6 97.9 79.3 95.6 93.8
Day 7 112.6 101.2 101.2 105.4
Day 8 89.7 88.6 83.6 85.9

Day Ahead Forecast Horizon Relative to reference value

Day 2 52.2 49.4 43.3 48.1
Day 3 38.9 38.8 31.9 39.6
Day 4 55.9 54.4 54.4 54.6
Day 5 60.1 53.2 53.2 59.0
Day 6 46.5 32.8 44.9 43.5
Day 7 56.6 48.1 48.1 51.2
Day 8 42.9 42.1 38.4 40.1

895

Ẑg
i = EẐg

i−1 + Fϵi (B.2)

where Zh represents the observations and Zg is the TCDCGFS-Forecast data. Data are stan-896

dardised to construct a periodic time series Ẑg
i to be modified to match the observation Ẑh

i ,897

where ϵi is a mutually independent vector with random variation having zero mean value and898

an identity covariance matrix. C and D are lag-zero and lag-one cross-correlation coefficient899

matrices for observation Ẑh
i and the coefficients E and F are calculated for the standardised900

TCDCGFS-Forecast output.901

Equations (B.1) and (B.2) are rearranged and modified Ẑg
i along with lag-zero and lag-one902

correlation matrices such as C and D to Ẑg
i have the desired dependence properties [98].903

Ẑ ′h
i = CZ ′g

i−1 +DF−1Ẑg
i −DF−1EẐg

i−1 (B.3)

For correction of periodic parameters, let vectors Zh
t,i and Zg

t,i represent the observations904

and the TCDCGFS-Forecast outputs, respectively, with m variables for month i and year t. The905

standardised periodic time series with a mean of zero and a unit variance is denoted as Ẑt,i.906

Following Equation (B.3), the series Ẑ ′g
t,i maintains the observed lag-one serial and cross depen-907

dence as follows [98]:908

Ẑ ′g
t,i = CiZ

′g
t,i−1 +DiF

−1
i Ẑg

t,i −DiF
−1
i EiẐ

g
t,i−1 (B.4)

where Z ′g
t,i−1 is the corrected time series from a previous month in year t. After corrections, the909

resulting time series Z ′g is rescaled by the observed mean and standard deviation to yield the910

final corrected time series Z̄g, details of which can be found in [97, 99, 100].911

After correcting the monthly time series, Z is combined to produce a seasonal sequence912

and the periodic correction. This time series is connected to an annual time series and the913

correlation, standard deviation, and mean are corrected to form Ag (A is the matrix of yearly914
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data, p × n
12
). Subsequently, each time, aggregation corrections can be applied to daily time915

series to create a simple correction step [101]:916

Z̄g
i,j,s,t =

(
Ȳ g
j,s,t

Y g
j,s,t

)
×
(
S̄g
s,t

Sg
s,t

)
×
(
Āg

t

Ag
t

)
× Zg

i,j,s,t (B.5)

where Ȳ g
j,s,t, S̄

g
s,t and Āg

t indicate the monthly, seasonally, and annually corrected values, re-917

spectively. Y g
j,s,t, S

g
s,t and Ag

t represent the accumulated monthly, seasonal, and annual values,918

respectively, in day i and j, season s, and year t. The three-step bias correction technique919

confirms that future variation is not influenced by the bias correction procedure utilised to920

correct TCDCGFS-Forecast [99].921
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